Skip to content
2000
Volume 25, Issue 22
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Neonatal brain injury (NBI) encompasses a variety of neurological acquired conditions affecting newborns. These conditions include hypoxia-ischemia, hyperoxic, periventricular leukomalacia, intrauterine infection, as well as perinatal cerebral hemorrhage. Each year, thousands of babies are born with signs of brain injury. It is estimated that two-thirds of these newborn infants with brain injury would either die or survive with mild to severe neurologic sequelae, largely due to the absence of no widely accepted treatment methods. Erythropoietin (Epo) is a humoral intermediary associated with the maturation as well as the proliferation of erythroid progenitor cells. Systematic administration of Epo triggers the elevation of Epo levels in cerebrospinal fluid (CSF) extracts, which means that Epo is capable of crossing the blood-brain barrier into the CSF. It has been reported that Epo treatment enhances the brain's network connectivity, improving local information transmission and promoting a shift toward a more integrated and consistent network architecture. This, in turn, augments both local and global connectivity efficiency. Exogenous Epo was found to be capable of regulating neurogenesis. Moreover, Epo was also reported to be associated with the inhibition of demyelination of axons, as well as the production of myelin-derived inhibitory proteins, which are inhibitory factors involved in axonal extension. Administration of recombinant human erythropoietin in neonatal rats provided neuroprotection against hyperoxia-induced oxidative stress. Furthermore, Epo administration during the neonatal period was shown to reverse molecular alterations associated with impaired development of the potassium-chloride co-transporter isoform 2 (KCC2), as well as deficits related to preterm birth during the postnatal period. Moreover, Epo was capable of blocking microglial stimulation, decreasing phagocytosis , as well as inhibiting the generation of inflammatory cytokines as well as . Thus, Epo EpoR is able to influence brain connectivity, synaptogenesis, neurite repair, oxygen-induced brain injury, potassium chloride co-transporters, and inflammation key signaling pathways to induce therapeutic as well as neuroprotection in NBI. Thus, Epo is a very promising neuroprotective as well as a therapeutic agent in the treatment of NBI. This review aimed to explore the neuroprotective and therapeutic mechanisms of Epo in NBI, as well as the potential of Epo variants.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266372339250418052436
2025-04-30
2025-12-28
Loading full text...

Full text loading...

References

  1. KumralA. TüzünF. OnerM.G. GençS. DumanN. ÖzkanH. Erythropoietin in neonatal brain protection: The past, the present and the future.Brain Dev.201133863264310.1016/j.braindev.2010.10.014 21109375
    [Google Scholar]
  2. GonzalezF.F. FerrieroD.M. Neuroprotection in the newborn infant.Clin. Perinatol.2009364859880[vii.]10.1016/j.clp.2009.07.01319944839
    [Google Scholar]
  3. GaleC. StatnikovY. JawadS. UthayaS.N. ModiN. Neonatal brain injuries in England: Population-based incidence derived from routinely recorded clinical data held in the National Neonatal Research Database.Arch. Dis. Child. Fetal Neonatal Ed.20181034F301F30610.1136/archdischild‑2017‑313707 29180541
    [Google Scholar]
  4. EdneyS.K. BasuA. HardingC. PenningtonL. Short-term feeding outcomes after neonatal brain injury.J. Neonatal Nurs.202228426526910.1016/j.jnn.2021.08.016
    [Google Scholar]
  5. VolpeJ.J. Cerebral white matter injury of the premature infant-more common than you think.Pediatrics2003112117618010.1542/peds.112.1.176 12837883
    [Google Scholar]
  6. SongJ. WangY. XuF. SunH. ZhangX. XiaL. ZhangS. LiK. PengX. LiB. ZhangY. KangW. WangX. ZhuC. Erythropoietin improves poor outcomes in preterm infants with intraventricular hemorrhage.CNS Drugs202135668169010.1007/s40263‑021‑00817‑w 33959935
    [Google Scholar]
  7. ZhuC. RodriguezJ. LiT. XuY. SunY. Role of apoptosis-inducing factor in perinatal hypoxic-ischemic brain injury.Neural Regen. Res.202116220521310.4103/1673‑5374.290875 32859765
    [Google Scholar]
  8. WuY. SongJ. WangY. WangX. CulmseeC. ZhuC. The potential role of ferroptosis in neonatal brain injury.Front. Neurosci.20191311510.3389/fnins.2019.00115 30837832
    [Google Scholar]
  9. LiK. LiT. WangY. XuY. ZhangS. CulmseeC. WangX. ZhuC. Sex differences in neonatal mouse brain injury after hypoxia‐ischemia and adaptaquin treatment.J. Neurochem.2019150675977510.1111/jnc.14790 31188470
    [Google Scholar]
  10. RodriguezJ. XieC. LiT. SunY. WangY. XuY. LiK. ZhangS. ZhouK. WangY. MallardC. HagbergH. DotiN. WangX. ZhuC. Inhibiting the interaction between apoptosis-inducing factor and cyclophilin A prevents brain injury in neonatal mice after hypoxia-ischemia.Neuropharmacology202017110808810.1016/j.neuropharm.2020.108088 32277944
    [Google Scholar]
  11. JantzieL. El DemerdashN. NewvilleJ.C. RobinsonS. Time to reconsider extended erythropoietin treatment for infantile traumatic brain injury?Exp. Neurol.201931820521510.1016/j.expneurol.2019.05.004 31082389
    [Google Scholar]
  12. FisherJ.W. Landmark advances in the development of erythropoietin.Exp. Biol. Med. (Maywood)2010235121398141110.1258/ebm.2010.010137 21127338
    [Google Scholar]
  13. BrinesM. CeramiA. Erythropoietin and engineered innate repair activators.Methods Mol. Biol.201398211110.1007/978‑1‑62703‑308‑4_1 23456859
    [Google Scholar]
  14. SayedR.H. GhazyA.H. YammanyM.F.E. Recombinant human erythropoietin and interferon-β-1b protect against 3-nitropropionic acid-induced neurotoxicity in rats: possible role of JAK/STAT signaling pathway.Inflammopharmacology202230266768110.1007/s10787‑022‑00935‑x 35249177
    [Google Scholar]
  15. BrinesM.L. GhezziP. KeenanS. AgnelloD. de LanerolleN.C. CeramiC. ItriL.M. CeramiA. Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury.Proc. Natl. Acad. Sci. USA20009719105261053110.1073/pnas.97.19.10526 10984541
    [Google Scholar]
  16. YişU. KurulS.H. KumralA. TuğyanK. CilakerS. YılmazO. GençŞ. GençK. Effect of erythropoietin on oxygen-induced brain injury in the newborn rat.Neurosci. Lett.2008448324524910.1016/j.neulet.2008.10.060 18973793
    [Google Scholar]
  17. JuulS.E. YachnisA.T. RojianiA.M. ChristensenR.D. Immunohistochemical localization of erythropoietin and its receptor in the developing human brain.Pediatr. Dev. Pathol.19992214815810.1007/s100249900103 9949221
    [Google Scholar]
  18. ZhuC. KangW. XuF. ChengX. ZhangZ. JiaL. JiL. GuoX. XiongH. SimbrunerG. BlomgrenK. WangX. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy.Pediatrics20091242e218e22610.1542/peds.2008‑3553 19651565
    [Google Scholar]
  19. van der KooijM.A. GroenendaalF. KavelaarsA. HeijnenC.J. van BelF. Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia.Brain Res. Brain Res. Rev.2008591223310.1016/j.brainresrev.2008.04.007 18514916
    [Google Scholar]
  20. JelkmannW. Erythropoietin: Structure, control of production, and function.Physiol. Rev.199272244948910.1152/physrev.1992.72.2.449 1557429
    [Google Scholar]
  21. KumralA. BaskinH. YesilirmakD.C. ErgurB.U. AykanS. GencS. GencK. YilmazO. TugyanK. GirayO. DumanN. OzkanH. Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain.Neonatology200792426927810.1159/000105493 17627093
    [Google Scholar]
  22. JuulS.E. PetG.C. Erythropoietin and neonatal neuroprotection.Clin. Perinatol.201542346948110.1016/j.clp.2015.04.004 26250911
    [Google Scholar]
  23. RobertsonN.J. TanS. GroenendaalF. van BelF. JuulS.E. BennetL. DerrickM. BackS.A. Chavez ValdezR. NorthingtonF. GunnA.J. MallardC. Which neuroprotective agents are ready for bench to bedside translation in the newborn infant?J. Pediatr.20121604544552.e410.1016/j.jpeds.2011.12.052 22325255
    [Google Scholar]
  24. XieC. GinetV. SunY. KoikeM. ZhouK. LiT. LiH. LiQ. WangX. UchiyamaY. TruttmannA.C. KroemerG. PuyalJ. BlomgrenK. ZhuC. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury.Autophagy201612241042310.1080/15548627.2015.1132134 26727396
    [Google Scholar]
  25. SongJ. NilssonG. XuY. ZelcoA. Rocha-FerreiraE. WangY. ZhangX. ZhangS. EkJ. HagbergH. ZhuC. WangX. Temporal brain transcriptome analysis reveals key pathological events after germinal matrix hemorrhage in neonatal rats.J. Cereb. Blood Flow Metab.20224291632164910.1177/0271678X221098811 35491813
    [Google Scholar]
  26. FanX. HeijnenC.J. van der KooijM.A. GroenendaalF. van BelF. The role and regulation of hypoxia-inducible factor-1α expression in brain development and neonatal hypoxic–ischemic brain injury.Brain Res. Brain Res. Rev.20096219910810.1016/j.brainresrev.2009.09.006 19786048
    [Google Scholar]
  27. MartiH.H. WengerR.H. RivasL.A. StraumannU. OigicayliogluM. HennV. YonekawaY. BauerC. GassmannM. Erythropoietin gene expression in human, monkey and murine brain.Eur. J. Neurosci.19968466667610.1111/j.1460‑9568.1996.tb01252.x 9081618
    [Google Scholar]
  28. NagaiA. NakagawaE. ChoiH.B. HatoriK. KobayashiS. KimS.U. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture.J. Neuropathol. Exp. Neurol.200160438639210.1093/jnen/60.4.386 11305874
    [Google Scholar]
  29. MartiH.H. Erythropoietin and the hypoxic brain.J. Exp. Biol.2004207183233324210.1242/jeb.01049 15299044
    [Google Scholar]
  30. YeoE.J. ChoY.S. KimM.S. ParkJ.W. Contribution of HIF-1α or HIF-2α to erythropoietin expression: in vivo evidence based on chromatin immunoprecipitation.Ann. Hematol.2008871111710.1007/s00277‑007‑0359‑6 17712557
    [Google Scholar]
  31. MuD. ChangY.S. VexlerZ.S. FerrieroD.M. Hypoxia-inducible factor 1α and erythropoietin upregulation with deferoxamine salvage after neonatal stroke.Exp. Neurol.2005195240741510.1016/j.expneurol.2005.06.001 16023639
    [Google Scholar]
  32. WangX. ZhuC. WangX. GerwienJ.G. SchrattenholzA. SandbergM. LeistM. BlomgrenK. The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia‐ischemia as potently as erythropoietin.J. Neurochem.200491490091010.1111/j.1471‑4159.2004.02769.x 15525344
    [Google Scholar]
  33. HoeberD. SifringerM. van de LooijY. HerzJ. SizonenkoS.V. KempeK. SerdarM. PalaszJ. HadamitzkyM. EndesfelderS. FandreyJ. Felderhoff-MüserU. BendixI. Erythropoietin restores long‐term neurocognitive function involving mechanisms of neuronal plasticity in a model of hyperoxia‐induced preterm brain injury.Oxid. Med. Cell. Longev.201620161924749310.1155/2016/9247493 27493706
    [Google Scholar]
  34. KaindlA.M. SifringerM. KoppelstaetterA. GenzK. LoeberR. BoernerC. StuweJ. KloseJ. Felderhoff-MueserU. Erythropoietin protects the developing brain from hyperoxia‐induced cell death and proteome changes.Ann. Neurol.200864552353410.1002/ana.21471 19067366
    [Google Scholar]
  35. SifringerM. BraitD. WeicheltU. ZimmermanG. EndesfelderS. BrehmerF. von HaefenC. FriedmanA. SoreqH. BendixI. GerstnerB. Felderhoff-MueserU. Erythropoietin attenuates hyperoxia-induced oxidative stress in the developing rat brain.Brain Behav. Immun.201024579279910.1016/j.bbi.2009.08.010 19729061
    [Google Scholar]
  36. BendixI. SchulzeC. HaefenC. GellhausA. EndesfelderS. HeumannR. Felderhoff-MueserU. SifringerM. Erythropoietin modulates autophagy signaling in the developing rat brain in an in vivo model of oxygen-toxicity.Int. J. Mol. Sci.20121310129391295110.3390/ijms131012939 23202931
    [Google Scholar]
  37. JuulS. Erythropoietin in the central nervous system, and its use to prevent hypoxic‐ischemic brain damage.Acta Paediatr.200291s438364210.1111/j.1651‑2227.2002.tb02904.x 12477263
    [Google Scholar]
  38. CampanaW.M. MisasiR. O’BrienJ.S. Identification of a neurotrophic sequence in erythropoietin.Int. J. Mol. Med.19981123524110.3892/ijmm.1.1.235 9852225
    [Google Scholar]
  39. KoshimuraK. MurakamiY. SohmiyaM. TanakaJ. KatoY. Effects of erythropoietin on neuronal activity.J. Neurochem.19997262565257210.1046/j.1471‑4159.1999.0722565.x 10349868
    [Google Scholar]
  40. MasudaS. NagaoM. TakahataK. KonishiY. GallyasF.Jr TabiraT. SasakiR. Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells.J. Biol. Chem.199326815112081121610.1016/S0021‑9258(18)82112‑3 7684373
    [Google Scholar]
  41. KuanC.Y. ChenH.R. GaoN. KuoY.M. ChenC.W. YangD. KinkaidM.M. HuE. SunY.Y. Brain-targeted hypoxia-inducible factor stabilization reduces neonatal hypoxic-ischemic brain injury.Neurobiol. Dis.202114810520010.1016/j.nbd.2020.105200 33248237
    [Google Scholar]
  42. ZechariahA. ElAliA. HermannD.M. Combination of tissue-plasminogen activator with erythropoietin induces blood-brain barrier permeability, extracellular matrix disaggregation, and DNA fragmentation after focal cerebral ischemia in mice.Stroke20104151008101210.1161/STROKEAHA.109.574418 20360548
    [Google Scholar]
  43. YangD. NemkulN. ShereenA. JoneA. DunnR.S. LawrenceD.A. LindquistD. KuanC.Y. Therapeutic administration of plasminogen activator inhibitor-1 prevents hypoxic-ischemic brain injury in newborns.J. Neurosci.200929278669867410.1523/JNEUROSCI.1117‑09.2009 19587273
    [Google Scholar]
  44. KellerM. YangJ. GriesmaierE. GornaA. SarkozyG. UrbanekM. GressensP. SimbrunerG. Erythropoietin is neuroprotective against NMDA-receptor-mediated excitotoxic brain injury in newborn mice.Neurobiol. Dis.200624235736610.1016/j.nbd.2006.07.007 16959492
    [Google Scholar]
  45. KorzeniewskiS.J. AllredE. LoganJ.W. FichorovaR.N. EngelkeS. KubanK.C.K. O’SheaT.M. PanethN. HolmM. DammannO. LevitonA. Elevated endogenous erythropoietin concentrations are associated with increased risk of brain damage in extremely preterm neonates.PLoS One2015103e011508310.1371/journal.pone.0115083 25793991
    [Google Scholar]
  46. VittoriD.C. ChamorroM.E. HernándezY.V. MaltaneriR.E. NesseA.B. Erythropoietin and derivatives: Potential beneficial effects on the brain.J. Neurochem.202115851032105710.1111/jnc.15475 34278579
    [Google Scholar]
  47. SyedR.S. ReidS.W. LiC. CheethamJ.C. AokiK.H. LiuB. ZhanH. OsslundT.D. ChirinoA.J. ZhangJ. Finer-MooreJ. ElliottS. SitneyK. KatzB.A. MatthewsD.J. WendoloskiJ.J. EgrieJ. StroudR.M. Efficiency of signalling through cytokine receptors depends critically on receptor orientation.Nature1998395670151151610.1038/26773 9774108
    [Google Scholar]
  48. BhukhaiK. FouquetG. RittaveeY. TanhuadN. LakmuangC. BorwornpinyoS. AnurathapanU. SuksamrarnA. PiyachaturawatP. ChairoungduaA. HermineO. HongengS. Enhancing erythropoiesis by a phytoestrogen diarylheptanoid from Curcuma comosa.Biomedicines2022106142710.3390/biomedicines10061427 35740448
    [Google Scholar]
  49. RainvilleN. JachimowiczE. WojchowskiD.M. Targeting EPO and EPO receptor pathways in anemia and dysregulated erythropoiesis.Expert Opin. Ther. Targets201620328730110.1517/14728222.2016.1090975 26419263
    [Google Scholar]
  50. SolizJ. GassmannM. JosephV. Soluble erythropoietin receptor is present in the mouse brain and is required for the ventilatory acclimatization to hypoxia.J. Physiol.2007583132933610.1113/jphysiol.2007.133454 17584830
    [Google Scholar]
  51. BrinesM. GrassoG. FiordalisoF. SfacteriaA. GhezziP. FratelliM. LatiniR. XieQ. SmartJ. Su-RickC. PobreE. DiazD. GomezD. HandC. ColemanT. CeramiA. Erythropoietin mediates tissue protection through an erythropoietin and common β-subunit heteroreceptor.Proc. Natl. Acad. Sci. USA200410141149071491210.1073/pnas.0406491101 15456912
    [Google Scholar]
  52. LiC. LanmanN.A. KongY. HeD. MaoF. FarahE. ZhangY. LiuJ. WangC. WeiQ. LiuX. Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance.J. Biol. Chem.2020295165470548310.1074/jbc.RA119.011385 32184358
    [Google Scholar]
  53. MaR. HuJ. HuangC. WangM. XiangJ. LiG. JAK2/STAT5/Bcl-xL signalling is essential for erythropoietin-mediated protection against apoptosis induced in PC12 cells by the amyloid β-peptide Aβ25-35.Br. J. Pharmacol.2014171133234324510.1111/bph.12672 24597613
    [Google Scholar]
  54. MaR. XiongN. HuangC. TangQ. HuB. XiangJ. LiG. Erythropoietin protects PC12 cells from β-amyloid25–35-induced apoptosis via PI3K/Akt signaling pathway.Neuropharmacology2009566-71027103410.1016/j.neuropharm.2009.02.006 19268480
    [Google Scholar]
  55. YuX. ShackaJ.J. EellsJ.B. Suarez-QuianC. PrzygodzkiR.M. Beleslin-CokicB. LinC.S. NikodemV.M. HempsteadB. FlandersK.C. CostantiniF. NoguchiC.T. Erythropoietin receptor signalling is required for normal brain development.Development2002129250551610.1242/dev.129.2.505 11807041
    [Google Scholar]
  56. OttC. MartensH. HassounaI. OliveiraB. ErckC. ZafeiriouM.P. PeteriU.K. HesseD. GerhartS. AltasB. KolbowT. StadlerH. KawabeH. ZimmermannW.H. NaveK.A. Schulz-SchaefferW. JahnO. EhrenreichH. Widespread expression of erythropoietin receptor in brain and its induction by injury.Mol. Med.201521180381510.2119/molmed.2015.00192 26349059
    [Google Scholar]
  57. ChavezJ.C. BaranovaO. LinJ. PichiuleP. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes.J. Neurosci.200626379471948110.1523/JNEUROSCI.2838‑06.2006 16971531
    [Google Scholar]
  58. HellewellS.C. YanE.B. AlwisD.S. ByeN. Morganti-KossmannM.C. Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor.J. Neuroinflammation201310192610.1186/1742‑2094‑10‑156 24344874
    [Google Scholar]
  59. MadanA. VarmaS. CohenH.J. Co-transactivation of the 3′ erythropoietin hypoxia inducible enhancer by the HIF-1 protein.Blood Cells Mol. Dis.199723216917610.1006/bcmd.1997.0134 9236155
    [Google Scholar]
  60. HuangR. ZhangJ. RenC. ZhangX. GuL. DongY. ZhangJ. ZhangJ. Effect of erythropoietin on Fas/FasL expression in brain tissues of neonatal rats with hypoxic-ischemic brain damage.Neuroreport201930426226810.1097/WNR.0000000000001194 30672890
    [Google Scholar]
  61. TsaiP.T. OhabJ.J. KerteszN. GroszerM. MatterC. GaoJ. LiuX. WuH. CarmichaelS.T. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery.J. Neurosci.20062641269127410.1523/JNEUROSCI.4480‑05.2006 16436614
    [Google Scholar]
  62. SanchezP.E. NavarroF.P. FaresR.P. NadamJ. GeorgesB. MoulinC. Le CavorsinM. BonnetC. RyvlinP. BelmeguenaiA. BodennecJ. MoralesA. BezinL. Erythropoietin receptor expression is concordant with erythropoietin but not with common β chain expression in the rat brain throughout the life span.J. Comp. Neurol.2009514440341410.1002/cne.22020 19330822
    [Google Scholar]
  63. KnabeW. KnerlichF. WashausenS. KietzmannT. SirénA.L. BrunnettG. KuhnH.J. EhrenreichH. Expression patterns of erythropoietin and its receptor in the developing midbrain.Anat. Embryol. (Berl.)2004207650351210.1007/s00429‑003‑0365‑y 14770308
    [Google Scholar]
  64. KnabeW. SirénA.L. EhrenreichH. KuhnH.J. Expression patterns of erythropoietin and its receptor in the developing spinal cord and dorsal root ganglia.Anat. Embryol. (Berl.)2005210320921910.1007/s00429‑005‑0019‑3 16151855
    [Google Scholar]
  65. SirénA.L. KnerlichF. PoserW. GleiterC.H. BrückW. EhrenreichH. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain.Acta Neuropathol.2001101327127610.1007/s004010000297 11307627
    [Google Scholar]
  66. HaynesR.L. FolkerthR.D. KeefeR.J. SungI. SwzedaL.I. RosenbergP.A. VolpeJ.J. KinneyH.C. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia.J. Neuropathol. Exp. Neurol.200362544145010.1093/jnen/62.5.441 12769184
    [Google Scholar]
  67. JakabA. RueggerC. BucherH.U. MakkiM. HuppiP.S. TuuraR. HagmannC. Network based statistics reveals trophic and neuroprotective effect of early high dose erythropoetin on brain connectivity in very preterm infants.Neuroimage Clin.20192210180610.1016/j.nicl.2019.101806 30991614
    [Google Scholar]
  68. BackS.A. RiddleA. McClureM.M. Maturation-dependent vulnerability of perinatal white matter in premature birth.Stroke2007382Suppl.72473010.1161/01.STR.0000254729.27386.05 17261726
    [Google Scholar]
  69. RiddleA. Ling LuoN. ManeseM. BeardsleyD.J. GreenL. RorvikD.A. KellyK.A. BarlowC.H. KellyJ.J. HohimerA.R. BackS.A Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury.J Neurosci200626113045305510.1523/JNEUROSCI.5200‑05.200616540583
    [Google Scholar]
  70. KinneyH.C. Ann brody, B.; Kloman, A.S.; Gilles, F.H. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants.J. Neuropathol. Exp. Neurol.198847321723410.1097/00005072‑198805000‑00003 3367155
    [Google Scholar]
  71. PanditA.S. RobinsonE. AljabarP. BallG. GousiasI.S. WangZ. HajnalJ.V. RueckertD. CounsellS.J. MontanaG. EdwardsA.D. Whole-brain mapping of structural connectivity in infants reveals altered connection strength associated with growth and preterm birth.Cereb. Cortex20142492324233310.1093/cercor/bht086 23547135
    [Google Scholar]
  72. DosenbachN.U.F. FairD.A. MiezinF.M. CohenA.L. WengerK.K. DosenbachR.A.T. FoxM.D. SnyderA.Z. VincentJ.L. RaichleM.E. SchlaggarB.L. PetersenS.E. Distinct brain networks for adaptive and stable task control in humans.Proc. Natl. Acad. Sci. USA200710426110731107810.1073/pnas.0704320104 17576922
    [Google Scholar]
  73. SpornsO. Network attributes for segregation and integration in the human brain.Curr. Opin. Neurobiol.201323216217110.1016/j.conb.2012.11.015 23294553
    [Google Scholar]
  74. SpornsO. The human connectome: a complex network.Ann. N. Y. Acad. Sci.20111224110912510.1111/j.1749‑6632.2010.05888.x 21251014
    [Google Scholar]
  75. van den HeuvelM.P. SpornsO. An anatomical substrate for integration among functional networks in human cortex.J. Neurosci.20133336144891450010.1523/JNEUROSCI.2128‑13.2013 24005300
    [Google Scholar]
  76. van den HeuvelM.P. KersbergenK.J. de ReusM.A. KeunenK. KahnR.S. GroenendaalF. de VriesL.S. BendersM.J.N.L. The neonatal connectome during preterm brain development.Cereb. Cortex20152593000301310.1093/cercor/bhu095 24833018
    [Google Scholar]
  77. van den HeuvelM.P. SpornsO. Rich-club organization of the human connectome.J. Neurosci.20113144157751578610.1523/JNEUROSCI.3539‑11.2011 22049421
    [Google Scholar]
  78. O’GormanR.L. BucherH.U. HeldU. KollerB.M. HüppiP.S. HagmannC.F. Tract-based spatial statistics to assess the neuroprotective effect of early erythropoietin on white matter development in preterm infants.Brain2015138238839710.1093/brain/awu363 25534356
    [Google Scholar]
  79. KarolisV.R. Froudist-WalshS. BrittainP.J. KrollJ. BallG. EdwardsA.D. Dell’AcquaF. WilliamsS.C. MurrayR.M. NosartiC. Reinforcement of the brain’s rich-club architecture following early neurodevelopmental disruption caused by very preterm birth.Cereb. Cortex20162631322133510.1093/cercor/bhv305 26742566
    [Google Scholar]
  80. JuulS. Erythropoietin as a neonatal neuroprotective agent.Neoreviews2010112e78e8410.1542/neo.11‑2‑e78
    [Google Scholar]
  81. LiangY. ChenC. LiF. YaoD. XuP. YuL. Altered functional connectivity after epileptic seizure revealed by scalp EEG.Neural Plast.202020201810.1155/2020/8851415 33299398
    [Google Scholar]
  82. ParkH.J. FristonK. Structural and functional brain networks: From connections to cognition.Science20133426158123841110.1126/science.1238411 24179229
    [Google Scholar]
  83. YuH. ZhuL. CaiL. WangJ. LiuC. ShiN. LiuJ. Variation of functional brain connectivity in epileptic seizures: An EEG analysis with cross-frequency phase synchronization.Cogn. Neurodynamics2020141354910.1007/s11571‑019‑09551‑y 32015766
    [Google Scholar]
  84. TecchioF. CottoneC. PorcaroC. CancelliA. Di LazzaroV. AssenzaG. Brain functional connectivity changes after transcranial direct current stimulation in epileptic patients.Front. Neural Circuits2018124410.3389/fncir.2018.00044 29899691
    [Google Scholar]
  85. GonzalezF.F. LarpthaveesarpA. McQuillenP. DeruginN. WendlandM. SpadaforaR. FerrieroD.M. Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke.Stroke201344375375810.1161/STROKEAHA.111.000104 23391775
    [Google Scholar]
  86. LevisonS.W. ChuangC. AbramsonB.J. GoldmanJ.E. The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated.Development1993119361162210.1242/dev.119.3.611 8187632
    [Google Scholar]
  87. OsredkarD. SallJ.W. BicklerP.E. FerrieroD.M. Erythropoietin promotes hippocampal neurogenesis in in vitro models of neonatal stroke.Neurobiol. Dis.201038225926510.1016/j.nbd.2010.01.015 20117210
    [Google Scholar]
  88. XiongT. YangX. QuY. ChenH. YueY. WangH. ZhaoF. LiS. ZouR. ZhangL. MuD. Erythropoietin induces synaptogenesis and neurite repair after hypoxia ischemia-mediated brain injury in neonatal rats.Neuroreport2019301178378910.1097/WNR.0000000000001285 31261238
    [Google Scholar]
  89. XiongT. QuY. WangH. ChenH. ZhuJ. ZhaoF. ZouR. ZhangL. MuD. GSK-3β/mTORC1 couples synaptogenesis and axonal repair to reduce hypoxia ischemia-mediated brain injury in neonatal rats.J. Neuropathol. Exp. Neurol.201877538339410.1093/jnen/nly015 29506051
    [Google Scholar]
  90. RosenbergT. Gal-Ben-AriS. DieterichD.C. KreutzM.R. ZivN.E. GundelfingerE.D. RosenblumK. The roles of protein expression in synaptic plasticity and memory consolidation.Front. Mol. Neurosci.201478610.3389/fnmol.2014.00086 25429258
    [Google Scholar]
  91. MattsonM.P. Pathways towards and away from Alzheimer’s disease.Nature2004430700063163910.1038/nature02621 15295589
    [Google Scholar]
  92. PagnussatA.S. SimaoF. AnastacioJ.R. MestrinerR.G. MichaelsenS.M. CastroC.C. SalbegoC. NettoC.A. Effects of skilled and unskilled training on functional recovery and brain plasticity after focal ischemia in adult rats.Brain Res.20121486536110.1016/j.brainres.2012.09.019 23022567
    [Google Scholar]
  93. WallinD.J. ZamoraT.G. AlexanderM. EnnisK.M. TranP.V. GeorgieffM.K. Neonatal mouse hippocampus: Phlebotomy-induced anemia diminishes and treatment with erythropoietin partially rescues mammalian target of rapamycin signaling.Pediatr. Res.201782350150810.1038/pr.2017.88 28399115
    [Google Scholar]
  94. LiN. LeeB. LiuR.J. BanasrM. DwyerJ.M. IwataM. LiX.Y. AghajanianG. DumanR.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.Science2010329599495996410.1126/science.1190287 20724638
    [Google Scholar]
  95. MaieseK. Erythropoietin and mTOR: A “One-Two Punch” for aging-related disorders accompanied by enhanced life expectancy.Curr. Neurovasc. Res.201613432934010.2174/1567202613666160729164900 27488211
    [Google Scholar]
  96. HouS.T. JiangS.X. SmithR.A. Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration.Int. Rev. Cell Mol. Biol.200826712518110.1016/S1937‑6448(08)00603‑5 18544498
    [Google Scholar]
  97. XiongT. TangJ. ZhaoJ. ChenH. ZhaoF. LiJ. QuY. FerrieroD. MuD. Involvement of the Akt/GSK-3β/CRMP-2 pathway in axonal injury after hypoxic–ischemic brain damage in neonatal rat.Neuroscience201221612313210.1016/j.neuroscience.2012.04.052 22554777
    [Google Scholar]
  98. KitagawaK. MatsumotoM. NiinobeM. MikoshibaK. HataR. UedaH. HandaN. FukunagaR. IsakaY. KimuraK. KamadaT. Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage—Immunohistochemical investigation of dendritic damage.Neuroscience198931240141110.1016/0306‑4522(89)90383‑7 2797444
    [Google Scholar]
  99. YamadaM. BurkeC. ColditzP. JohnsonD.W. GobeG.C. Erythropoietin protects against apoptosis and increases expression of non‐neuronal cell markers in the hypoxia‐injured developing brain.J. Pathol.2011224110110910.1002/path.2862 21404277
    [Google Scholar]
  100. WangR. ZhaoH. LiJ. DuanY. FanZ. TaoZ. JuF. YanF. LuoY. Erythropoietin attenuates axonal injury after middle cerebral artery occlusion in mice.Neurol. Res.201739654555110.1080/01616412.2017.1316904 28413924
    [Google Scholar]
  101. Felderhoff-MueserU. BittigauP. SifringerM. JaroszB. KorobowiczE. MahlerL. PieningT. MoysichA. GruneT. ThorF. HeumannR. BührerC. IkonomidouC. Oxygen causes cell death in the developing brain.Neurobiol. Dis.200417227328210.1016/j.nbd.2004.07.019 15474364
    [Google Scholar]
  102. MarkertF. StorchA. Hyperoxygenation during mid-neurogenesis accelerates cortical development in the fetal mouse brain.Front. Cell Dev. Biol.20221073268210.3389/fcell.2022.732682 35372333
    [Google Scholar]
  103. DewanM.V. SerdarM. van de LooijY. KowallickM. HadamitzkyM. EndesfelderS. FandreyJ. SizonenkoS.V. HerzJ. Felderhoff-MüserU. BendixI. Repetitive erythropoietin treatment improves long-term neurocognitive outcome by attenuating hyperoxia-induced hypomyelination in the developing brain.Front. Neurol.20201180410.3389/fneur.2020.00804 32903382
    [Google Scholar]
  104. SolaA. RogidoM.R. DeulofeutR. Oxygen as a neonatal health hazard: Call for détente in clinical practice.Acta Paediatr.200796680181210.1111/j.1651‑2227.2007.00287.x 17537007
    [Google Scholar]
  105. YişU. KurulS.H. KumralA. CilakerS. TuğyanK. GençŞ. YılmazO. Hyperoxic exposure leads to cell death in the developing brain.Brain Dev.200830955656210.1016/j.braindev.2008.01.010 18329209
    [Google Scholar]
  106. GerstnerB. DeSilvaT.M. GenzK. ArmstrongA. BrehmerF. NeveR.L. Felderhoff-MueserU. VolpeJ.J. RosenbergP.A. Hyperoxia causes maturation-dependent cell death in the developing white matter.J. Neurosci.20082851236124510.1523/JNEUROSCI.3213‑07.2008 18234901
    [Google Scholar]
  107. BrehmerF. BendixI. PragerS. van de LooijY. ReinbothB.S. ZimmermannsJ. SchlagerG.W. BraitD. SifringerM. EndesfelderS. SizonenkoS. MallardC. BührerC. Felderhoff-MueserU. GerstnerB. Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage.PLoS One2012711e4902310.1371/journal.pone.0049023 23155446
    [Google Scholar]
  108. HuX. QiuJ. GrafeM.R. ReaH.C. RassinD.K. Perez-PoloJ.R. Bcl‐2 family members make different contributions to cell death in hypoxia and/or hyperoxia in rat cerebral cortex.Int. J. Dev. Neurosci.200321737137710.1016/S0736‑5748(03)00089‑3 14599483
    [Google Scholar]
  109. SirinyanM. SennlaubF. DorfmanA. SapiehaP. GobeilF.Jr HardyP. LachapelleP. ChemtobS. Hyperoxic exposure leads to nitrative stress and ensuing microvascular degeneration and diminished brain mass and function in the immature subject.Stroke200637112807281510.1161/01.STR.0000245082.19294.ff 17008616
    [Google Scholar]
  110. VivianiB. BartesaghiS. CorsiniE. VillaP. GhezziP. GarauA. GalliC.L. MarinovichM. Erythropoietin protects primary hippocampal neurons increasing the expression of brain‐derived neurotrophic factor.J. Neurochem.200593241242110.1111/j.1471‑4159.2005.03033.x 15816864
    [Google Scholar]
  111. WangL. ZhangZ. WangY. ZhangR. ChoppM. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats.Stroke20043571732173710.1161/01.STR.0000132196.49028.a4 15178821
    [Google Scholar]
  112. DigicayliogluM. LiptonS.A. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades.Nature2001412684764164710.1038/35088074 11493922
    [Google Scholar]
  113. ChongZ.Z. LinS.H. KangJ.Q. MaieseK. Erythropoietin prevents early and late neuronal demise through modulation of Akt1 and induction of caspase 1, 3, and 8.J. Neurosci. Res.200371565966910.1002/jnr.10528 12584724
    [Google Scholar]
  114. Felderhoff-MueserU. SifringerM. PolleyO. DzietkoM. LeineweberB. MahlerL. BaierM. BittigauP. ObladenM. IkonomidouC. BührerC. Caspase‐1–processed interleukins in hyperoxia‐induced cell death in the developing brain.Ann. Neurol.2005571505910.1002/ana.20322 15622543
    [Google Scholar]
  115. SifringerM. GenzK. BraitD. BrehmerF. LöberR. WeicheltU. KaindlA.M. GerstnerB. Felderhoff-MueserU. Erythropoietin attenuates hyperoxia-induced cell death by modulation of inflammatory mediators and matrix metalloproteinases.Dev. Neurosci.200931539440210.1159/000232557 19672068
    [Google Scholar]
  116. JantzieL.L. GetsyP.M. FirlD.J. WilsonC.G. MillerR.H. RobinsonS. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury.Mol. Cell. Neurosci.20146115216210.1016/j.mcn.2014.06.009 24983520
    [Google Scholar]
  117. DawM.I. AshbyM.C. IsaacJ.T.R. Coordinated developmental recruitment of latent fast spiking interneurons in layer IV barrel cortex.Nat. Neurosci.200710445346110.1038/nn1866 17351636
    [Google Scholar]
  118. BaruchinL.J. GhezziF. KohlM.M. ButtS.J.B. Contribution of interneuron subtype-specific GABAergic signaling to emergent sensory processing in mouse somatosensory whisker barrel cortex.Cereb. Cortex202232122538255410.1093/cercor/bhab363 34613375
    [Google Scholar]
  119. FarrantM KailaK The cellular, molecular and ionic basis of GABAA receptor signalling.Prog Brain Res2007160598710.1016/S0079‑6123(06)60005‑817499109
    [Google Scholar]
  120. Ben-AriY. KhalilovI. KahleK.T. CherubiniE. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders.Neuroscientist201218546748610.1177/1073858412438697 22547529
    [Google Scholar]
  121. JaenischN. WitteO.W. FrahmC. Downregulation of potassium chloride cotransporter KCC2 after transient focal cerebral ischemia.Stroke2010413e151e15910.1161/STROKEAHA.109.570424 20044519
    [Google Scholar]
  122. TangD. QianA.H. SongD.D. BenQ.W. YaoW.Y. SunJ. LiW.G. XuT.L. YuanY.Z. Role of the potassium chloride cotransporter isoform 2-mediated spinal chloride homeostasis in a rat model of visceral hypersensitivity.Am. J. Physiol. Gastrointest. Liver Physiol.20153089G767G77810.1152/ajpgi.00313.2014 25792562
    [Google Scholar]
  123. RobinsonS. MikolaenkoI. ThompsonI. CohenM.L. GoyalM. Loss of cation-chloride cotransporter expression in preterm infants with white matter lesions: Implications for the pathogenesis of epilepsy.J. Neuropathol. Exp. Neurol.201069656557210.1097/NEN.0b013e3181dd25bc 20467335
    [Google Scholar]
  124. RobinsonS. PetelenzK. LiQ. CohenM.L. DeChantA. TabriziN. BucekM. LustD. MillerR.H. Developmental changes induced by graded prenatal systemic hypoxic–ischemic insults in rats.Neurobiol. Dis.200518356858110.1016/j.nbd.2004.10.024 15755683
    [Google Scholar]
  125. VolpeJ.J. KinneyH.C. JensenF.E. RosenbergP.A. The developing oligodendrocyte: Key cellular target in brain injury in the premature infant.Int. J. Dev. Neurosci.201129442344010.1016/j.ijdevneu.2011.02.012 21382469
    [Google Scholar]
  126. AminiM. MaC. FarazifardR. ZhuG. ZhangY. VanderluitJ. ZoltewiczJ.S. HageF. SavittJ.M. LagaceD.C. SlackR.S. BeiqueJ.C. BaudryM. GreerP.A. BergeronR. ParkD.S. Conditional disruption of calpain in the CNS alters dendrite morphology, impairs LTP, and promotes neuronal survival following injury.J. Neurosci.201333135773578410.1523/JNEUROSCI.4247‑12.2013 23536090
    [Google Scholar]
  127. FerriniF. TrangT. MattioliT.A.M. LaffrayS. Del’GuidiceT. LorenzoL.E. CastonguayA. DoyonN. ZhangW. GodinA.G. MohrD. BeggsS. VandalK. BeaulieuJ.M. CahillC.M. SalterM.W. De KoninckY. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl− homeostasis.Nat. Neurosci.201316218319210.1038/nn.3295 23292683
    [Google Scholar]
  128. PatelD.C. ThompsonE.G. SontheimerH. Brain-derived neurotrophic factor inhibits the function of cation-chloride cotransporter in a mouse model of viral infection-induced epilepsy.Front. Cell Dev. Biol.20221096129210.3389/fcell.2022.961292 35874836
    [Google Scholar]
  129. Ben-AriY. Excitatory actions of gaba during development: The nature of the nurture.Nat. Rev. Neurosci.20023972873910.1038/nrn920 12209121
    [Google Scholar]
  130. MétinC. BaudoinJ.P. RakićS. ParnavelasJ.G. Cell and molecular mechanisms involved in the migration of cortical interneurons.Eur. J. Neurosci.200623489490010.1111/j.1460‑9568.2006.04630.x 16519654
    [Google Scholar]
  131. MonteroM. PoulsenF.R. NorabergJ. KirkebyA. van BeekJ. LeistM. ZimmerJ. Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen–glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures.Exp. Neurol.2007204110611710.1016/j.expneurol.2006.09.026 17157835
    [Google Scholar]
  132. Ofek-ShlomaiN. BergerI. Inflammatory injury to the neonatal brain: What can we do?Front Pediatr.201423010.3389/fped.2014.00030 24783185
    [Google Scholar]
  133. WuY.W. EscobarG.J. GretherJ.K. CroenL.A. GreeneJ.D. NewmanT.B. Chorioamnionitis and cerebral palsy in term and near-term infants.JAMA2003290202677268410.1001/jama.290.20.2677 14645309
    [Google Scholar]
  134. WuX. WangB. MaQ. ZhangY. XuJ. ZhangZ. ChenG. Mechanism of erythropoietin-induced M2 microglia polarization via Akt/Mtor/P70S6k signaling pathway in the treatment of brain injury in premature mice and its effect on biofilm.Bioengineered2022135130211303210.1080/21655979.2022.2073000 35611764
    [Google Scholar]
  135. WolfS.A. BoddekeH.W.G.M. KettenmannH. Microglia in physiology and disease.Annu. Rev. Physiol.201779161964310.1146/annurev‑physiol‑022516‑034406 27959620
    [Google Scholar]
  136. RichardS.A. The Pivotal immunoregulatory functions of microglia and macrophages in glioma pathogenesis and therapy.J. Oncol.2022202211910.1155/2022/8903482 35419058
    [Google Scholar]
  137. TangY. LeW. Differential roles of M1 and M2 microglia in neurodegenerative diseases.Mol. Neurobiol.20165321181119410.1007/s12035‑014‑9070‑5 25598354
    [Google Scholar]
  138. YangX. XuS. QianY. XiaoQ. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury.Brain Behav. Immun.20176416217210.1016/j.bbi.2017.03.003 28268115
    [Google Scholar]
  139. TamuraT. AoyamaM. UkaiS. KakitaH. SobueK. AsaiK. Neuroprotective erythropoietin attenuates microglial activation, including morphological changes, phagocytosis, and cytokine production.Brain Res.20171662657410.1016/j.brainres.2017.02.023 28257780
    [Google Scholar]
  140. WeiS. LuoC. YuS. GaoJ. LiuC. WeiZ. ZhangZ. WeiL. YiB. Erythropoietin ameliorates early brain injury after subarachnoid haemorrhage by modulating microglia polarization via the EPOR/JAK2-STAT3 pathway.Exp. Cell Res.2017361234235210.1016/j.yexcr.2017.11.002 29102603
    [Google Scholar]
  141. YoonB.H. RomeroR. KimC.J. KooJ.N. ChoeG. SynH.C. ChiJ.G. High expression of tumor necrosis factor-α and interleukin-6 in periventricular leukomalacia.Am. J. Obstet. Gynecol.1997177240641110.1016/S0002‑9378(97)70206‑0 9290459
    [Google Scholar]
  142. ChenG. ShiJ.X. HangC.H. XieW. LiuJ. LiuX. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: A potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO).Neurosci. Lett.2007425317718210.1016/j.neulet.2007.08.022 17825990
    [Google Scholar]
  143. LieutaudT. AndrewsP.J.D. RhodesJ.K.J. WilliamsonR. Characterization of the pharmacokinetics of human recombinant erythropoietin in blood and brain when administered immediately after lateral fluid percussion brain injury and its pharmacodynamic effects on IL-1beta and MIP-2 in rats.J. Neurotrauma200825101179118510.1089/neu.2008.0591 18842103
    [Google Scholar]
  144. PangY. CaiZ. RhodesP.G. Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide.Brain Res. Dev. Brain Res.2003140220521410.1016/S0165‑3806(02)00606‑5 12586426
    [Google Scholar]
  145. CarliniR.G. AlonzoE.J. DominguezJ. BlancaI. WeisingerJ.R. RothsteinM. Bellorin-FontE. Effect of recombinant human erythropoietin on endothelial cell apoptosis.Kidney Int.199955254655310.1046/j.1523‑1755.1999.00266.x 9987078
    [Google Scholar]
  146. YoshimuraA. MisawaH. Physiology and function of the erythropoietin receptor.Curr. Opin. Hematol.19985317117610.1097/00062752‑199805000‑00004 9664155
    [Google Scholar]
  147. MazurM. MillerR.H. RobinsonS. Postnatal erythropoietin treatment mitigates neural cell loss after systemic prenatal hypoxic-ischemic injury.J. Neurosurg. Pediatr.20106320622110.3171/2010.5.PEDS1032 20809703
    [Google Scholar]
  148. MotavafM. PiaoX. Oligodendrocyte development and implication in perinatal white matter injury.Front. Cell. Neurosci.20211576448610.3389/fncel.2021.764486 34803612
    [Google Scholar]
  149. CelikM. GökmenN. ErbayraktarS. AkhisarogluM. KonakçS. UlukusC. GencS. GencK. SagirogluE. CeramiA. BrinesM. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury.Proc. Natl. Acad. Sci. USA20029942258226310.1073/pnas.042693799 11854521
    [Google Scholar]
  150. SirénA.L. FratelliM. BrinesM. GoemansC. CasagrandeS. LewczukP. KeenanS. GleiterC. PasqualiC. CapobiancoA. MenniniT. HeumannR. CeramiA. EhrenreichH. GhezziP. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress.Proc. Natl. Acad. Sci. USA20019874044404910.1073/pnas.051606598 11259643
    [Google Scholar]
  151. AyerdemG. BosmaM.J. VinkeJ.S.J. ZiengsA.L. PotgieserA.R.E. GansevoortR.T. BakkerS.J.L. De BorstM.H. EisengaM.F. Association of endogenous erythropoietin levels and iron status with cognitive functioning in the general population.Front. Aging Neurosci.20221486285610.3389/fnagi.2022.862856 35462689
    [Google Scholar]
  152. KumralA. GencS. OzerE. YilmazO. GokmenN. KorogluT.F. DumanN. GencK. OzkanH. Erythropoietin downregulates bax and DP5 proapoptotic gene expression in neonatal hypoxic-ischemic brain injury.Neonatology200689320521010.1159/000089951 16319448
    [Google Scholar]
  153. WenT.C. SadamotoY. TanakaJ. ZhuP.X. NakataK. MaY.J. HataR. SakanakaM. Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up‐regulating Bcl‐x L expression.J. Neurosci. Res.200267679580310.1002/jnr.10166 11891794
    [Google Scholar]
  154. JuulS.E. FerrieroD.M. Pharmacologic neuroprotective strategies in neonatal brain injury.Clin. Perinatol.201441111913110.1016/j.clp.2013.09.004 24524450
    [Google Scholar]
  155. PacaryE. PetitE. BernaudinM. Erythropoietin, a cytoprotective and regenerative cytokine, and the hypoxic brain.Neurodegener. Dis.200631-2879310.1159/000092098 16909042
    [Google Scholar]
  156. MorishitaE. MasudaS. NagaoM. YasudaY. SasakiR. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death.Neuroscience199676110511610.1016/S0306‑4522(96)00306‑5 8971763
    [Google Scholar]
  157. KawakamiM. IwasakiS. SatoK. TakahashiM. Erythropoietin inhibits calcium-induced neurotransmitter release from clonal neuronal cells.Biochem. Biophys. Res. Commun.2000279129329710.1006/bbrc.2000.3926 11112455
    [Google Scholar]
  158. ZhangL. WangL. NingF.B. WangT. LiangY.C. LiuY.L. Erythropoietin reduces hippocampus injury in neonatal rats with hypoxic ischemic brain damage via targeting matrix metalloprotein-2.Eur. Rev. Med. Pharmacol. Sci.2017211943274333 29077163
    [Google Scholar]
  159. LeeJ.Y. KimH.S. OhT.H. YuneT.Y. Ethanol extract of Bupleurum falcatum improves functional recovery by inhibiting matrix metalloproteinases-2 and -9 activation and inflammation after spinal cord injury.Exp. Neurobiol.201019314615410.5607/en.2010.19.3.146 22110354
    [Google Scholar]
  160. FengS. CenJ. HuangY. ShenH. YaoL. WangY. ChenZ. Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins.PLoS One201168e2059910.1371/journal.pone.0020599 21857898
    [Google Scholar]
  161. HsuJ.Y.C. McKeonR. GoussevS. WerbZ. LeeJ.U. TrivediA. Noble-HaeussleinL.J. Matrix metalloproteinase-2 facilitates wound healing events that promote functional recovery after spinal cord injury.J. Neurosci.200626399841985010.1523/JNEUROSCI.1993‑06.2006 17005848
    [Google Scholar]
  162. CostanzoR.M. PerrinoL.A. Peak in matrix metaloproteinases-2 levels observed during recovery from olfactory nerve injury.Neuroreport200819332733110.1097/WNR.0b013e3282f50c7b 18303576
    [Google Scholar]
  163. YamajiR. OkadaT. MoriyaM. NaitoM. TsuruoT. MiyatakeK. NakanoY. Brain capillary endothelial cells express two forms of erythropoietin receptor mRNA.Eur. J. Biochem.1996239249450010.1111/j.1432‑1033.1996.0494u.x 8706759
    [Google Scholar]
  164. RibattiD. VaccaA. RoccaroA.M. CrivellatoE. PrestaM. Erythropoietin as an angiogenic factor.Eur. J. Clin. Invest.2003331089189610.1046/j.1365‑2362.2003.01245.x 14511361
    [Google Scholar]
  165. WangL. ZhangZ.G. ZhangR.L. GreggS.R. Hozeska-SolgotA. LeTourneauY. WangY. ChoppM. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration.J. Neurosci.200626225996600310.1523/JNEUROSCI.5380‑05.2006 16738242
    [Google Scholar]
  166. AydinA. Genc̨K. AkhisarogluM. YorukogluK. GokmenN. GonulluE. Erythropoietin exerts neuroprotective effect in neonatal rat model of hypoxic–ischemic brain injury.Brain Dev.200325749449810.1016/S0387‑7604(03)00039‑1 13129593
    [Google Scholar]
  167. ChongZ.Z. LiF. MaieseK. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease.Prog. Neurobiol.200575320724610.1016/j.pneurobio.2005.02.004 15882775
    [Google Scholar]
  168. SheldonR.A. WindsorC. LeeB.S. Arteaga CabezaO. FerrieroD.M. Erythropoietin treatment exacerbates moderate injury after hypoxia-ischemia in neonatal superoxide dismutase transgenic mice.Dev. Neurosci.2017391-422823710.1159/000472710 28445874
    [Google Scholar]
  169. FullertonH.J. DitelbergJ.S. ChenS.F. SarcoD.P. ChanP.H. EpsteinC.J. FerrieroD.M. Copper/zinc superoxide dismutase transgenic brain accumulates hydrogen peroxide after perinatal hypoxia ischemia.Ann. Neurol.199844335736410.1002/ana.410440311 9749602
    [Google Scholar]
  170. ChattopadhyayA. Das ChoudhuryT. BandyopadhyayD. DattaA.G. Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical.Biochem. Pharmacol.200059441942510.1016/S0006‑2952(99)00277‑4 10644050
    [Google Scholar]
  171. KumralA. GonencS. AcikgozO. SonmezA. GencK. YilmazO. GokmenN. DumanN. OzkanH. Erythropoietin increases glutathione peroxidase enzyme activity and decreases lipid peroxidation levels in hypoxic-ischemic brain injury in neonatal rats.Neonatology2005871151810.1159/000080490 15334031
    [Google Scholar]
  172. SharpF.R. BernaudinM. HIF1 and oxygen sensing in the brain.Nat. Rev. Neurosci.20045643744810.1038/nrn1408 15152194
    [Google Scholar]
  173. ManaloD.J. RowanA. LavoieT. NatarajanL. KellyB.D. YeS.Q. GarciaJ.G.N. SemenzaG.L. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1.Blood2005105265966910.1182/blood‑2004‑07‑2958 15374877
    [Google Scholar]
  174. Alvarez ArroyoM.V. CastillaM.A. González PachecoF.R. TanD. RiescoA. CasadoS. CarameloC. Role of vascular endothelial growth factor on erythropoietin-related endothelial cell proliferation.J. Am. Soc. Nephrol.19989111998200410.1681/ASN.V9111998 9808085
    [Google Scholar]
  175. KimákováP. SolárP. SolárováZ. KomelR. DebeljakN. Erythropoietin and its angiogenic activity.Int. J. Mol. Sci.2017187151910.3390/ijms18071519 28703764
    [Google Scholar]
  176. JuulS.E. BeyerR.P. BammlerT.K. McPhersonR.J. WilkersonJ. FarinF.M. Microarray analysis of high-dose recombinant erythropoietin treatment of unilateral brain injury in neonatal mouse hippocampus.Pediatr. Res.200965548549210.1203/PDR.0b013e31819d90c8 19190543
    [Google Scholar]
  177. ChandelN.S. MaltepeE. GoldwasserE. MathieuC.E. SimonM.C. SchumackerP.T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription.Proc. Natl. Acad. Sci. USA19989520117151172010.1073/pnas.95.20.11715 9751731
    [Google Scholar]
  178. MasudaS. ChikumaM. SasakiR. Insulin-like growth factors and insulin stimulate erythropoietin production in primary cultured astrocytes.Brain Res.19977461-2637010.1016/S0006‑8993(96)01186‑9 9037485
    [Google Scholar]
  179. SakanakaM. WenT.C. MatsudaS. MasudaS. MorishitaE. NagaoM. SasakiR. in vivo evidence that erythropoietin protects neurons from ischemic damage.Proc. Natl. Acad. Sci. USA19989584635464010.1073/pnas.95.8.4635 9539790
    [Google Scholar]
  180. ChoiJ.W. KangS.J. ChoiJ.I. KwackK. KimM. Role of nuclear-receptor-related 1 in the synergistic neuroprotective effect of umbilical cord blood and erythropoietin combination therapy in hypoxic ischemic encephalopathy.Int. J. Mol. Sci.2022235290010.3390/ijms23052900 35270042
    [Google Scholar]
  181. HuX. Nesic-TaylorO. QiuJ. ReaH.C. FabianR. RassinD.K. Perez-PoloJ.R. Activation of nuclear factor‐κB signaling pathway by interleukin‐1 after hypoxia/ischemia in neonatal rat hippocampus and cortex.J. Neurochem.2005931263710.1111/j.1471‑4159.2004.02968.x 15773902
    [Google Scholar]
  182. EastwoodS.L. WeickertC.S. WebsterM.J. HermanM.M. KleinmanJ.E. HarrisonP.J. Synaptophysin protein and mRNA expression in the human hippocampal formation from birth to old age.Hippocampus200616864565410.1002/hipo.20194 16807900
    [Google Scholar]
  183. MeiL. XiongW.C. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia.Nat. Rev. Neurosci.20089643745210.1038/nrn2392 18478032
    [Google Scholar]
  184. BanerjeeS. MishraS. XuW. ThompsonW.E. ChowdhuryI. Neuregulin-1 signaling regulates cytokines and chemokines expression and secretion in granulosa cell.J. Ovarian Res.20221518610.1186/s13048‑022‑01021‑0 35883098
    [Google Scholar]
  185. EtoK. HommyoA. YonemitsuR. AbeS. ErbB4 signals Neuregulin1-stimulated cell proliferation and c-fos gene expression through phosphorylation of serum response factor by mitogen-activated protein kinase cascade.Mol. Cell. Biochem.20103391-211912510.1007/s11010‑009‑0375‑z 20066477
    [Google Scholar]
  186. FantinA. MadenC.H. RuhrbergC. Neuropilin ligands in vascular and neuronal patterning.Biochem. Soc. Trans.20093761228123210.1042/BST0371228 19909252
    [Google Scholar]
  187. LombarderoM. KovacsK. ScheithauerB.W. Erythropoietin: A hormone with multiple functions.Pathobiology2011781415310.1159/000322975 21474975
    [Google Scholar]
  188. BuemiM. CavallaroE. FloccariF. SturialeA. AloisiC. TrimarchiM. GrassoG. CoricaF. FrisinaN. Erythropoietin and the brain: From neurodevelopment to neuroprotection.Clin. Sci. (Lond.)2002103327528210.1042/cs1030275 12193153
    [Google Scholar]
  189. WalkerC.L. LiuN.K. XuX.M. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries.Front. Biol. (Beijing)20138442143310.1007/s11515‑013‑1255‑1 24348522
    [Google Scholar]
  190. FerrerI. FrigulsB. DalfóE. PlanasA.M. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia.Acta Neuropathol.2003105542543710.1007/s00401‑002‑0661‑2 12677442
    [Google Scholar]
  191. JeongJ.E. ParkJ.H. KimC.S. LeeS.L. ChungH.L. KimW.T. LeeE.J. Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis.Korean J. Pediatr.201760618118810.3345/kjp.2017.60.6.181 28690645
    [Google Scholar]
  192. TangZ. SunX. HuoG. XieY. ShiQ. ChenS. WangX. LiaoZ. Protective effects of erythropoietin on astrocytic swelling after oxygen–glucose deprivation and reoxygenation: Mediation through AQP4 expression and MAPK pathway.Neuropharmacology20136781510.1016/j.neuropharm.2012.10.017 23142737
    [Google Scholar]
  193. JiaoH. BerradaK. YangW. TabriziM. PlataniasL.C. YiT. Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1.Mol. Cell. Biol.199616126985699210.1128/MCB.16.12.6985 8943354
    [Google Scholar]
  194. BhoopalanS.V. HuangL.J. WeissM.J. Erythropoietin regulation of red blood cell production: From bench to bedside and back.F1000 Res.20209115310.12688/f1000research.26648.1 32983414
    [Google Scholar]
  195. HanB.H. HoltzmanD.M. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway.J. Neurosci.200020155775578110.1523/JNEUROSCI.20‑15‑05775.2000 10908618
    [Google Scholar]
  196. LeeE. ChoiS.Y. YangJ.H. LeeY.J. Preventive effects of imperatorin on perfluorohexanesulfonate-induced neuronal apoptosis via inhibition of intracellular calcium-mediated ERK pathway.Korean J. Physiol. Pharmacol.201620439940610.4196/kjpp.2016.20.4.399 27382356
    [Google Scholar]
  197. KilicE. KilicÜ. SolizJ. BassettiC.L. GassmannM. HermannD.M. Brain‐derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK‐1/‐2 and Akt pathways.FASEB J.200519142026202810.1096/fj.05‑3941fje 16207820
    [Google Scholar]
  198. RuscherK. FreyerD. KarschM. IsaevN. MegowD. SawitzkiB. PrillerJ. DirnaglU. MeiselA. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: Evidence from an in vitro model.J. Neurosci.20022223102911030110.1523/JNEUROSCI.22‑23‑10291.2002 12451129
    [Google Scholar]
  199. JonesN.M. BergeronM. Hypoxia‐induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signaling.J. Neurochem.200489115716710.1111/j.1471‑4159.2004.02324.x 15030400
    [Google Scholar]
  200. WangX. ZhuC. QiuL. HagbergH. SandbergM. BlomgrenK. Activation of ERK1/2 after neonatal rat cerebral hypoxia–ischaemia.J. Neurochem.200386235136210.1046/j.1471‑4159.2003.01838.x 12871576
    [Google Scholar]
  201. VairanoM. RussoC.D. PozzoliG. BattagliaA. ScambiaG. TringaliG. Aloe-SpiritiM.A. PreziosiP. NavarraP. Erythropoietin exerts anti‐apoptotic effects on rat microglial cells in vitro.Eur. J. Neurosci.200216458459210.1046/j.1460‑9568.2002.02125.x 12270034
    [Google Scholar]
  202. YamasakiM. MishimaH.K. YamashitaH. KashiwagiK. MurataK. MinamotoA. InabaT. Neuroprotective effects of erythropoietin on glutamate and nitric oxide toxicity in primary cultured retinal ganglion cells.Brain Res.200510501-2152610.1016/j.brainres.2005.05.037 15979589
    [Google Scholar]
  203. ImaizumiK. TsudaM. ImaiY. WanakaA. TakagiT. TohyamaM. Molecular cloning of a novel polypeptide, DP5, induced during programmed neuronal death.J. Biol. Chem.199727230188421884810.1074/jbc.272.30.18842 9228060
    [Google Scholar]
  204. GencK. GencS. BaskinH. SeminI. Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes.Physiol. Res.2006551333810.33549/physiolres.930749 15857166
    [Google Scholar]
  205. LeeH.J. KohS.H. SongK.M. SeolI.J. ParkH.K. The Akt/mTOR/p70S6K pathway is involved in the neuroprotective effect of erythropoietin on hypoxic/ischemic brain injury in a neonatal rat model.Neonatology201611029310010.1159/000444360 27070481
    [Google Scholar]
  206. MaieseK. ChongZ.Z. ShangY.C. WangS. Erythropoietin: New directions for the nervous system.Int. J. Mol. Sci.2012139111021112910.3390/ijms130911102 23109841
    [Google Scholar]
  207. BrinesM. CeramiA. Erythropoietin‐mediated tissue protection: reducing collateral damage from the primary injury response.J. Intern. Med.2008264540543210.1111/j.1365‑2796.2008.02024.x 19017170
    [Google Scholar]
  208. YamashitaT. NonoguchiN. IkemotoT. MiyatakeS.I. KuroiwaT. Asialoerythropoietin attenuates neuronal cell death in the hippocampal CA1 region after transient forebrain ischemia in a gerbil model.Neurol. Res.201032995796210.1179/016164110X12700393823336 20444326
    [Google Scholar]
  209. SunH. SongJ. KangW. WangY. SunX. ZhouC. XiongH. XuF. LiM. ZhangX. YuZ. PengX. LiB. XuY. XingS. WangX. ZhuC. Effect of early prophylactic low-dose recombinant human erythropoietin on retinopathy of prematurity in very preterm infants.J. Transl. Med.202018139710.1186/s12967‑020‑02562‑y 33076939
    [Google Scholar]
  210. AherS.M. OhlssonA. Late erythropoiesis-stimulating agents to prevent red blood cell transfusion in preterm or low birth weight infants.Cochrane Libr.202020201CD00486810.1002/14651858.CD004868.pub6 31990982
    [Google Scholar]
  211. BrinesM. PatelN.S.A. VillaP. BrinesC. MenniniT. De PaolaM. ErbayraktarZ. ErbayraktarS. SepodesB. ThiemermannC. GhezziP. YaminM. HandC.C. XieQ. ColemanT. CeramiA. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin.Proc. Natl. Acad. Sci. USA200810531109251093010.1073/pnas.0805594105 18676614
    [Google Scholar]
  212. ErbayraktarS. GrassoG. SfacteriaA. XieQ. ColemanT. KreilgaardM. TorupL. SagerT. ErbayraktarZ. GokmenN. YilmazO. GhezziP. VillaP. FratelliM. CasagrandeS. LeistM. HelboeL. GerweinJ. ChristensenS. GeistM.A. PedersenL.Ø. Cerami-HandC. WuerthJ.P. CeramiA. BrinesM. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo.Proc. Natl. Acad. Sci. USA2003100116741674610.1073/pnas.1031753100 12746497
    [Google Scholar]
  213. GoldwasserE. KungC.K.H. EliasonJ. On the mechanism of erythropoietin-induced differentiation. 13. The role of sialic acid in erythropoietin action.J. Biol. Chem.1974249134202420610.1016/S0021‑9258(19)42503‑9 4368980
    [Google Scholar]
  214. TakeyamaT. TakemuraG. KanamoriH. KawaguchiT. OginoA. WatanabeT. MorishitaK. TsujimotoA. GotoK. MaruyamaR. UshikoshiH. KawasakiM. YamadaK. NikamiH. FujiwaraT. FujiwaraH. MinatoguchiS. Asialoerythropoietin, a nonerythropoietic derivative of erythropoietin, displays broad anti-heart failure activity.Circ. Heart Fail.20125227428510.1161/CIRCHEARTFAILURE.111.965061 22343033
    [Google Scholar]
  215. MenniniT. De PaolaM. BiginiP. MastrottoC. FumagalliE. BarberaS. MengozziM. VivianiB. CorsiniE. MarinovichM. TorupL. Van BeekJ. LeistM. BrinesM. CeramiA. GhezziP. Nonhematopoietic erythropoietin derivatives prevent motoneuron degeneration in vitro and in vivo.Mol. Med.2006127-815316010.2119/2006‑00045.Mennini 17088947
    [Google Scholar]
  216. HeM. KitturF.S. HungC.Y. ZhangJ. JingL. SaneD.C. LiP.A. XieJ. A novel plant-produced Asialo-rhuEPO protects brain from ischemic damage without erythropoietic action.Transl. Stroke Res.202213233835410.1007/s12975‑021‑00943‑z 34553324
    [Google Scholar]
  217. RangarajanV. JuulS.E. Erythropoietin: Emerging role of erythropoietin in neonatal neuroprotection.Pediatr. Neurol.201451448148810.1016/j.pediatrneurol.2014.06.008 25266611
    [Google Scholar]
  218. MaoW. IwaiC. LiuJ. SheuS.S. FuM. LiangC. Darbepoetin alfa exerts a cardioprotective effect in autoimmune cardiomyopathy via reduction of ER stress and activation of the PI3K/Akt and STAT3 pathways.J. Mol. Cell. Cardiol.200845225026010.1016/j.yjmcc.2008.05.010 18586265
    [Google Scholar]
  219. BelayevL. KhoutorovaL. ZhaoW. VigdorchikA. BelayevA. BustoR. MagalE. GinsbergM.D. Neuroprotective effect of darbepoetin alfa, a novel recombinant erythropoietic protein, in focal cerebral ischemia in rats.Stroke20053651065107010.1161/01.STR.0000160753.36093.da 15790949
    [Google Scholar]
  220. PankratovaS. KiryushkoD. SonnK. SorokaV. KøhlerL.B. RathjeM. GuB. GotfrydK. ClausenO. ZharkovskyA. BockE. BerezinV. Neuroprotective properties of a novel, non-haematopoietic agonist of the erythropoietin receptor.Brain201013382281229410.1093/brain/awq101 20435631
    [Google Scholar]
  221. AwidaZ. BacharA. SaedH. GorodovA. Ben-CalifaN. IbrahimM. KolomanskyA. IdenJ.A. Graniewitz VisacovskyL. LironT. Hiram-BabS. BrinesM. GabetY. NeumannD. The non-erythropoietic EPO analogue cibinetide inhibits osteoclastogenesis in vitro and increases bone mineral density in mice.Int. J. Mol. Sci.20212315510.3390/ijms23010055 35008482
    [Google Scholar]
  222. NagaoM. MasudaS. UedaM. SasakiR. Erythropoietin processing in erythropoietic system and central nervous system.Cytotechnology1995181-2839110.1007/BF00744323 22358640
    [Google Scholar]
  223. GarzónF. CoimbraD. ParcerisasA. RodriguezY. GarcíaJ.C. SorianoE. RamaR. NeuroEPO preserves neurons from glutamate-induced excitotoxicity.J. Alzheimers Dis.20186541469148310.3233/JAD‑180668 30175978
    [Google Scholar]
  224. FernandoG. YamilaR. CesarG. RamónR. Neuroprotective effects of neuroEPO using an in vitro model of stroke.Behav. Sci.2018822610.3390/bs8020026 29438293
    [Google Scholar]
  225. Rodríguez CruzY. StrehaianoM. Rodríguez ObayaT. García RodríguezJ.C. MauriceT. An Intranasal Formulation of Erythropoietin (Neuro-EPO) prevents memory deficits and amyloid toxicity in the APPSwe transgenic mouse model of Alzheimer’s disease.J. Alzheimers Dis.201655123124810.3233/JAD‑160500 27662300
    [Google Scholar]
  226. Sanchis-GomarF. Perez-QuilisC. LippiG. Erythropoietin receptor (EpoR) agonism is used to treat a wide range of disease.Mol. Med.2013191626410.2119/molmed.2013.00025 23615965
    [Google Scholar]
  227. LeistM. GhezziP. GrassoG. BianchiR. VillaP. FratelliM. SavinoC. BianchiM. NielsenJ. GerwienJ. KallunkiP. LarsenA.K. HelboeL. ChristensenS. PedersenL.O. NielsenM. TorupL. SagerT. SfacteriaA. ErbayraktarS. ErbayraktarZ. GokmenN. YilmazO. Cerami-HandC. XieQ. ColemanT. CeramiA. BrinesM. Derivatives of erythropoietin that are tissue protective but not erythropoietic.Science2004305568123924210.1126/science.1098313 15247477
    [Google Scholar]
  228. OsatoK. SatoY. OsatoA. SatoM. ZhuC. LeistM. KuhnH.G. BlomgrenK. Carbamylated erythropoietin decreased proliferation and neurogenesis in the subventricular zone, but not the dentate gyrus, after irradiation to the developing rat brain.Front. Neurol.2018973810.3389/fneur.2018.00738 30258396
    [Google Scholar]
  229. SchrieblK. TrummerE. LattenmayerC. WeikR. KunertR. MüllerD. KatingerH. Vorauer-UhlK. Biochemical characterization of rhEpo-Fc fusion protein expressed in CHO cells.Protein Expr. Purif.200649226527510.1016/j.pep.2006.05.018 16861003
    [Google Scholar]
  230. HooshmandiE. MoosaviM. KatingerH. SardabS. GhasemiR. MaghsoudiN. CEPO (carbamylated erythropoietin)-Fc protects hippocampal cells in culture against beta amyloid-induced apoptosis: Considering Akt/GSK-3β and ERK signaling pathways.Mol. Biol. Rep.20204732097210810.1007/s11033‑020‑05309‑6 32067159
    [Google Scholar]
  231. RoopenianD.C. AkileshS. FcRn: The neonatal Fc receptor comes of age.Nat. Rev. Immunol.20077971572510.1038/nri2155 17703228
    [Google Scholar]
  232. KontermannR.E. Strategies for extended serum half-life of protein therapeutics.Curr. Opin. Biotechnol.201122686887610.1016/j.copbio.2011.06.012 21862310
    [Google Scholar]
  233. SunJ. YangJ. WhitmanK. ZhuC. CribbsD.H. BoadoR.J. PardridgeW.M. SumbriaR.K. Hematologic safety of chronic brain‐penetrating erythropoietin dosing in APP/PS1 mice.Alzheimers Dement. (N. Y.)20195162763610.1016/j.trci.2019.09.003 31660425
    [Google Scholar]
  234. ChangR. Al MaghribiA. VanderpoelV. VasilevkoV. CribbsD.H. BoadoR. PardridgeW.M. SumbriaR.K. A brain penetrating bifunctional erythropoietin-transferrin receptor antibody fusion protein for Alzheimer’s disease.Mol. Pharm.202017136010.1021/acs.molpharmaceut.9b01211 31804843
    [Google Scholar]
  235. YangC. ZhaoT. LinM. ZhaoZ. HuL. JiaY. XueY. XuM. TangQ. YangB. RongR. ZhuT. Helix B surface peptide administered after insult of ischemia reperfusion improved renal function, structure and apoptosis through beta common receptor/erythropoietin receptor and PI3K/Akt pathway in a murine model.Exp. Biol. Med. (Maywood)2013238111111910.1258/ebm.2012.012185 23479770
    [Google Scholar]
  236. PulmanK.G.T. SmithM. MengozziM. GhezziP. DilleyA. The erythropoietin-derived peptide ARA290 reverses mechanical allodynia in the neuritis model.Neuroscience201323317418310.1016/j.neuroscience.2012.12.022 23262243
    [Google Scholar]
  237. DmytriyevaO. PankratovaS. KorshunovaI. WalmodP.S. Epobis is a nonerythropoietic and neuroprotective agonist of the erythropoietin receptor with anti-inflammatory and memory enhancing effects.Mediators Inflamm.2016201611110.1155/2016/1346390 27990061
    [Google Scholar]
  238. PankratovaS. GuB. KiryushkoD. KorshunovaI. KøhlerL.B. RathjeM. BockE. BerezinV. A new agonist of the erythropoietin receptor, Epobis, induces neurite outgrowth and promotes neuronal survival.J. Neurochem.2012121691592310.1111/j.1471‑4159.2012.07751.x 22469063
    [Google Scholar]
  239. DmytriyevaO. BelmeguenaiA. BezinL. SoudK. Drucker WoldbyeD.P. GøtzscheC.R. PankratovaS. Short erythropoietin-derived peptide enhances memory, improves long-term potentiation, and counteracts amyloid beta–induced pathology.Neurobiol. Aging2019818810110.1016/j.neurobiolaging.2019.05.003 31255922
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266372339250418052436
Loading
/content/journals/ctmc/10.2174/0115680266372339250418052436
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Erythropoietin; hyperoxia; NBI; neonates; neuroprotection; neurotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test