Skip to content
2000
Volume 25, Issue 22
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

Healthcare organizations are complicated and demanding for all stakeholders, but artificial intelligence (AI) has revolutionized several sectors, especially healthcare, with the potential to enhance patient outcomes and standard of life. Quick advancements in AI can transform healthcare by implementing it into clinical procedures. Reporting AI's involvement in clinical settings is vital for its successful adoption by providing medical professionals with the necessary information and tools.

Background

This paper offers a thorough and up-to-date summary of the present condition of AI in medical settings, including its possible uses in patient interaction, treatment suggestions, and disease diagnosis. It also addresses the challenges and limitations, including the necessity for human expertise along with future directions. In doing so, it improves the understanding of AI's relevance in healthcare and supports medical institutions in successfully implementing AI technologies.

Methods

The structured literature review, with its dependable and reproducible research process, allowed the authors to acquire 337 peer-reviewed publications from indexing databases, such as Scopus and EMBASE, without any time restrictions. The researchers utilized both qualitative and quantitative factors to assess authors, publications, keywords, and collaboration networks.

Results

AI implementation in healthcare holds enormous potential for enhancing patient outcomes, treatment recommendations, and disease diagnosis. AI technologies can use massive datasets and recognize patterns to beat human performance in various healthcare domains. AI provides improved accuracy, reduced expenses, and time savings. It can transform customized medicine, optimize drug dosages, improve management of population health, set guidelines, offer digital medical assistants, promote mental health services, boost patient knowledge, and maintain patient-clinician trust.

Conclusion

AI can be utilized to detect diseases, develop customized therapy plans, and support medical professionals with their clinical decision-making. Instead of just automating jobs, AI focuses on creating technologies that can improve patient care in several healthcare settings. However, challenges such as biasness, data confidentiality, and data quality must be resolved for the appropriate and successful integration of AI in healthcare.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266339394250225112747
2025-03-03
2025-12-27
Loading full text...

Full text loading...

References

  1. SuleimenovI.E. Artificial Intelligence: What is it?In: Proceedings of the 2020 6th International Conference on Computer and Technology Applications, Association for Computing MachineryAntalya, Turkey, 2020; pp. 22-25.10.1145/3397125.3397141
    [Google Scholar]
  2. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
  3. RussellS.J. NorvigP. Artificial intelligence: A modern approach.New YorkPearson Education, Inc.2016
    [Google Scholar]
  4. McCorduckP. Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence.Natick, MassachusettsAK Peters1979
    [Google Scholar]
  5. AlowaisS.A. AlghamdiS.S. AlsuhebanyN. AlqahtaniT. AlshayaA.I. AlmoharebS.N. AldairemA. AlrashedM. SalehB.K. BadreldinH.A. YamiA.M.S. HarbiA.S. AlbekairyA.M. Revolutionizing healthcare: The role of artificial intelligence in clinical practice.BMC Med. Educ.202323168910.1186/s12909‑023‑04698‑z 37740191
    [Google Scholar]
  6. JordanM.I. MitchellT.M. Machine learning: Trends, perspectives, and prospects.Science2015349624525526010.1126/science.aaa8415 26185243
    [Google Scholar]
  7. VanLEHNK.U.R.T The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems.Educ Psychol201146419722110.1080/00461520.2011.611369
    [Google Scholar]
  8. TopolE.J. High-performance medicine: The convergence of human and artificial intelligence.Nat. Med.2019251445610.1038/s41591‑018‑0300‑7 30617339
    [Google Scholar]
  9. EstevaA. KuprelB. NovoaR.A. KoJ. SwetterS.M. BlauH.M. ThrunS. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763911511810.1038/nature21056 28117445
    [Google Scholar]
  10. LiberatiA. AltmanD.G. TetzlaffJ. MulrowC. GøtzscheP.C IoannidisJ.P.A. ClarkeM. DevereauxP.J. KleijnenJ. MoherD The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration.BMJ2009339jul21 1b270010.1136/bmj.b270019622552
    [Google Scholar]
  11. SecinaroS. CalandraD. SecinaroA. MuthuranguV. BianconeP. The role of artificial intelligence in healthcare: A structured literature review.BMC Med. Inform. Decis. Mak.202121112510.1186/s12911‑021‑01488‑9 33836752
    [Google Scholar]
  12. ElangoB. RajendranP. Authorship trends and collaboration pattern in the marine sciences literature: A scientometric study.Int. J. Inf. Dissem. Technol.201221166169
    [Google Scholar]
  13. MillerD.D. BrownE.W. Artificial intelligence in medical practice: The question to the answer?Am. J. Med.2018131212913310.1016/j.amjmed.2017.10.035 29126825
    [Google Scholar]
  14. XuJ. YangP. XueS. SharmaB. Sanchez-MartinM. WangF. BeatyK.A. DehanE. ParikhB. Translating cancer genomics into precision medicine with artificial intelligence: Applications, challenges and future perspectives.Hum. Genet.2019138210912410.1007/s00439‑019‑01970‑5 30671672
    [Google Scholar]
  15. ChenM. ZhangB. CaiZ. SeeryS. GonzalezM.J. AliN.M. RenR. QiaoY. XueP. JiangY. Acceptance of clinical artificial intelligence among physicians and medical students: A systematic review with cross-sectional survey.Front. Med.2022999060410.3389/fmed.2022.990604 36117979
    [Google Scholar]
  16. RuiA. GarabedianP.M. MarceauM. SyrowatkaA. VolkL.A. EdreesH.H. SegerD.L. AmatoM.G. CambreJ. DulgarianS. NewmarkL.P. NanjiK.C. SchultzP. JacksonG.P. RozenblumR. BatesD.W. Performance of a web-based reference database with natural language searching capabilities: Usability evaluation of dynamed and micromedex with watson.JMIR Human Factors2023103e4396010.2196/43960 37067858
    [Google Scholar]
  17. LimJ.I. RachitskayaA.V. HallakJ.A. GholamiS. AlamM.N. Artificial intelligence for retinal diseases.Asia-Pac. J. Ophthalmol.202413410009610.1016/j.apjo.2024.100096 39209215
    [Google Scholar]
  18. YeJ. WoodsD. JordanN. StarrenJ. The role of artificial intelligence for the application of integrating electronic health records and patient-generated data in clinical decision support.AMIA Jt. Summits Transl. Sci. Proc.20242024459467 38827061
    [Google Scholar]
  19. BawejaD. A comparative analysis of automation anywhere, uipath, and blueprism.2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) IEEE, 2023 pp. 1715-1718.10.1109/ICACITE57410.2023.10182777
    [Google Scholar]
  20. WatanabeM. KimB. JengA. St john sepsis alert correlation with management of infections and antimicrobial selection: A pilot study.Open Forum Infect. Dis.20174Suppl. 1S513S51310.1093/ofid/ofx163.1333
    [Google Scholar]
  21. LeeL.I.T KanthasamyS. AyyalarajuR.S. GanatraR The current state of artificial intelligence in medical imaging and nuclear medicine.BJR Open2019112019003710.1259/bjro.2019003733178956
    [Google Scholar]
  22. DevlinT. GaoL. CollinsO. HeathG.W. FigurelleM. AvilaA. BoydC. AyubH. SevilisT. VALIDATE—Utilization of the Viz.ai mobile stroke care coordination platform to limit delays in LVO stroke diagnosis and endovascular treatment.Frontiers in Stroke20243138193010.3389/fstro.2024.1381930
    [Google Scholar]
  23. Buchemv.M.M. BoosmanH. BauerM.P. KantI.M.J. CammelS.A. SteyerbergE.W. The digital scribe in clinical practice: A scoping review and research agenda.NPJ Digit. Med.2021415710.1038/s41746‑021‑00432‑5 33772070
    [Google Scholar]
  24. VoterA.F. LarsonM.E. GarrettJ.W. YuJ.P.J. Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of cervical spine fractures.AJNR Am. J. Neuroradiol.20214281550155610.3174/ajnr.A7179 34117018
    [Google Scholar]
  25. ShaverJ. The state of telehealth before and after the covid-19 pandemic.Prim. Care202249451753010.1016/j.pop.2022.04.002 36357058
    [Google Scholar]
  26. KinningsS.L. LiuN. TongeP.J. JacksonR.M. XieL. BourneP.E. A machine learning-based method to improve docking scoring functions and its application to drug repurposing.J. Chem. Inf. Model.201151240841910.1021/ci100369f 21291174
    [Google Scholar]
  27. VarnekA. BaskinI. Machine learning methods for property prediction in chemoinformatics: Quo Vadis?J. Chem. Inf. Model.20125261413143710.1021/ci200409x 22582859
    [Google Scholar]
  28. AinQ.U. AleksandrovaA. RoesslerF.D. BallesterP.J. Machine‐learning scoring functions to improve structure‐based binding affinity prediction and virtual screening.Wiley Interdiscip. Rev. Comput. Mol. Sci.20155640542410.1002/wcms.1225 27110292
    [Google Scholar]
  29. EricksonB.J. KorfiatisP. AkkusZ. KlineT.L. Machine learning for medical imaging.Radiographics201737250551510.1148/rg.2017160130 28212054
    [Google Scholar]
  30. ZengX. LuoG. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.Health Inf. Sci. Syst.201751210.1007/s13755‑017‑0023‑z 29038732
    [Google Scholar]
  31. LiD. MaddenA. LiuC. DingY. QianL. ZhouE. Modelling online user behavior for medical knowledge learning.Ind. Manage. Data Syst.2018118488991110.1108/IMDS‑07‑2017‑0309
    [Google Scholar]
  32. WesolowskiM. SuchaczB. Artificial neural networks: Theoretical background and pharmaceutical applications: A review.J. AOAC Int.201295365266810.5740/jaoacint.SGE_Wesolowski_ANN 22816255
    [Google Scholar]
  33. SaravananK. SasithraS. Review on classification based on artificial neural nteworks.J. Ambient Syst. Appl.2014241118
    [Google Scholar]
  34. Pastur-RomayL. CedrónF. PazosA. Porto-PazosA. Deep artificial neural networks and neuromorphic chips for big data analysis: Pharmaceutical and bioinformatics applications.Int. J. Mol. Sci.2016178131310.3390/ijms17081313 27529225
    [Google Scholar]
  35. LiH. ZhangZ. LiuZ. Application of artificial neural networks for catalysis: A review.Catalysts201771030610.3390/catal7100306
    [Google Scholar]
  36. AbiodunO.I. JantanA. OmolaraA.E. DadaK.V. MohamedN.A. ArshadH. State-of-the-art in artificial neural network applications: A survey.Heliyon2018411e0093810.1016/j.heliyon.2018.e00938 30519653
    [Google Scholar]
  37. ShahidN. RapponT. BertaW. Applications of artificial neural networks in health care organizational decision-making: A scoping review.PLoS One2019142e021235610.1371/journal.pone.0212356 30779785
    [Google Scholar]
  38. DuttaS. LongW.J. BrownD.F.M. ReisnerA.T. Automated detection using natural language processing of radiologists recommendations for additional imaging of incidental findings.Ann. Emerg. Med.201362216216910.1016/j.annemergmed.2013.02.001 23548405
    [Google Scholar]
  39. HeintzelmanN.H. TaylorR.J. SimonsenL. LustigR. AnderkoD. HaythornthwaiteJ.A. ChildsL.C. BovaG.S. Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text.J. Am. Med. Inform. Assoc.201320589890510.1136/amiajnl‑2012‑001076 23144336
    [Google Scholar]
  40. CaiT. GiannopoulosA.A. YuS. KelilT. RipleyB. KumamaruK.K. RybickiF.J. MitsourasD. Natural language processing technologies in radiology research and clinical applications.Radiographics201636117619110.1148/rg.2016150080 26761536
    [Google Scholar]
  41. SavovaG.K. TseytlinE. FinanS. CastineM. MillerT. MedvedevaO. HarrisD. HochheiserH. LinC. ChavanG. JacobsonR.S. DeepPhe: A natural language processing system for extracting cancer phenotypes from clinical records.Cancer Res.20177721e115e11810.1158/0008‑5472.CAN‑17‑0615 29092954
    [Google Scholar]
  42. VermaR. MelcherU. A support vector machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins.BMC Bioinformatics201213S15Suppl. 15S910.1186/1471‑2105‑13‑S15‑S9 23046503
    [Google Scholar]
  43. ZhuB. ChenH. ChenB. XuY. ZhangK. Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs.J. Digit. Imaging2014271909710.1007/s10278‑013‑9620‑9 23836078
    [Google Scholar]
  44. GuX. NiT. WangH. New fuzzy support vector machine for the class imbalance problem in medical datasets classification.Scient. World J.201420141e53643410.1155/2014/536434
    [Google Scholar]
  45. ReticoA. BoscoP. CerelloP. FiorinaE. ChincariniA. FantacciM.E. Predictive models based on support vector machines: Whole‐brain versus regional analysis of structural mri in the alzheimer’s disease.J. Neuroimaging201525455256310.1111/jon.12163 25291354
    [Google Scholar]
  46. WangZ.L. ZhouZ.G. ChenY. LiX.T. SunY.S. Support vector machines model of computed tomography for assessing lymph node metastasis in esophageal cancer with neoadjuvant chemotherapy.J. Comput. Assist. Tomogr.201741345546010.1097/RCT.0000000000000555 27879527
    [Google Scholar]
  47. DaviesN. ManthorpeJ. SampsonE.L. IliffeS. After the Liverpool Care Pathway—development of heuristics to guide end of life care for people with dementia: Protocol of the ALCP study.BMJ Open201559e00883210.1136/bmjopen‑2015‑008832 26338688
    [Google Scholar]
  48. DaviesN. MathewR. WilcockJ. ManthorpeJ. SampsonE.L. LamahewaK. IliffeS. A co-design process developing heuristics for practitioners providing end of life care for people with dementia.BMC Palliat. Care20161516810.1186/s12904‑016‑0146‑z 27484683
    [Google Scholar]
  49. MohanD. RosengartM.R. FischhoffB. AngusD.C. FarrisC. YealyD.M. WallaceD.J. BarnatoA.E. Testing a videogame intervention to recalibrate physician heuristics in trauma triage: Study protocol for a randomized controlled trial.BMC Emerg. Med.20161614410.1186/s12873‑016‑0108‑z 27835981
    [Google Scholar]
  50. DaviesN. ManthorpeJ. SampsonE.L. LamahewaK. WilcockJ. MathewR. IliffeS. Guiding practitioners through end of life care for people with dementia: The use of heuristics.PLoS One20181311e020642210.1371/journal.pone.0206422 30427873
    [Google Scholar]
  51. PatelV.L. ShortliffeE.H. StefanelliM. SzolovitsP. BertholdM.R. BellazziR. Abu-HannaA. The coming of age of artificial intelligence in medicine.Artif. Intell. Med.200946151710.1016/j.artmed.2008.07.017 18790621
    [Google Scholar]
  52. WahlB. Cossy-GantnerA. GermannS. SchwalbeN.R. Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings?BMJ Glob. Health201834e00079810.1136/bmjgh‑2018‑000798 30233828
    [Google Scholar]
  53. BasuK. SinhaR. OngA. BasuT. Artificial intelligence: How is it changing medical sciences and its future?Indian J. Dermatol.202065536537010.4103/ijd.IJD_421_20 33165420
    [Google Scholar]
  54. MyszczynskaM.A. OjamiesP.N. LacosteA.M.B. NeilD. SaffariA. MeadR. HautbergueG.M. HolbrookJ.D. FerraiuoloL. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases.Nat. Rev. Neurol.202016844045610.1038/s41582‑020‑0377‑8 32669685
    [Google Scholar]
  55. AhsanM.M. LunaS.A. SiddiqueZ. Machine-learning-based disease diagnosis: A comprehensive review.Healthcare202210354110.3390/healthcare10030541 35327018
    [Google Scholar]
  56. McKinneyS.M. SieniekM. GodboleV. GodwinJ. AntropovaN. AshrafianH. BackT. ChesusM. CorradoG.S. DarziA. EtemadiM. Garcia-VicenteF. GilbertF.J. Halling-BrownM. HassabisD. JansenS. KarthikesalingamA. KellyC.J. KingD. LedsamJ.R. MelnickD. MostofiH. PengL. ReicherJ.J. Romera-ParedesB. SidebottomR. SuleymanM. TseD. YoungK.C. FauwD.J. ShettyS. International evaluation of an AI system for breast cancer screening.Nature20205777788899410.1038/s41586‑019‑1799‑6 31894144
    [Google Scholar]
  57. KimH.E. KimH.H. HanB.K. KimK.H. HanK. NamH. LeeE.H. KimE.K. Changes in cancer detection and false-positive recall in mammography using artificial intelligence: A retrospective, multireader study.Lancet Digit. Health202023e138e14810.1016/S2589‑7500(20)30003‑0 33334578
    [Google Scholar]
  58. HaenssleH.A. FinkC. SchneiderbauerR. TobererF. BuhlT. BlumA. KallooA. HassenA.B.H. ThomasL. EnkA. UhlmannL. AltC. ArenbergerovaM. BakosR. BaltzerA. BertlichI. BlumA. Bokor-BillmannT. BowlingJ. BraghiroliN. BraunR. Buder-BakhayaK. BuhlT. CaboH. CabrijanL. CevicN. ClassenA. DeltgenD. FinkC. GeorgievaI. Hakim-MeibodiL.E. HannerS. HartmannF. HartmannJ. HausG. HoxhaE. KarlsR. KogaH. KreuschJ. LallasA. MajenkaP. MarghoobA. MassoneC. MekokishviliL. MestelD. MeyerV. NeubergerA. NielsenK. OlivieroM. PampenaR. PaoliJ. PawlikE. RaoB. RendonA. RussoT. SadekA. SamhaberK. SchneiderbauerR. SchweizerA. TobererF. TrennheuserL. VlahovaL. WaldA. WinklerJ. WölbingP. ZalaudekI. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.Ann. Oncol.20182981836184210.1093/annonc/mdy166 29846502
    [Google Scholar]
  59. LiS. ZhaoR. ZouH. Artificial intelligence for diabetic retinopathy.Chin. Med. J.2022135325326010.1097/CM9.0000000000001816 34995039
    [Google Scholar]
  60. AlfarasM. SorianoM.C. OrtínS. A fast machine learning model for ecg-based heartbeat classification and arrhythmia detection.Front. Phys.20197210310.3389/fphy.2019.00103
    [Google Scholar]
  61. RaghunathS. PfeiferJ.M. Ulloa-CernaA.E. NemaniA. CarbonatiT. JingL. vanMaanenD.P. HartzelD.N. RuhlJ.A. LagermanB.F. RochaD.B. StoudtN.J. SchneiderG. JohnsonK.W. ZimmermanN. LeaderJ.B. KirchnerH.L. GriessenauerC.J. HafezA. GoodC.W. FornwaltB.K. HaggertyC.M. Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ecg and help identify those at risk of atrial fibrillation–related stroke.Circulation2021143131287129810.1161/CIRCULATIONAHA.120.047829 33588584
    [Google Scholar]
  62. BeckerJ. DeckerJ.A. RömmeleC. KahnM. MessmannH. WehlerM. SchwarzF. KroenckeT. Scheurig-MuenklerC. Artificial intelligence-based detection of pneumonia in chest radiographs.Diagnostics2022126146510.3390/diagnostics12061465 35741276
    [Google Scholar]
  63. SantamatoV. TricaseC. FaccilongoN. IacovielloM. MarengoA. Exploring the impact of artificial intelligence on healthcare management: A combined systematic review and machine-learning approach.Appl. Sci.202414221014410.3390/app142210144
    [Google Scholar]
  64. BothaN.N. SegbedziC.E. DumahasiV.K. ManeenS. KodomR.V. TsedzeI.S. AkotoL.A. AtsuF.S. LasimO.U. AnsahE.W. Artificial intelligence in healthcare: A scoping review of perceived threats to patient rights and safety.Arch. Public Health202482118810.1186/s13690‑024‑01414‑1 39444019
    [Google Scholar]
  65. HiraniR. NoruziK. KhuramH. HussainiA.S. AifuwaE.I. ElyK.E. LewisJ.M. GabrA.E. SmileyA. TiwariR.K. EtienneM. Artificial intelligence and healthcare: A journey through history, present innovations, and future possibilities.Life202414555710.3390/life14050557 38792579
    [Google Scholar]
  66. KellyC.J. KarthikesalingamA. SuleymanM. CorradoG. KingD. Key challenges for delivering clinical impact with artificial intelligence.BMC Med.201917119510.1186/s12916‑019‑1426‑2 31665002
    [Google Scholar]
  67. DoninsU. BehmaneD. Challenges and Solutions for Artificial Intelligence Adoption in Healthcare – A Literature Review.Innovation in Medicine and Healthcare.SingaporeSpringer Nature Singapore202310.1007/978‑981‑99‑3311‑2_6
    [Google Scholar]
  68. RezaeikhonakdarD. AI chatbots and challenges of hipaa compliance for ai developers and vendors.J. Law Med. Ethics202351498899510.1017/jme.2024.15 38477276
    [Google Scholar]
  69. WilliamsonS.M. PrybutokV. Balancing privacy and progress: A review of privacy challenges, systemic oversight, and patient perceptions in ai-driven healthcare.Appl. Sci.202414267510.3390/app14020675
    [Google Scholar]
  70. CrossJ.L. ChomaM.A. OnofreyJ.A. Bias in medical ai: Implications for clinical decision-making.PLOS Digit. Health2024311e000065110.1371/journal.pdig.0000651 39509461
    [Google Scholar]
  71. RatwaniR.M. SuttonK. GalarragaJ.E. Addressing ai algorithmic bias in health care.JAMA2024332131051105210.1001/jama.2024.13486 39230911
    [Google Scholar]
  72. NororiN. HuQ. AellenF.M. FaraciF.D. TzovaraA. Addressing bias in big data and AI for health care: A call for open science.Patterns202121010034710.1016/j.patter.2021.100347 34693373
    [Google Scholar]
  73. DraghiB. WangZ. MylesP. TuckerA. Identifying and handling data bias within primary healthcare data using synthetic data generators.Heliyon2024102e2416410.1016/j.heliyon.2024.e24164 38288010
    [Google Scholar]
  74. BajwaJ. MunirU. NoriA. WilliamsB. Artificial intelligence in healthcare: Transforming the practice of medicine.Future Healthc. J.202182e188e19410.7861/fhj.2021‑0095 34286183
    [Google Scholar]
  75. RossP. SpatesK. Considering the safety and quality of artificial intelligence in health care.Jt. Comm. J. Qual. Patient Saf.2020461059659910.1016/j.jcjq.2020.08.002 32878718
    [Google Scholar]
  76. LämmermannL. HofmannP. UrbachN. Managing artificial intelligence applications in healthcare: Promoting information processing among stakeholders.Int. J. Inf. Manage.202475410272810.1016/j.ijinfomgt.2023.102728
    [Google Scholar]
  77. OlawadeD.B. David-OlawadeA.C. WadaO.Z. AsaoluA.J. AdereniT. LingJ. Artificial intelligence in healthcare delivery: Prospects and pitfalls.J. Med. Surg. Pub. Health2024310010810.1016/j.glmedi.2024.100108
    [Google Scholar]
  78. FrascaM. TorreL.D. PravettoniG. CuticaI. Explainable and interpretable artificial intelligence in medicine: A systematic bibliometric review.Disc. Artif. Intel.2024411510.1007/s44163‑024‑00114‑7
    [Google Scholar]
  79. AmannJ. BlasimmeA. VayenaE. FreyD. MadaiV.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective.BMC Med. Inform. Decis. Mak.202020131010.1186/s12911‑020‑01332‑6 33256715
    [Google Scholar]
  80. GerdesA. The role of explainability in AI-supported medical decision-making.Disc. Artif. Intel.2024412910.1007/s44163‑024‑00119‑2
    [Google Scholar]
  81. MarshallD.T. NaffD.B. The ethics of using artificial intelligence in qualitative research.J. Empir. Res. Hum. Res. Ethics20241939210210.1177/15562646241262659 38881315
    [Google Scholar]
  82. OssaA.L. LorenziniG. MilfordS.R. ShawD. ElgerB.S. RostM. Integrating ethics in AI development: A qualitative study.BMC Med. Ethics20242511010.1186/s12910‑023‑01000‑0 38262986
    [Google Scholar]
  83. ChudykA.M. WaldmanC. HorrillT. DemczukL. ShimminC. StoddardR. HickesS. SchultzA.S.H. Models and frameworks of patient engagement in health services research: A scoping review protocol.Res. Involv. Engagem.2018412810.1186/s40900‑018‑0111‑5 30214822
    [Google Scholar]
  84. DeyN. RautrayP. SoniM. Patient-Centered Design in a Connected Healthcare World: A Case Study.In: Research into Design for a Connected World.SingaporeSpringer Singapore201910.1007/978‑981‑13‑5974‑3_83
    [Google Scholar]
  85. Edgman-LevitanS. SchoenbaumS.C. Patient-centered care: Achieving higher quality by designing care through the patient’s eyes.Isr. J. Health Policy Res.20211012110.1186/s13584‑021‑00459‑9 33673875
    [Google Scholar]
  86. HaugC.J. DrazenJ.M. Artificial intelligence and machine learning in clinical medicine.N. Engl. J. Med.2023388131201120810.1056/NEJMra2302038 36988595
    [Google Scholar]
  87. BagabirA.S. IbrahimN.K. BagabirA.H. AteeqH.R. Covid-19 and artificial intelligence: Genome sequencing, drug development and vaccine discovery.J. Infect. Public Health202215228929610.1016/j.jiph.2022.01.011 35078755
    [Google Scholar]
  88. PudjihartonoN. FadasonT. Kempa-LiehrA.W. O’SullivanJ.M. A review of feature selection methods for machine learning-based disease risk prediction.Front. Bioinfor.2022292731210.3389/fbinf.2022.927312 36304293
    [Google Scholar]
  89. WidenE. RabenT.G. LelloL. HsuS.D.H. Machine learning prediction of biomarkers from snps and of disease risk from biomarkers in the uk biobank.Genes202112799110.3390/genes12070991 34209487
    [Google Scholar]
  90. WangH. AvillachP. Diagnostic classification and prognostic prediction using common genetic variants in autism spectrum disorder: Genotype-based deep learning.JMIR Med. Inform.202194e2475410.2196/24754 33714937
    [Google Scholar]
  91. SørlieT. PerouC.M. TibshiraniR. AasT. GeislerS. JohnsenH. HastieT. EisenM.B. van de RijnM. JeffreyS.S. ThorsenT. QuistH. MateseJ.C. BrownP.O. BotsteinD. LønningP.E. Børresen-DaleA.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.Proc. Natl. Acad. Sci. USA20019819108691087410.1073/pnas.191367098 11553815
    [Google Scholar]
  92. YersalO. BarutcaS. Biological subtypes of breast cancer: Prognostic and therapeutic implications.World J. Clin. Oncol.20145341242410.5306/wjco.v5.i3.412 25114856
    [Google Scholar]
  93. LeekJ.T. ScharpfR.B. BravoH.C. SimchaD. LangmeadB. JohnsonW.E. GemanD. BaggerlyK. IrizarryR.A. Tackling the widespread and critical impact of batch effects in high-throughput data.Nat. Rev. Genet.2010111073373910.1038/nrg2825 20838408
    [Google Scholar]
  94. QuaziS. Artificial intelligence and machine learning in precision and genomic medicine.Med. Oncol.202239812010.1007/s12032‑022‑01711‑1 35704152
    [Google Scholar]
  95. SubramanianM. WojtusciszynA. FavreL. BoughorbelS. ShanJ. LetaiefK.B. PitteloudN. ChouchaneL. Precision medicine in the era of artificial intelligence: Implications in chronic disease management.J. Transl. Med.202018147210.1186/s12967‑020‑02658‑5 33298113
    [Google Scholar]
  96. JohnsonK.B. WeiW.Q. WeeraratneD. FrisseM.E. MisulisK. RheeK. ZhaoJ. SnowdonJ.L. Precision medicine, AI, and the future of personalized health care.Clin. Transl. Sci.2021141869310.1111/cts.12884 32961010
    [Google Scholar]
  97. PulleyJ.M. DennyJ.C. PetersonJ.F. BernardG.R. Vnencak-JonesC.L. RamirezA.H. DelaneyJ.T. BowtonE. BrothersK. JohnsonK. CrawfordD.C. SchildcroutJ. MasysD.R. DilksH.H. WilkeR.A. ClaytonE.W. ShultzE. LaposataM. McPhersonJ. JirjisJ.N. RodenD.M. Operational implementation of prospective genotyping for personalized medicine: The design of the Vanderbilt PREDICT project.Clin. Pharmacol. Ther.2012921879510.1038/clpt.2011.371 22588608
    [Google Scholar]
  98. HuangC. ClaytonE.A. MatyuninaL.V. McDonaldL.D. BenignoB.B. VannbergF. McDonaldJ.F. Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy.Sci. Rep.2018811644410.1038/s41598‑018‑34753‑5 30401894
    [Google Scholar]
  99. SheuY. MagdamoC. MillerM. DasS. BlackerD. SmollerJ.W. AI-assisted prediction of differential response to antidepressant classes using electronic health records.NPJ Digit. Med.2023617310.1038/s41746‑023‑00817‑8 37100858
    [Google Scholar]
  100. MartinG.L. JouganousJ. SavidanR. BellecA. GoehrsC. BenkebilM. MiremontG. MicallefJ. SalvoF. ParienteA. LétinierL. Validation of artificial intelligence to support the automatic coding of patient adverse drug reaction reports, using nationwide pharmacovigilance data.Drug Saf.202245553554810.1007/s40264‑022‑01153‑8 35579816
    [Google Scholar]
  101. LeeH. KimH.J. ChangH.W. KimD.J. MoJ. KimJ.E. Development of a system to support warfarin dose decisions using deep neural networks.Sci. Rep.20211111474510.1038/s41598‑021‑94305‑2 34285309
    [Google Scholar]
  102. BlasiakA. TruongA. TanW.J.L. KumarK.S. TanS.B. TeoC.B. TanB.K.J. TadeoX. TanH.L. CheeC.E. YongW.P. HoD. SundarR PRECISE CURATE.AI: A prospective feasibility trial to dynamically modulate personalized chemotherapy dose with artificial intelligence.J Clin Oncol20224016_suppl(Suppl.), 1574-1574.10.1200/JCO.2022.40.16_suppl.1574
    [Google Scholar]
  103. SjövallF. LanckohrC. BrachtH. What’s new in therapeutic drug monitoring of antimicrobials?Intensive Care Med.202349785785910.1007/s00134‑023‑07060‑5 37133741
    [Google Scholar]
  104. PartinA. BrettinT.S. ZhuY. NarykovO. ClydeA. OverbeekJ. StevensR.L. Deep learning methods for drug response prediction in cancer: Predominant and emerging trends.Front. Med.202310108609710.3389/fmed.2023.1086097 36873878
    [Google Scholar]
  105. ZhangH. ChenY. LiF. Predicting anticancer drug response with deep learning constrained by signaling pathways.Front. Bioinformat.2021163934910.3389/fbinf.2021.639349 36303766
    [Google Scholar]
  106. HanK. CaoP. WangY. XieF. MaJ. YuM. WangJ. XuY. ZhangY. WanJ. A review of approaches for predicting drug–drug interactions based on machine learning.Front. Pharmacol.20221281485810.3389/fphar.2021.814858 35153767
    [Google Scholar]
  107. LiuJ.Y.H. RuddJ.A. Predicting drug adverse effects using a new gastro-intestinal pacemaker activity drug database (gipadd).Sci. Rep.2023131693510.1038/s41598‑023‑33655‑5 37117211
    [Google Scholar]
  108. Blanco-GonzálezA. CabezónA. Seco-GonzálezA. Conde-TorresD. Antelo-RiveiroP. PiñeiroÁ. Garcia-FandinoR. The role of AI in drug discovery: Challenges, opportunities, and strategies.Pharmaceuticals202316689110.3390/ph16060891 37375838
    [Google Scholar]
  109. YangX. WangY. ByrneR. SchneiderG. YangS. Concepts of artificial intelligence for computer-assisted drug discovery.Chem. Rev.201911918105201059410.1021/acs.chemrev.8b00728 31294972
    [Google Scholar]
  110. GangwalA. AnsariA. AhmadI. AzadA.K. KumarasamyV. SubramaniyanV. WongL.S. Generative artificial intelligence in drug discovery: Basic framework, recent advances, challenges, and opportunities.Front. Pharmacol.2024152133106210.3389/fphar.2024.1331062 38384298
    [Google Scholar]
  111. JingW Drug Repositioning in the AI-Driven Era: Data, Approaches, and Challenges.Repurposed Drugs - Current State and Future PerspectivesRijekaM.D.S. Engin: IntechOpen2024
    [Google Scholar]
  112. NelsonK.M. ChangE.T. ZulmanD.M. RubensteinL.V. KirklandF.D. FihnS.D. Using predictive analytics to guide patient care and research in a national health system.J. Gen. Intern. Med.20193481379138010.1007/s11606‑019‑04961‑4 31011959
    [Google Scholar]
  113. AmarasinghamR. PatzerR.E. HueschM. NguyenN.Q. XieB. Implementing electronic health care predictive analytics: Considerations and challenges.Health Aff.20143371148115410.1377/hlthaff.2014.0352 25006140
    [Google Scholar]
  114. AnsariM.S. AlokA.K. JainD. RanaS. GuptaS. SalwanR. VenkateshS. Predictive Model Based on Health Data Analysis for Risk of Readmission in Disease-Specific Cohorts.Perspect. Health Inf. Manag.202118Spring1j 34035791
    [Google Scholar]
  115. DonzéJ. AujeskyD. WilliamsD. SchnipperJ.L. Potentially avoidable 30-day hospital readmissions in medical patients: Derivation and validation of a prediction model.JAMA Intern. Med.2013173863263810.1001/jamainternmed.2013.3023 23529115
    [Google Scholar]
  116. LopesJ. GuimarãesT. SantosM.F. Predictive and prescriptive analytics in healthcare: A survey.Procedia Comput. Sci.202017021029103410.1016/j.procs.2020.03.078
    [Google Scholar]
  117. AlotaibiS. MehmoodR. KatibI. RanaO. AlbeshriA. Sehaa: A big data analytics tool for healthcare symptoms and diseases detection using twitter, apache spark, and machine learning.Appl. Sci.2020104139810.3390/app10041398
    [Google Scholar]
  118. CrossnohereN.L. ElsaidM. PaskettJ. Bose-BrillS. BridgesJ.F.P. Guidelines for artificial intelligence in medicine: Literature review and content analysis of frameworks.J. Med. Internet Res.2022248e3682310.2196/36823 36006692
    [Google Scholar]
  119. DastaJ.F. Application of artificial intelligence to pharmacy and medicine.Hosp. Pharm.1992274312315, 319-322 10183640
    [Google Scholar]
  120. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  121. BuchV.H. AhmedI. MaruthappuM. Artificial intelligence in medicine: Current trends and future possibilities.Br. J. Gen. Pract.20186866814314410.3399/bjgp18X695213 29472224
    [Google Scholar]
  122. LiL.R. DuB. LiuH.Q. ChenC. Artificial intelligence for personalized medicine in thyroid cancer: Current status and future perspectives.Front. Oncol.202110260405110.3389/fonc.2020.604051 33634025
    [Google Scholar]
  123. DavoudiA. The intelligent ICU pilot study: Using artificial intelligence technology for autonomous patient monitoring.Sci. Rep.201898020
    [Google Scholar]
  124. CurtisR.G. BartelB. FergusonT. BlakeH.T. NorthcottC. VirgaraR. MaherC.A. Improving user experience of virtual health assistants: Scoping review.J. Med. Internet Res.20212312e3173710.2196/31737 34931997
    [Google Scholar]
  125. KannanM.K.J. Virtual nursing assistant.J. Geogr. Sci.20218279285
    [Google Scholar]
  126. OmarovB. NarynovS. ZhumanovZ. Artificial intelligence-enabled chatbots in mental health: A systematic review.Comput. Mater. Continua20237435105512210.32604/cmc.2023.034655
    [Google Scholar]
  127. SunG. ZhouY.H. AI in healthcare: Navigating opportunities and challenges in digital communication.Front. Digit. Health20235129113210.3389/fdgth.2023.1291132 38173911
    [Google Scholar]
  128. KimJ.W. JonesK.L. D’AngeloE. How to prepare prospective psychiatrists in the era of artificial intelligence.Acad. Psychiatry201943333733910.1007/s40596‑019‑01025‑x 30659443
    [Google Scholar]
  129. GrahamS. DeppC. LeeE.E. NebekerC. TuX. KimH.C. JesteD.V. Artificial intelligence for mental health and mental illnesses: An overview.Curr. Psychiatry Rep.2019211111610.1007/s11920‑019‑1094‑0 31701320
    [Google Scholar]
  130. FitzpatrickK.K. DarcyA. VierhileM. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (woebot): A randomized controlled trial.JMIR Ment. Health201742e1910.2196/mental.7785 28588005
    [Google Scholar]
  131. WilliamsA.D. AndrewsG. The effectiveness of Internet cognitive behavioural therapy (iCBT) for depression in primary care: A quality assurance study.PLoS One201382e5744710.1371/journal.pone.0057447 23451231
    [Google Scholar]
  132. LuxtonD.D. Artificial intelligence in psychological practice: Current and future applications and implications.Prof. Psychol. Res. Pr.201445533233910.1037/a0034559
    [Google Scholar]
  133. ProchaskaJ.J. VogelE.A. ChiengA. KendraM. BaiocchiM. PajaritoS. RobinsonA. A therapeutic relational agent for reducing problematic substance use (Woebot): Development and usability study.J. Med. Internet Res.2021233e2485010.2196/24850 33755028
    [Google Scholar]
  134. LeeE.E. TorousJ. ChoudhuryD.M. DeppC.A. GrahamS.A. KimH.C. PaulusM.P. KrystalJ.H. JesteD.V. Artificial intelligence for mental health care: Clinical applications, barriers, facilitators, and artificial wisdom.Biol. Psychiatry Cogn. Neurosci. Neuroimaging20216985686410.1016/j.bpsc.2021.02.001 33571718
    [Google Scholar]
  135. ChewH.S.J. The use of artificial intelligence–based conversational agents (Chatbots) for weight loss: Scoping review and practical recommendations.JMIR Med. Inform.2022104e3257810.2196/32578 35416791
    [Google Scholar]
  136. ZhangJ. OhY.J. LangeP. YuZ. FukuokaY. Artificial intelligence chatbot behavior change model for designing artificial intelligence chatbots to promote physical activity and a healthy diet: Viewpoint.J. Med. Internet Res.2020229e2284510.2196/22845 32996892
    [Google Scholar]
  137. BombardY. BakerG.R. OrlandoE. FancottC. BhatiaP. CasalinoS. OnateK. DenisJ.L. PomeyM.P. Engaging patients to improve quality of care: A systematic review.Implement. Sci.20181319810.1186/s13012‑018‑0784‑z 30045735
    [Google Scholar]
  138. WongC.K.M. YeungD.Y. HoH.C.Y. TseK.P. LamC.Y. Chinese older adults’ Internet use for health information.J. Appl. Gerontol.201433331633510.1177/0733464812463430 24717738
    [Google Scholar]
  139. AggarwalA. TamC.C. WuD. LiX. QiaoS. Artificial intelligence–based chatbots for promoting health behavioral changes: Systematic review.J. Med. Internet Res.202325e4078910.2196/40789 36826990
    [Google Scholar]
  140. GörtzM. An artificial intelligence-based chatbot for prostate cancer education: Design and patient evaluation study.Dig. Health2023920552076231173304
    [Google Scholar]
  141. NakhlehA. SpitzerS. ShehadehN. ChatGPT’s response to the diabetes knowledge questionnaire: Implications for diabetes education.Diabetes Technol. Ther.202325857157310.1089/dia.2023.0134 37062754
    [Google Scholar]
  142. KirchnerG.J. KimR.Y. WeddleJ.B. BibleJ.E. Can artificial intelligence improve the readability of patient education materials?Clin. Orthop. Relat. Res.2023481112260226710.1097/CORR.0000000000002668 37116006
    [Google Scholar]
  143. LeeD. YoonS.N. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges.Int. J. Environ. Res. Public Health202118127110.3390/ijerph18010271 33401373
    [Google Scholar]
  144. KaptchukT.J. MillerF.G. Placebo effects in medicine.N. Engl. J. Med.201537318910.1056/NEJMp1504023 26132938
    [Google Scholar]
  145. LuptonM. Some ethical and legal consequences of the application of artificial intelligence in the field of medicine. Trends.Med201818410014710.15761/TiM.1000147
    [Google Scholar]
  146. PezzoM.V. BecksteadJ.W. Patients prefer artificial intelligence to a human provider, provided the AI is better than the human: A commentary on Longoni, Bonezzi and Morewedge (2019).Judgm. Decis. Mak.202015344344510.1017/S1930297500007221
    [Google Scholar]
  147. RojahnJ. PaluA. SkienaS. JonesJ.J. American public opinion on artificial intelligence in healthcare.PLoS One20231811e029402810.1371/journal.pone.0294028 37943752
    [Google Scholar]
  148. EsmaeilzadehP. Use of AI-based tools for healthcare purposes: A survey study from consumers’ perspectives.BMC Med. Inform. Decis. Mak.202020117010.1186/s12911‑020‑01191‑1 32698869
    [Google Scholar]
  149. KhullarD. CasalinoL.P. QianY. LuY. KrumholzH.M. AnejaS. Perspectives of patients about artificial intelligence in health care.JAMA Netw. Open202255e2210309e221030910.1001/jamanetworkopen.2022.10309 35507346
    [Google Scholar]
  150. RussoS. JongeriusC. FaccioF. PizzoliS.F.M. PintoC.A. VeldwijkJ. JanssensR. SimonsG. FalaheeM. Bekker-Grobd.E. HuysI. PostmusD. KihlbomU. PravettoniG. Understanding patients’ preferences: A systematic review of psychological instruments used in patients’ preference and decision studies.Value Health201922449150110.1016/j.jval.2018.12.007 30975401
    [Google Scholar]
  151. YoungA.T. AmaraD. BhattacharyaA. WeiM.L. Patient and general public attitudes towards clinical artificial intelligence: A mixed methods systematic review.Lancet Digit. Health202139e599e61110.1016/S2589‑7500(21)00132‑1 34446266
    [Google Scholar]
  152. PicekO. Spillover effects from next generation EU.Inter Econ.202055532533110.1007/s10272‑020‑0923‑z 33132414
    [Google Scholar]
  153. SousaJ.M. MasD.F. PesqueiraA. LemosC. VerdeM.J. CobianchiL. The potential of ai in health higher education to increase the students’ learning outcomes.TEM J.20211048849710.18421/TEM102‑02
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266339394250225112747
Loading
/content/journals/ctmc/10.2174/0115680266339394250225112747
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test