Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

Research into oxidative stress, cancer, and natural products revealed promising avenues for therapeutic intervention. Natural products are considered potent pharmaceuticals in combating oxidative stress and its relationship with cancer.

Methods

This study was carried out to evaluate the chemical profile and antioxidant activities using DPPH, ABTS, Phenanthroline, Cupric, Phosphomolybdenum, FRAP, Hydroxyl, Iron chelation assays, and anticancer properties by MTT method of extracts. The chemical composition was determined using the LC-MS/MS technique. Therefore, methods, particularly molecular docking and dynamic simulation were applied for molecular interaction analysis.

Results

The obtained results revealed a wide variety of phenolic compounds in all studied fractions, in their qualitative and quantitative distribution. In most antioxidant assays, the butanol and ethyl acetate extracts exhibited the most effective effects, followed by the aqueous extract, while the petroleum ether and chloroform fractions exhibited much lower activity in comparison with standards. In parallel, ethyl acetate, n-butanol, and chloroform extracts exhibited potent antiproliferative activity against T47D and A549 cell lines, while the aqueous extract showed an IC in the range of mg/ml. Moreover, the analysis of interactions identified compounds against particular targets in studied cell lines using molecular docking showed a great affinity, especially for the ligands Hesperidin, Luteolin-7--glucoside and Rutin. Also, the molecular dynamic simulation of the interacting complexes Hesperidin-mTOR, Rutin-EGFR and Apigenin-HER2 revealed precise interaction, providing insights into their stability and dynamic behavior. Furthermore, the studied ligand exhibited interesting pharmacokinetic properties with no reported toxicity.

Conclusion

These findings confirmed the potential of Algerian L. leaf extracts as promising therapeutic molecules for combating oxidative stress and cancer.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266345222250109102407
2025-01-28
2025-11-08
Loading full text...

Full text loading...

References

  1. AbdelfattahM.A.O. DmiriehM. Ben BakrimW. MouhtadyO. GhareebM.A. WinkM. SobehM. Antioxidant and anti-aging effects of Warburgia salutaris bark aqueous extract: Evidences from in silico, in vitro and in vivo studies.J. Ethnopharmacol.2022292March11518710.1016/j.jep.2022.115187 35288287
    [Google Scholar]
  2. GhareebM.A. MohamedT. SaadA.M. RefahyL.A.G. SobehM. WinkM. HPLC-DAD-ESI-MS/MS analysis of fruits from Firmiana simplex (L.) and evaluation of their antioxidant and antigenotoxic properties.J. Pharm. Pharmacol.201870113314210.1111/jphp.12843 29125176
    [Google Scholar]
  3. SobehM. MahmoudM.F. HasanR.A. AbdelfattahM.A.O. SabryO.M. GhareebM.A. El-ShazlyA.M. WinkM. Tannin-rich extracts from Lannea stuhlmannii and Lannea humilis (Anacardiaceae) exhibit hepatoprotective activities in vivovia enhancement of the anti-apoptotic protein Bcl-2.Sci. Rep.201881934310.1038/s41598‑018‑27452‑8 29921841
    [Google Scholar]
  4. SayedA.M. El-HawaryS.S. AbdelmohsenU.R. GhareebM.A. Antiproliferative potential of Physalis peruviana -derived magnolin against pancreatic cancer: A comprehensive in vitro and in silico study.Food Funct.20221322117331174310.1039/D2FO01915A 36281695
    [Google Scholar]
  5. HabibM.R. HamedA.A. AliR.E.M. ZayedK.M. Gad El-KarimR.M. SabourR. Abu El-EininH.M. GhareebM.A. Thais savignyi tissue extract: Bioactivity, chemical composition, and molecular docking.Pharm. Biol.20226011899191410.1080/13880209.2022.2123940 36200747
    [Google Scholar]
  6. OkashaH. AboushoushaT. CoimbraM.A. CardosoS.M. GhareebM.A. Metabolite profiling of Alocasia gigantea leaf extract and its potential anticancer effect through autophagy in hepatocellular carcinoma.Molecules20222723850410.3390/molecules27238504 36500595
    [Google Scholar]
  7. BakchicheB. GheribA. BronzeM.R. GhareebM.A. Identification, quantification, and antioxidant activity of hydroalcoholic extract of artemisia campestris from Algeria.Turk. J. Pharm. Sci.201916223423910.4274/tjps.galenos.2018.99267 32454719
    [Google Scholar]
  8. CheraifK. BakchicheB. GheribA. BardaweelS.K. Çol AyvazM. FlaminiG. AscrizziR. GhareebM.A. Chemical composition, antioxidant, anti-tyrosinase, anti-cholinesterase and cytotoxic activities of essential oils of six Algerian plants.Molecules2020257171010.3390/molecules25071710 32276465
    [Google Scholar]
  9. Er KemalM. BakchicheB. KemalM. CheraifK. KaraY. BardaweelS.K. MiguelM.G. YildizO. GhareebM.A. Six Algerian plants: Phenolic profile, antioxidant, antimicrobial activities associated with different simulated gastrointestinal digestion phases and antiproliferative properties.J. Herb. Med.20233810063610.1016/j.hermed.2023.100636
    [Google Scholar]
  10. SayahK. ChemlalL. MarmouziI. El JemliM. CherrahY. FaouziM.E.A. In vivo anti-inflammatory and analgesic activities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) aqueous extracts.S. Afr. J. Bot.201711316016310.1016/j.sajb.2017.08.015
    [Google Scholar]
  11. Ait LahcenS. El HattabiL. BenkaddourR. ChahbounN. GhanmiM. SatraniB. TabyaouiM. ZarroukA. Chemical composition, antioxidant, antimicrobial and antifungal activity of Moroccan Cistus creticus leaves.Chemical Data Collections20202610034610.1016/j.cdc.2020.100346
    [Google Scholar]
  12. DemetzosC. MitakuS. SkaltsounisA.L. Catherine HarvalaM.C. LibotF. Diterpene esters of malonic acid from the resin ‘Ladano’ of Cistus creticus.Phytochemistry199435497998110.1016/S0031‑9422(00)90651‑4
    [Google Scholar]
  13. DemetzosC. KaterinopoulosH. KouvarakisA. StratigakisN. LoukisA. EkonomakisC. SpiliotisV. TsaknisJ. Composition and antimicrobial activity of the essential oil of Cistus creticus subsp. eriocephalus.Planta Med.199763547747910.1055/s‑2006‑957742 9342956
    [Google Scholar]
  14. MaggiF. LucariniD. PapaF. PeronG. Dall’AcquaS. Phytochemical analysis of the labdanum-poor Cistus creticus subsp. eriocephalus (Viv.) Greuter et Burdet growing in central Italy.Biochem. Syst. Ecol.201666505710.1016/j.bse.2016.02.030
    [Google Scholar]
  15. AtsalakisE. ChinouI. MakropoulouM. KarabourniotiS. GraikouK. Evaluation of phenolic compounds in Cistus creticus bee pollen from Greece. Antioxidant and antimicrobial properties.Nat. Prod. Commun.201712111934578X170120114110.1177/1934578X1701201141
    [Google Scholar]
  16. KaradağA.E. ÇaşkurluA. OkurM.E. GuzelmericE. OkurN.Ü. TosunF. YesiladaE. DemirciF. Hemostatic activity of Cistus creticus extract in Wistar Albino rats.Rev. Bras. Farmacogn.202030684484710.1007/s43450‑020‑00120‑7
    [Google Scholar]
  17. KalpoutzakisE. ChinouI. MitakuS. SkaltsounisA.L. HarvalaC. Antibacterial labdane-type diterpenes from the resin ‘ladano’ of Cistus creticus subsp. creticus.Nat. Prod. Lett.199811317317910.1080/10575639808044943
    [Google Scholar]
  18. MocanA. FernandesÂ. CalhelhaR.C. GavrilaşL. FerreiraI.C.F.R. IvanovM. SokovicM. BarrosL. BabotăM. Bioactive compounds and functional properties of herbal preparations of Cystus creticus L. Collected From Rhodes Island.Front. Nutr.2022988121010.3389/fnut.2022.881210 35677542
    [Google Scholar]
  19. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  20. Salo-AhenO.M.H. AlankoI. BhadaneR. BonvinA.M.J.J. HonoratoR.V. HossainS. JufferA.H. KabedevA. Lahtela-KakkonenM. LarsenA.S. LescrinierE. MarimuthuP. MirzaM.U. MustafaG. Nunes-AlvesA. PantsarT. SaadabadiA. SingaraveluK. VanmeertM. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes2020917110.3390/pr9010071
    [Google Scholar]
  21. BoulanouarB. AbdelazizG. AazzaS. GagoC. MiguelM.G. Antioxidant activities of eight Algerian plant extracts and two essential oils.Ind. Crops Prod.201346859610.1016/j.indcrop.2013.01.020
    [Google Scholar]
  22. OlabinrB.M. OdedireO.O. OlaleyeM.T. AdekunlA.S. EhigieL.O. OlabinrP.F. In vitro evaluation of hydroxyl and nitric oxide radical scavenging activities of artemether.Res. J. Biol. Sci.20105110210510.3923/rjbsci.2010.102.105
    [Google Scholar]
  23. RezzougM. BakchicheB. GheribA. RobertaA.; FlaminiGuido,; Kilinçarslan, Ö.; Mammadov, R.; Bardaweel, S.K. Chemical composition and bioactivity of essential oils and Ethanolic extracts of Ocimum basilicum L. and Thymus algeriensis Boiss. & Reut. from the Algerian Saharan Atlas.BMC Complement. Altern. Med.201919114610.1186/s12906‑019‑2556‑y 31227024
    [Google Scholar]
  24. SzydłowskaczerniakA. DianoczkiC. RecsegK. KarlovitsG. SzłykE. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods.Talanta200876489990510.1016/j.talanta.2008.04.055 18656676
    [Google Scholar]
  25. PrietoP. PinedaM. AguilarM. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E.Anal. Biochem.1999269233734110.1006/abio.1999.4019 10222007
    [Google Scholar]
  26. ApakR. GüçlüK. ÖzyürekM. KarademirS.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.J. Agric. Food Chem.200452267970798110.1021/jf048741x 15612784
    [Google Scholar]
  27. N, P. Antioxidant, ferric iron chelation and antimicrobial activities of extracts of pseudocydonia sinensis (chinese quince) fruit.J. Med. Plants Stud.2017
    [Google Scholar]
  28. BardaweelS. AljanabiR. SabbahD. SweidanK. Design, synthesis, and biological evaluation of novel MAO-A inhibitors targeting lung cancer.Molecules2022279288710.3390/molecules27092887 35566238
    [Google Scholar]
  29. MorrisG. M. HueyR. OlsonA. J. UNIT using AutoDock for ligand-receptor docking.Curr. Protoc. Bioinforma.2008(SUPPL. 24)10.1002/0471250953.bi0814s24
    [Google Scholar]
  30. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  31. TianW. ChenC. LeiX. ZhaoJ. LiangJ. CASTp 3.0: Computed atlas of surface topography of proteins.Nucleic Acids Res.201846W1W363W36710.1093/nar/gky473 29860391
    [Google Scholar]
  32. BowersK.J. Scalable algorithms for molecular dynamics simulations on commodity clusters.SC ’06: Proceedings of the 2006 ACM/IEEE Conference on SupercomputingTampa, FL, USA, 11-17 Novembe2006434310.1109/SC.2006.54
    [Google Scholar]
  33. ShivakumarD. WilliamsJ. WuY. DammW. ShelleyJ. ShermanW. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the opls force field.J. Chem. Theory Comput.2010651509151910.1021/ct900587b 26615687
    [Google Scholar]
  34. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  35. Abu-OrabiS.T. Al-QudahM.A. SalehN.R. BatainehT.T. ObeidatS.M. Al-SheraidehM.S. Al-JaberH.I. TashtoushH.I. LahhamJ.N. Antioxidant activity of crude extracts and essential oils from flower buds and leaves of Cistus creticus and Cistus salviifolius.Arab. J. Chem.20201376256626610.1016/j.arabjc.2020.05.043
    [Google Scholar]
  36. Gedi̇koğluA. ÖztürkH.İ. AytaçE. The effect of different solvents on chemical composition, antioxidant activity, and antimicrobial potential of turkish Cistus creticus extracts.Gida202348472874010.15237/gida.GD23047
    [Google Scholar]
  37. CarochoM. FerreiraI. The role of phenolic compounds in the fight against cancer--A review.Anticancer. Agents Med. Chem.20131381236125810.2174/18715206113139990301 23796249
    [Google Scholar]
  38. AbotalebM. LiskovaA. KubatkaP. BüsselbergD. Therapeutic potential of plant phenolic acids in the treatment of cancer.Biomolecules202010222110.3390/biom10020221 32028623
    [Google Scholar]
  39. BakrimS. El OmariN. El HachlafiN. BakriY. LeeL.H. BouyahyaA. Dietary phenolic compounds as anticancer natural drugs: Recent update on molecular mechanisms and clinical trials.Foods20221121332310.3390/foods11213323 36359936
    [Google Scholar]
  40. GleesonM.P. Generation of a set of simple, interpretable ADMET rules of thumb.J. Med. Chem.200851481783410.1021/jm701122q 18232648
    [Google Scholar]
  41. Nur OnalF. OzturkI. Aydin KoseF. DerG. KilincE. BaykanS. Comparative evaluation of polyphenol contents and biological activities of five Cistus L. species native to Turkey.Chem. Biodivers.2023201e20220091510.1002/cbdv.202200915 36524294
    [Google Scholar]
  42. Al-MusawiA.K. Al-Rubae’iS.H.N. MahdiM.F. Role of Caspase-3, IL-1β and oxidative stress in Iraqi women with breast cancer.J. Phys. Conf. Ser.20211853101205010.1088/1742‑6596/1853/1/012050
    [Google Scholar]
  43. KongL. WangX. ZhangK. YuanW. YangQ. FanJ. WangP. LiuQ. Gypenosides synergistically enhances the anti-tumor effect of 5-fluorouracil on colorectal cancer in vitro and in vivo: A role for oxidative stress-mediated DNA damage and p53 activation.PLoS One2015109e013788810.1371/journal.pone.0137888 26368019
    [Google Scholar]
  44. LiuY. MaW. LiuQ. LiuP. QiaoS. XuL. SunY. GaiX. ZhangZ. Decreased thioredoxin reductase 3 expression promotes nickel‐induced damage to cardiac tissue via activating oxidative stress‐induced apoptosis and inflammation.Environ. Toxicol.202338243645010.1002/tox.23710 36421005
    [Google Scholar]
  45. AkandaM. TaeH.J. KimI.S. AhnD. TianW. IslamA. NamH.H. ChooB.K. ParkB.Y. Hepatoprotective role of Hydrangea macrophylla against sodium arsenite-induced mitochondrial-dependent oxidative stress via the inhibition of MAPK/caspase-3 pathways.Int. J. Mol. Sci.2017187148210.3390/ijms18071482 28698525
    [Google Scholar]
  46. BartolacciC. AndreaniC. El-GammalY. ScaglioniP.P. Lipid metabolism regulates oxidative stress and ferroptosis in RAS-driven cancers: A perspective on cancer progression and therapy.Front. Mol. Biosci.2021870665010.3389/fmolb.2021.706650 34485382
    [Google Scholar]
  47. RuanH. LeibowitzB.J. PengY. ShenL. ChenL. KuangC. SchoenR.E. LuX. ZhangL. YuJ. Targeting Myc-driven stress vulnerability in mutant KRAS colorectal cancer.Mol. Biomed.2022311010.1186/s43556‑022‑00070‑7 35307764
    [Google Scholar]
  48. KuoK.T. LinC.H. WangC.H. PikatanN.W. YadavV.K. FongI.H. YehC.T. LeeW.H. HuangW.C. HNMT upregulation induces cancer stem cell formation and confers protection against oxidative stress through interaction with HER2 in non-small-cell lung cancer.Int. J. Mol. Sci.2022233166310.3390/ijms23031663 35163585
    [Google Scholar]
  49. MahmoodB.R. AllwshT.A. Assessment of the HER2, PDL1 and oxidative stress levels at the menopausal status of newly diagnosed breast cancer patients.Contemp. Med. Sci.20228510.22317/jcms.v8i5.1288
    [Google Scholar]
  50. NordqvistA. NilssonJ. LindmarkT. ErikssonA. GarbergP. KihlénM. A general model for prediction of Caco-2 cell permeability.QSAR Comb. Sci.200423530331010.1002/qsar.200330868
    [Google Scholar]
  51. PiresD.E.V. KaminskasL.M. AscherD.B. Prediction and optimization of pharmacokinetic and toxicity properties of the ligand.Methods Mol. Biol.2018176227128410.1007/978‑1‑4939‑7756‑7_14 29594777
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266345222250109102407
Loading
/content/journals/ctmc/10.2174/0115680266345222250109102407
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Cancer; Cistus creticus; Molecular modeling; Natural products; Oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test