Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Autophagy is a crucial mechanism that maintains cellular homeostasis and has emerged as a pivotal factor in cancer progression and drug resistance. Despite autophagic regulations being a complex process, convincing evidence shows that PI3K-Akt-mTOR, LKB1-AMPK-mTOR, and p53 pathways are the primary upstream regulators of the autophagy process. Currently, there is an immense amount of evidence demonstrating that autophagy plays a crucial role in cancer. It is worth noting that autophagy increases cancer cells' resistance to chemotherapy and anticancerous drugs. According to studies, cancer cells employ autophagy to evade the cytotoxic impacts of several anticancer drugs, resulting in autophagy-mediated drug resistance. This resistance brings a significant challenge to cancer management, emphasising the need for improved therapeutic strategies to overcome this obstacle and enhance the efficacy of cancer treatments. Therefore, this review gathers current data and findings to understand the intricate mechanism between autophagy-mediated drug resistance and cancer progression. Moreover, this study highlights the intriguing role of natural compounds and nano-formulations in combating autophagy-mediated drug resistance in various carcinomas, presenting a promising avenue for the effective management of cancer treatment.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266345188250304064600
2025-03-18
2025-12-21
Loading full text...

Full text loading...

References

  1. WillansR. JankowskiJ. The global cancer burden.Cancer Archives20191110.15761/jca.1000103
    [Google Scholar]
  2. BustosS.O. AntunesF. RangelM.C. ChammasR. Emerging autophagy functions shape the tumor microenvironment and play a role in cancer progression - Implications for cancer therapy.Front. Oncol.20201060643660643610.3389/fonc.2020.60643633324568
    [Google Scholar]
  3. GalluzziL. PietrocolaF. Bravo-San PedroJ.M. AmaravadiR.K. BaehreckeE.H. CecconiF. CodognoP. DebnathJ. GewirtzD.A. KarantzaV. KimmelmanA. KumarS. LevineB. MaiuriM.C. MartinS.J. PenningerJ. PiacentiniM. RubinszteinD.C. SimonH.U. SimonsenA. ThorburnA.M. VelascoG. RyanK.M. KroemerG. Autophagy in malignant transformation and cancer progression.EMBO J.201534785688010.15252/embj.20149078425712477
    [Google Scholar]
  4. NazioF. BordiM. CianfanelliV. LocatelliF. CecconiF. Autophagy and cancer stem cells: Molecular mechanisms and therapeutic applications.Cell Death Differ.201926469070210.1038/s41418‑019‑0292‑y30728463
    [Google Scholar]
  5. LiY-J. LeiY.H. YaoN. WangC.R. HuN. YeW.C. ZhangD.M. ChenZ.S. Autophagy and multidrug resistance in cancer.Chin. J. Cancer20173615210.1186/s40880‑017‑0219‑228646911
    [Google Scholar]
  6. SinghS.S. VatsS. ChiaA.Y. TanT.Z. DengS. OngM.S. ArfusoF. YapC.T. GohB.C. SethiG. HuangR.Y. ShenH.M. ManjithayaR. KumarA.P. Dual role of autophagy in hallmarks of cancer.Oncogene20183791142115810.1038/s41388‑017‑0046‑629255248
    [Google Scholar]
  7. KocakM. Ezazi ErdiS. JorbaG. MaestroI. FarrésJ. KirkinV. MartinezA. PlessO. Targeting autophagy in disease: Established and new strategies.Autophagy202218347349510.1080/15548627.2021.193635934241570
    [Google Scholar]
  8. RahmanMd. A. Molecular insights into the multifunctional role of natural compounds: Autophagy modulation and cancer prevention.Biomedicines202081151710.3390/biomedicines8110517
    [Google Scholar]
  9. DengS. ShanmugamM.K. KumarA.P. YapC.T. SethiG. BishayeeA. Targeting autophagy using natural compounds for cancer prevention and therapy.Cancer201912581228124610.1002/cncr.3197830748003
    [Google Scholar]
  10. FloranceI. CordaniM. PashootanP. MoosaviM.A. ZarrabiA. ChandrasekaranN. The impact of nanomaterials on autophagy across health and disease conditions.Cell. Mol. Life Sci.202481118410.1007/s00018‑024‑05199‑y38630152
    [Google Scholar]
  11. LiuZ. LuT. QianR. WangZ. QiR. ZhangZ. Exploiting nanotechnology for drug delivery: Advancing the anti-cancer effects of autophagy-modulating compounds in traditional chinese medicine.Int. J. Nanomedicine2024192507252810.2147/ijn.s455407
    [Google Scholar]
  12. MukhopadhyayS. SinhaN. DasD.N. PandaP.K. NaikP.P. BhutiaS.K. Clinical relevance of autophagic therapy in cancer: Investigating the current trends, challenges, and future prospects.Crit. Rev. Clin. Lab. Sci.201653422825210.3109/10408363.2015.113510326743568
    [Google Scholar]
  13. PatergnaniS. DaneseA. BouhamidaE. AguiariG. PreviatiM. PintonP. GiorgiC. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer.Int. J. Mol. Sci.20202121832310.3390/ijms2121832333171939
    [Google Scholar]
  14. RosenfeldtM.T. RyanK.M. The multiple roles of autophagy in cancer.Carcinogenesis201132795596310.1093/carcin/bgr03121317301
    [Google Scholar]
  15. DasG. ShravageB.V. BaehreckeE.H. Regulation and function of autophagy during cell survival and cell death.Cold Spring Harb. Perspect. Biol.201246a008813a00881310.1101/cshperspect.a00881322661635
    [Google Scholar]
  16. DalbyK.N. TekedereliI. Lopez-BeresteinG. OzpolatB. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer.Autophagy20106332232910.4161/auto.6.3.1162520224296
    [Google Scholar]
  17. LiW. ZhangL. Regulation of ATG and autophagy initiation.Adv. Exp. Med. Biol.20191206416510.1007/978‑981‑15‑0602‑4_231776979
    [Google Scholar]
  18. LiX. HeS. MaB. Autophagy and autophagy-related proteins in cancer.Mol. Cancer20201911210.1186/s12943‑020‑1138‑431969156
    [Google Scholar]
  19. MazureN.M. PouysségurJ. Hypoxia-induced autophagy: Cell death or cell survival?Curr. Opin. Cell Biol.201022217718010.1016/j.ceb.2009.11.01520022734
    [Google Scholar]
  20. KüçükönerM. mTOR signaling pathway and mTOR inhibitors in the treatment of cancer.Dicle Med. J. / Dicle Tıp Dergisi201340115616010.5798/diclemedj.0921.2013.01.0248
    [Google Scholar]
  21. DunlopE.A. HuntD.K. Acosta-JaquezH.A. FingarD.C. TeeA.R. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding.Autophagy20117773774710.4161/auto.7.7.1549121460630
    [Google Scholar]
  22. CarrollB. MaetzelD. MaddocksO.D. OttenG. RatcliffM. SmithG.R. DunlopE.A. PassosJ.F. DaviesO.R. JaenischR. TeeA.R. SarkarS. KorolchukV.I. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.eLife20165e1105810.7554/elife.1105826742086
    [Google Scholar]
  23. GonzálezA. HallM.N. LinS-C. HardieD.G. AMPK and TOR: The yin and yang of cellular nutrient sensing and growth control.Cell Metab.202031347249210.1016/j.cmet.2020.01.01532130880
    [Google Scholar]
  24. JiangS. LiT. YangZ. YiW. DiS. SunY. WangD. YangY. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging.Ageing Res. Rev.201738182710.1016/j.arr.2017.07.00128709692
    [Google Scholar]
  25. HardieD.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy.Nat. Rev. Mol. Cell Biol.200781077478510.1038/nrm224917712357
    [Google Scholar]
  26. GarciaD. ShawR.J. AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance.Mol. Cell201766678980010.1016/j.molcel.2017.05.03228622524
    [Google Scholar]
  27. AlersS. LöfflerA.S. WesselborgS. StorkB. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks.Mol. Cell. Biol.201232121110.1128/mcb.06159‑1122025673
    [Google Scholar]
  28. ZachariM. LongoM. GanleyI.G. Aberrant autophagosome formation occurs upon small molecule inhibition of ULK1 kinase activity.Life Sci. Alliance2020312e20200081510.26508/lsa.20200081533109685
    [Google Scholar]
  29. WangC. WangH. ZhangD. LuoW. LiuR. XuD. DiaoL. LiaoL. LiuZ. Phosphorylation of ULK1 affects autophagosome fusion and links chaperone-mediated autophagy to macroautophagy.Nat. Commun.201891349210.1038/s41467‑018‑05449‑130154410
    [Google Scholar]
  30. YamamotoH. FujiokaY. SuzukiS.W. NoshiroD. SuzukiH. Kondo-KakutaC. KimuraY. HiranoH. AndoT. NodaN.N. OhsumiY. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes.Dev. Cell2016381869910.1016/j.devcel.2016.06.01527404361
    [Google Scholar]
  31. KotaniT. KirisakoH. KoizumiM. OhsumiY. NakatogawaH. The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation.Proc. Natl. Acad. Sci. USA201811541103631036810.1073/pnas.180672711530254161
    [Google Scholar]
  32. SuzukiK. KirisakoT. KamadaY. MizushimaN. NodaT. OhsumiY. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation.EMBO J.200120215971598110.1093/emboj/20.21.597111689437
    [Google Scholar]
  33. LiangC. FengP. KuB. DotanI. CanaaniD. OhB.H. JungJ.U. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG.Nat. Cell Biol.20068768869910.1038/ncb142616799551
    [Google Scholar]
  34. StjepanovicG. BaskaranS. LinM.G. HurleyJ.H. Vps34 kinase domain dynamics regulate the autophagic PI 3-kinase complex.Mol. Cell2017673528534.e310.1016/j.molcel.2017.07.00328757208
    [Google Scholar]
  35. ItakuraE. KishiC. InoueK. MizushimaN. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG.Mol. Biol. Cell200819125360537210.1091/mbc.e08‑01‑008018843052
    [Google Scholar]
  36. PolsonH.E.J. de LartigueJ. RigdenD.J. ReedijkM. UrbéS. ClagueM.J. ToozeS.A. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation.Autophagy20106450652210.4161/auto.6.4.1186320505359
    [Google Scholar]
  37. PapinskiD. SchuschnigM. ReiterW. WilhelmL. BarnesC.A. MaiolicaA. HansmannI. PfaffenwimmerT. KijanskaM. StoffelI. LeeS.S. BrezovichA. LouJ.H. TurkB.E. AebersoldR. AmmererG. PeterM. KraftC. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase.Mol. Cell201453347148310.1016/j.molcel.2013.12.01124440502
    [Google Scholar]
  38. RavikumarB. MoreauK. JahreissL. PuriC. RubinszteinD.C. Plasma membrane contributes to the formation of pre-autophagosomal structures.Nat. Cell Biol.201012874775710.1038/ncb207820639872
    [Google Scholar]
  39. HaileyD.W. RamboldA.S. Satpute-KrishnanP. MitraK. SougratR. KimP.K. Lippincott-SchwartzJ. Mitochondria supply membranes for autophagosome biogenesis during starvation.Cell2010141465666710.1016/j.cell.2010.04.00920478256
    [Google Scholar]
  40. RomanovJ. WalczakM. IbiricuI. SchüchnerS. OgrisE. KraftC. MartensS. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation.EMBO J.201231224304431710.1038/emboj.2012.27823064152
    [Google Scholar]
  41. ShenH-M. MizushimaN. At the end of the autophagic road: An emerging understanding of lysosomal functions in autophagy.Trends Biochem. Sci.2014392617110.1016/j.tibs.2013.12.00124369758
    [Google Scholar]
  42. KroemerG. MariñoG. LevineB. Autophagy and the integrated stress response.Mol. Cell201040228029310.1016/j.molcel.2010.09.02320965422
    [Google Scholar]
  43. YangZ.J. CheeC.E. HuangS. SinicropeF.A. The role of autophagy in cancer: Therapeutic implications.Mol. Cancer Ther.20111091533154110.1158/1535‑7163.mct‑11‑004721878654
    [Google Scholar]
  44. ZhengH.C. ZhaoS. XueH. ZhaoE.H. JiangH.M. HaoC.L. The roles of beclin 1 expression in gastric cancer: A marker for carcinogenesis, aggressive behaviors and favorable prognosis, and a target of gene therapy.Front. Oncol.20201061367910.3389/fonc.2020.61367933425768
    [Google Scholar]
  45. HuF. LiG. HuangC. HouZ. YangX. LuoX. FengY. WangG. HuJ. CaoZ. The autophagy-independent role of BECN1 in colorectal cancer metastasis through regulating STAT3 signaling pathway activation.Cell Death Dis.202011530410.1038/s41419‑020‑2467‑332358527
    [Google Scholar]
  46. HolahN.S. El-DienM.M.S. MahmoudS.F. Expression of autophagy markers beclin1 and LC3B in prostatic carcinoma: An immunohistochemical case-control study.Iran. J. Pathol.2022171758410.30699/ijp.2021.530887.264935096092
    [Google Scholar]
  47. ZhangP. LingL. ZhengZ. ZhangY. WangR. WuM. ZhangN. HuM. YangX. ATG7-dependent and independent autophagy determine the type of treatment in lung cancer.Pharmacol. Res.202116310532410532410.1016/j.phrs.2020.10532433276100
    [Google Scholar]
  48. GörgülüK. DiakopoulosK.N. AiJ. SchoepsB. KabacaogluD. KarpathakiA.F. CiecielskiK.J. Kaya-AksoyE. RuessD.A. BerningerA. KowalskaM. StevanovicM. WörmannS.M. WartmannT. ZhaoY. HalangkW. VoroninaS. TepikinA. SchlitterA.M. SteigerK. ArtatiA. AdamskiJ. AichlerM. WalchA. JastrochM. HartlebenG. MantzorosC.S. WeichertW. SchmidR.M. HerzigS. KrügerA. SainzB.Jr LesinaM. AlgülH. Levels of the autophagy-related 5 protein affect progression and metastasis of pancreatic tumors in mice.Gastroenterology20191561203217.e2010.1053/j.gastro.2018.09.05330296435
    [Google Scholar]
  49. XiaH. WangW. CrespoJ. KryczekI. LiW. WeiS. BianZ. MajT. HeM. LiuR.J. HeY. RattanR. MunkarahA. GuanJ.L. ZouW. Suppression of FIP200 and autophagy by tumor-derived lactate promotes naïve T cell apoptosis and affects tumor immunity.Sci. Immunol.2017217eaan463110.1126/sciimmunol.aan463129150439
    [Google Scholar]
  50. Bueno-MartínezE. Lara-AlmuniaM. Rodríguez-AriasC. Otero-RodríguezA. Garfias-ArjonaS. González-SarmientoR. Polymorphisms in autophagy genes are genetic susceptibility factors in glioblastoma development.BMC Cancer202222114610.1186/s12885‑022‑09214‑y35123435
    [Google Scholar]
  51. AmaravadiR. KimmelmanA.C. WhiteE. Recent insights into the function of autophagy in cancer.Genes Dev.201630171913193010.1101/gad.287524.11627664235
    [Google Scholar]
  52. TaucherE. MykoliukI. FediukM. Smolle-JuettnerF-M. Autophagy, oxidative stress and cancer development.Cancers2022147163710.3390/cancers1407163735406408
    [Google Scholar]
  53. MaiuriM.C. TasdemirE. CriolloA. MorselliE. VicencioJ.M. CarnuccioR. KroemerG. Control of autophagy by oncogenes and tumor suppressor genes.Cell Death Differ.2009161879310.1038/cdd.2008.13118806760
    [Google Scholar]
  54. HönscheidP. DattaK. MudersM.H. Autophagy: Detection, regulation and its role in cancer and therapy response.Int. J. Radiat. Biol.201490862863510.3109/09553002.2014.90793224678799
    [Google Scholar]
  55. DaskalakiI. GkikasI. TavernarakisN. Hypoxia and selective autophagy in cancer development and therapy.Front. Cell Dev. Biol.2018610410.3389/fcell.2018.0010430250843
    [Google Scholar]
  56. PandeyA. YadavP. ShuklaS. Unfolding the role of autophagy in the cancer metabolism.Biochem. Biophys. Rep.20212810115810.1016/j.bbrep.2021.10115834754952
    [Google Scholar]
  57. CosseJ-P. MichielsC. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression.Anticancer. Agents Med. Chem.20088779079710.2174/18715200878591479818855580
    [Google Scholar]
  58. ZaarourR.F. AzakirB. HajamE.Y. NawaflehH. ZeinelabdinN.A. EngelsenA.S.T. ThieryJ. JamoraC. ChouaibS. Role of hypoxia-mediated autophagy in tumor cell death and survival.Cancers202113353310.3390/cancers1303053333573362
    [Google Scholar]
  59. PapandreouI. LimA.L. LaderouteK. DenkoN.C. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L.Cell Death Differ.200815101572158110.1038/cdd.2008.8418551130
    [Google Scholar]
  60. LiuJ. LivingstonM.J. DongG. WeiQ. ZhangM. MeiS. ZhuJ. ZhangC. DongZ. HIF-1 contributes to autophagy activation via BNIP3 to facilitate renal fibrosis in hypoxia in vitro and UUO in vivo.Am. J. Physiol. Cell Physiol.20243263C935C94710.1152/ajpcell.00458.202338284121
    [Google Scholar]
  61. ZhangJ. NeyP.A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy.Cell Death Differ.200916793994610.1038/cdd.2009.1619229244
    [Google Scholar]
  62. AzadM.B. GibsonS.B. Role of BNIP3 in proliferation and hypoxia-induced autophagy: Implications for personalized cancer therapies.Ann. N. Y. Acad. Sci.20101210181610.1111/j.1749‑6632.2010.05778.x20973794
    [Google Scholar]
  63. CerradaI. Ruiz-SauríA. CarreroR. TriguerosC. DorronsoroA. Sanchez-PuellesJ.M. Diez-JuanA. MonteroJ.A. SepúlvedaP. Hypoxia-inducible factor 1 alpha contributes to cardiac healing in mesenchymal stem cells-mediated cardiac repair.Stem Cells Dev.201322350151110.1089/scd.2012.034022873764
    [Google Scholar]
  64. GuiL. LiuB. LvG. Hypoxia induces autophagy in cardiomyocytes via a hypoxia-inducible factor 1-dependent mechanism.Exp. Ther. Med.20161162233223910.3892/etm.2016.319027284306
    [Google Scholar]
  65. Abdul RahimS.A. DirkseA. OudinA. SchusterA. BohlerJ. BarthelemyV. MullerA. VallarL. JanjiB. GolebiewskaA. NiclouS.P. Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A.Br. J. Cancer2017117681382510.1038/bjc.2017.26328797031
    [Google Scholar]
  66. ZhouJ. LiC. YaoW. AlsiddigM.C. HuoL. LiuH. MiaoY.L. Hypoxia-inducible factor-1α-dependent autophagy plays a role in glycolysis switch in mouse granulosa cells.Biol. Reprod.201899230831810.1093/biolre/ioy06129546328
    [Google Scholar]
  67. YuL. WeiJ. LiuP. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer.Semin. Cancer Biol.202285699410.1016/j.semcancer.2021.06.01934175443
    [Google Scholar]
  68. DePaviaA. JonaschE. LiuX-D. Autophagy degrades hypoxia inducible factors.Mol. Cell. Oncol.201632e110442810.1080/23723556.2015.110442827308629
    [Google Scholar]
  69. WuH-M. JiangZ-F. DingP-S. ShaoL-J. LiuR-Y. Hypoxia-induced autophagy mediates cisplatin resistance in lung cancer cells.Sci. Rep.2015511229110.1038/srep1229126201611
    [Google Scholar]
  70. ZhangH. Bosch-MarceM. ShimodaL.A. TanY.S. BaekJ.H. WesleyJ.B. GonzalezF.J. SemenzaG.L. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia.J. Biol. Chem.200828316108921090310.1074/jbc.m80010220018281291
    [Google Scholar]
  71. BellotG. Garcia-MedinaR. GounonP. ChicheJ. RouxD. PouysségurJ. MazureN.M. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains.Mol. Cell. Biol.200929102570258110.1128/mcb.00166‑0919273585
    [Google Scholar]
  72. BurtonT.R. HensonE.S. BaijalP. EisenstatD.D. GibsonS.B. The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: Implications for glioblastoma multiforme tumor cell survival under hypoxia.Int. J. Cancer200611871660166910.1002/ijc.2154716217754
    [Google Scholar]
  73. MaY. ZhouY. ZhuY-C. WangS-Q. PingP. ChenX-F. Lipophagy contributes to testosterone biosynthesis in male rat leydig cells.Endocrinology201815921119112910.1210/en.2017‑0302029304246
    [Google Scholar]
  74. SowterH.M. RatcliffeP.J. WatsonP. GreenbergA.H. HarrisA.L. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors.Cancer Res.200161186669667311559532
    [Google Scholar]
  75. BuartS. TerryS. NomanM.Z. LanoyE. BoutrosC. FogelP. DessenP. MeuriceG. Gaston-MathéY. VielhP. RoyS. RoutierE. MartyV. FerlicotS. LegrèsL. BouchtaouiM.E. Kamsu-KomN. MuretJ. DeutschE. EggermontA. SoriaJ.C. RobertC. ChouaibS. Transcriptional response to hypoxic stress in melanoma and prognostic potential of GBE1 and BNIP3.Oncotarget201786510878610880110.18632/oncotarget.2215029312568
    [Google Scholar]
  76. ChourasiaA.H. MacleodK.F. Tumor suppressor functions of BNIP3 and mitophagy.Autophagy201511101937193810.1080/15548627.2015.108513626315353
    [Google Scholar]
  77. OkamiJ. SimeoneD.M. LogsdonC.D. Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer.Cancer Res.200464155338534610.1158/0008‑5472.can‑04‑008915289340
    [Google Scholar]
  78. KenificC.M. ThorburnA. DebnathJ. Autophagy and metastasis: Another double-edged sword.Curr. Opin. Cell Biol.201022224124510.1016/j.ceb.2009.10.00819945838
    [Google Scholar]
  79. SosaM.S. BragadoP. Aguirre-GhisoJ.A. Mechanisms of disseminated cancer cell dormancy: An awakening field.Nat. Rev. Cancer201414961162210.1038/nrc379325118602
    [Google Scholar]
  80. LangleyR.R. FidlerI.J. The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs.Int. J. Cancer2011128112527253510.1002/ijc.2603121365651
    [Google Scholar]
  81. HamurcuZ. DelibaşıN. GeçeneS. ŞenerE.F. Dönmez-AltuntaşH. ÖzkulY. CanatanH. OzpolatB. Targeting LC3 and Beclin-1 autophagy genes suppresses proliferation, survival, migration and invasion by inhibition of Cyclin-D1 and uPAR/Integrin β1/ Src signaling in triple negative breast cancer cells.J. Cancer Res. Clin. Oncol.2018144341543010.1007/s00432‑017‑2557‑529288363
    [Google Scholar]
  82. DowerC.M. WillsC.A. FrischS.M. WangH-G. Mechanisms and context underlying the role of autophagy in cancer metastasis.Autophagy20181471110112810.1080/15548627.2018.145002029863947
    [Google Scholar]
  83. MowersE.E. SharifiM.N. MacleodK.F. Autophagy in cancer metastasis.Oncogene201736121619163010.1038/onc.2016.33327593926
    [Google Scholar]
  84. Mulcahy LevyJ.M. ThorburnA. Autophagy in cancer: Moving from understanding mechanism to improving therapy responses in patients.Cell Death Differ.202027384385710.1038/s41418‑019‑0474‑731836831
    [Google Scholar]
  85. AhnC. H. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers.APMIS: Acta Pathol. Microbiol. Immunol. Scand.2007Dec115121344134910.1111/j.1600‑0463.2007.00858.x
    [Google Scholar]
  86. Ananthalakshmy SundararamanM. Metabolic Reprogramming and the Control of Anoikis Resistance in CancerSpringer eBooks2021175010.1007/978‑3‑030‑73856‑3_2
    [Google Scholar]
  87. BuchheitC.L. WeigelK.J. SchaferZ.T. Cancer cell survival during detachment from the ECM: Multiple barriers to tumour progression.Nat. Rev. Cancer201414963264110.1038/nrc378925098270
    [Google Scholar]
  88. WalterP. RonD. The unfolded protein response: From stress pathway to homeostatic regulation.Science201133460591081108610.1126/science.120903822116877
    [Google Scholar]
  89. JanjiB. ViryE. BaginskaJ. MoerK. V. BerchemG. Role of autophagy in cancer and tumor progression.Autophagy - A Double-Edged Sword - Cell Survival or Death?IntechOpenRijeka2013
    [Google Scholar]
  90. ChenS. RehmanS.K. ZhangW. WenA. YaoL. ZhangJ. Autophagy is a therapeutic target in anticancer drug resistance.Biochim. Biophys. Acta20101806222022910.1016/j.bbcan.2010.07.00320637264
    [Google Scholar]
  91. YunC.W. JeonJ. GoG. LeeJ.H. LeeS.H. The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy.Int. J. Mol. Sci.202022117910.3390/ijms2201017933375363
    [Google Scholar]
  92. UsmanR.M. RazzaqF. AkbarA. FarooquiA.A. IftikharA. LatifA. HassanH. ZhaoJ. CarewJ.S. NawrockiS.T. AnwerF. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance.Asia Pac. J. Clin. Oncol.202117319320810.1111/ajco.1344932970929
    [Google Scholar]
  93. WhiteE. MehnertJ.M. ChanC.S. Autophagy, metabolism, and cancer.Clin. Cancer Res.201521225037504610.1158/1078‑0432.ccr‑15‑049026567363
    [Google Scholar]
  94. LiuL. YangM. KangR. WangZ. ZhaoY. YuY. XieM. YinX. LiveseyK.M. LozeM.T. TangD. CaoL. DAMP-mediated autophagy contributes to drug resistance.Autophagy20117111211410.4161/auto.7.1.1400521068541
    [Google Scholar]
  95. ZhengH. ChenJ.N. YuX. JiangP. YuanL. ShenH.S. ZhaoL.H. ChenP.F. YangM. HMGB1 enhances drug resistance and promotes in vivo tumor growth of lung cancer cells.DNA Cell Biol.2016351062262710.1089/dna.2016.336027383136
    [Google Scholar]
  96. XiaoX. WangW. LiY. YangD. LiX. ShenC. LiuY. KeX. GuoS. GuoZ. HSP90AA1-mediated autophagy promotes drug resistance in osteosarcoma.J. Exp. Clin. Cancer Res.201837120110.1186/s13046‑018‑0880‑630153855
    [Google Scholar]
  97. ZhangL.H. YangA.J. WangM. LiuW. WangC.Y. XieX.F. ChenX. DongJ.F. LiM. Enhanced autophagy reveals vulnerability of P-gp mediated epirubicin resistance in triple negative breast cancer cells.Apoptosis201621447348810.1007/s10495‑016‑1214‑926767845
    [Google Scholar]
  98. CaoS. TangJ. HuangY. LiG. LiZ. CaiW. YuanY. LiuJ. HuangX. ZhangH. The road of solid tumor survival: From drug-induced endoplasmic reticulum stress to drug resistance.Front. Mol. Biosci.2021862051410.3389/fmolb.2021.62051433928116
    [Google Scholar]
  99. WuW. WuY. MayerK. von RosenstielC. ScheckerJ. BaurS. WürstleS. Liesche-StarneckerF. GemptJ. SchlegelJ. Lipid peroxidation plays an important role in chemotherapeutic effects of temozolomide and the development of therapy resistance in human glioblastoma.Transl. Oncol.202013310074810.1016/j.tranon.2020.10074832087559
    [Google Scholar]
  100. AnY. miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2.Cell Death Dis.201565e176610.1038/cddis.2015.123
    [Google Scholar]
  101. JiaL. GopinathanG. SukumarJ.T. GribbenJ.G. Blocking autophagy prevents bortezomib-induced NF-κB activation by reducing I-κBα degradation in lymphoma cells.PLoS One201272e32584e3258410.1371/journal.pone.003258422393418
    [Google Scholar]
  102. OhS.J. LimJ.Y. SonM.K. AhnJ.H. SongK.H. LeeH.J. KimS. ChoE.H. ChungJ.Y. ChoH. KimH. KimJ.H. ParkJ. ChoiJ. HwangS.W. KimT.W. TRPV1 inhibition overcomes cisplatin resistance by blocking autophagy-mediated hyperactivation of EGFR signaling pathway.Nat. Commun.2023141269110.1038/s41467‑023‑38318‑737165076
    [Google Scholar]
  103. LiangF. RenC. WangJ. WangS. YangL. HanX. ChenY. TongG. YangG. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy.Oncogenesis20198105910.1038/s41389‑019‑0165‑831597912
    [Google Scholar]
  104. HoC.J. GorskiS.M. Molecular mechanisms underlying autophagy-mediated treatment resistance in cancer.Cancers20191111177510.3390/cancers1111177531717997
    [Google Scholar]
  105. ManzoorS. MuhammadJ.S. MaghazachiA.A. HamidQ. Autophagy: A versatile player in the progression of colorectal cancer and drug resistance.Front. Oncol.20221292429010.3389/fonc.2022.92429035912261
    [Google Scholar]
  106. AzwarS. SeowH.F. AbdullahM. Faisal JabarM. MohtarrudinN. Recent updates on mechanisms of resistance to 5-fluorouracil and reversal strategies in colon cancer treatment.Biology202110985410.3390/biology1009085434571731
    [Google Scholar]
  107. SuiX. KongN. WangX. FangY. HuX. XuY. ChenW. WangK. LiD. JinW. LouF. ZhengY. HuH. GongL. ZhouX. PanH. HanW. JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy.Sci. Rep.201441469410.1038/srep0469424733045
    [Google Scholar]
  108. ChenZ. JiangQ. ZhuP. ChenY. XieX. DuZ. JiangL. TangW. NPRL2 enhances autophagy and the resistance to Everolimus in castration-resistant prostate cancer.Prostate2019791445310.1002/pros.2370930178500
    [Google Scholar]
  109. SuiX. ChenR. WangZ. HuangZ. KongN. ZhangM. HanW. LouF. YangJ. ZhangQ. WangX. HeC. PanH. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment.Cell Death Dis.2013410e838e83810.1038/cddis.2013.35024113172
    [Google Scholar]
  110. NiuJ. YanT. GuoW. WangW. ZhaoZ. Insight into the role of autophagy in osteosarcoma and its therapeutic implication.Front. Oncol.20199123210.3389/fonc.2019.0123231803616
    [Google Scholar]
  111. LiuL. YanL. LiaoN. WuW-Q. ShiJ-L. A review of ULK1-mediated autophagy in drug resistance of cancer.Cancers202012235210.3390/cancers1202035232033142
    [Google Scholar]
  112. XiaJ. HeY. MengB. ChenS. ZhangJ. WuX. ZhuY. ShenY. FengX. GuanY. KuangC. GuoJ. LeiQ. WuY. AnG. LiG. QiuL. ZhanF. ZhouW. NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma.Mol. Oncol.202014476377810.1002/1878‑0261.1264131955515
    [Google Scholar]
  113. DönmezY. GündüzU. Reversal of multidrug resistance by small interfering RNA (siRNA) in doxorubicin-resistant MCF-7 breast cancer cells.Biomed. Pharmacother.2011652858910.1016/j.biopha.2010.12.00721237614
    [Google Scholar]
  114. LuH. XiaoJ. KeC. NiX. XiuR. TianQ. PanH. ZouL. WangF. MaT. JiX. YuanP. LiuL. ZhangJ. JiaW. DuanQ. ZhuF. TOPK inhibits autophagy by phosphorylating ULK1 and promotes glioma resistance to TMZ.Cell Death Dis.201910858310.1038/s41419‑019‑1805‑931378785
    [Google Scholar]
  115. LiN. LiX. LiS. ZhouS. ZhouQ. Cisplatin-induced downregulation of SOX1 increases drug resistance by activating autophagy in non-small cell lung cancer cell.Biochem. Biophys. Res. Commun.2013439218719010.1016/j.bbrc.2013.08.06523994634
    [Google Scholar]
  116. WuT. WangM.C. JingL. LiuZ.Y. GuoH. LiuY. BaiY.Y. ChengY.Z. NanK.J. LiangX. Autophagy facilitates lung adenocarcinoma resistance to cisplatin treatment by activation of AMPK/mTOR signaling pathway.Drug Des. Devel. Ther.201596421643110.2147/DDDT.S9560626715839
    [Google Scholar]
  117. ZouY. LingY.H. SironiJ. SchwartzE.L. Perez-SolerR. PiperdiB. The autophagy inhibitor chloroquine overcomes the innate resistance of wild-type EGFR non-small-cell lung cancer cells to erlotinib.J. Thorac. Oncol.20138669370210.1097/jto.0b013e31828c721023575415
    [Google Scholar]
  118. ChenT. RenH. ThakurA. YangT. LiY. ZhangS. WangT. ChenM. Decreased level of klotho contributes to drug resistance in lung cancer cells: Involving in klotho-mediated cell autophagy.DNA Cell Biol.2016351275175710.1089/dna.2016.343727661766
    [Google Scholar]
  119. PengB. ZhangS.Y. ChanK.I. ZhongZ.F. WangY.T. Novel anti-cancer products targeting AMPK: Natural herbal medicine against breast cancer.Molecules202328274074010.3390/molecules2802074036677797
    [Google Scholar]
  120. SaldíasM.P. MaureiraD. Orellana-SerradellO. SilvaI. LavanderosB. CruzP. TorresC. CáceresM. CerdaO. TRP channels interactome as a novel therapeutic target in breast cancer.Front. Oncol.20211162161410.3389/fonc.2021.62161434178620
    [Google Scholar]
  121. ZhangP. LiuX. LiH. ChenZ. YaoX. JinJ. MaX. TRPC5-induced autophagy promotes drug resistance in breast carcinoma via CaMKKβ/AMPKα/mTOR pathway.Sci. Rep.201771315810.1038/s41598‑017‑03230‑w28600513
    [Google Scholar]
  122. LiT. ZhangS. ChenF. HuJ. YuanS. LiC. WangX. ZhangW. TangR. Formononetin ameliorates the drug resistance of Taxol resistant triple negative breast cancer by inhibiting autophagy.Am. J. Transl. Res.202113249751433594306
    [Google Scholar]
  123. ZhaoJ. NieY. WangH. LinY. MiR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin.Gene20165762 Pt 282883310.1016/j.gene.2015.11.01326589846
    [Google Scholar]
  124. LiuZ. HuangS. Inhibition of miR-191 contributes to radiation-resistance of two lung cancer cell lines by altering autophagy activity.Cancer Cell Int.20151511610.1186/s12935‑015‑0165‑525685068
    [Google Scholar]
  125. ChatterjeeA. ChattopadhyayD. ChakrabartiG. MiR-16 targets Bcl-2 in paclitaxel-resistant lung cancer cells and overexpression of miR-16 along with miR-17 causes unprecedented sensitivity by simultaneously modulating autophagy and apoptosis.Cell. Signal.201527218920310.1016/j.cellsig.2014.11.02325435430
    [Google Scholar]
  126. Bozok ÇetintaşV. Tetik VardarlıA. DüzgünZ. Tezcanlı KaymazB. AçıkgözE. AktuğH. Kosova CanB. GündüzC. EroğluZ. miR-15a enhances the anticancer effects of cisplatin in the resistant non-small cell lung cancer cells.Tumour Biol.20163721739175110.1007/s13277‑015‑3950‑926314859
    [Google Scholar]
  127. YangX. BaiF. XuY. ChenY. ChenL. Intensified beclin-1 mediated by low expression of Mir-30a-5p promotes chemoresistance in human small cell lung cancer.Cell. Physiol. Biochem.20174331126113910.1159/00048175428977798
    [Google Scholar]
  128. ChatterjeeA. ChattopadhyayD. ChakrabartiG. miR-17-5p downregulation contributes to paclitaxel resistance of lung cancer cells through altering beclin1 expression.PLoS One201494e9571610.1371/journal.pone.009571624755562
    [Google Scholar]
  129. ZhangJ. ChenK. TangY. LuanX. ZhengX. LuX. MaoJ. HuL. ZhangS. ZhangX. ChenW. LncRNA-HOTAIR activates autophagy and promotes the imatinib resistance of gastrointestinal stromal tumor cells through a mechanism involving the miR-130a/ATG2B pathway.Cell Death Dis.202112436710.1038/s41419‑021‑03650‑733824300
    [Google Scholar]
  130. ChenL. HanX. HuZ. ChenL. The PVT1/miR-216b/Beclin-1 regulates cisplatin sensitivity of NSCLC cells via modulating autophagy and apoptosis.Cancer Chemother. Pharmacol.201983592193110.1007/s00280‑019‑03808‑330859368
    [Google Scholar]
  131. ZhangY. MengX. LiC. TanZ. GuoX. ZhangZ. XiT. MiR-9 enhances the sensitivity of A549 cells to cisplatin by inhibiting autophagy.Biotechnol. Lett.201739795996610.1007/s10529‑017‑2325‑228337557
    [Google Scholar]
  132. LinX. LaiX. FengW. YuX. GuQ. ZhengX. MiR-30a sensitized lung cancer against neoadjuvant chemotherapy by depressing autophagy.Jpn. J. Clin. Oncol.202151567568410.1093/jjco/hyaa27233537721
    [Google Scholar]
  133. ChawsheenM.A. DashP.R. mTOR modulates resistance to gemcitabine in lung cancer in an MTORC2 dependent mechanism.Cell. Signal.20218110993410.1016/j.cellsig.2021.10993433545231
    [Google Scholar]
  134. LiY-J. SunY.X. HaoR.M. WuP. ZhangL.J. MaX. MaY. WangP.Y. XieN. XieS.Y. ChenW. miR-33a-5p enhances the sensitivity of lung adenocarcinoma cells to celastrol by regulating mTOR signaling.Int. J. Oncol.20185241328133810.3892/ijo.2018.427629484434
    [Google Scholar]
  135. YinH. MaJ. ChenL. PiaoS. ZhangY. ZhangS. MaH. LiY. QuY. WangX. XuQ. MiR-99a enhances the radiation sensitivity of non-small cell lung cancer by targeting mTOR.Cell. Physiol. Biochem.201846247148110.1159/00048861529614485
    [Google Scholar]
  136. XuW. ShiQ. QianX. ZhouB. XuJ. ZhuL. FengL. JinH. WangX. Rab5a suppresses autophagy to promote drug resistance in cancer cells.Am. J. Transl. Res.20181041229123629736216
    [Google Scholar]
  137. YuanC-H. HorngC.T. LeeC.F. ChiangN.N. TsaiF.J. LuC.C. ChiangJ.H. HsuY.M. YangJ.S. ChenF.A. Epigallocatechin gallate sensitizes cisplatin-resistant oral cancer CAR cell apoptosis and autophagy through stimulating AKT/STAT3 pathway and suppressing multidrug resistance 1 signaling.Environ. Toxicol.201732384585510.1002/tox.2228427200496
    [Google Scholar]
  138. TalibW.H. AlsayedA.R. BarakatM. Abu-TahaM.I. MahmodA.I. Targeting drug chemo-resistance in cancer using natural products.Biomedicines2021910135310.3390/biomedicines910135334680470
    [Google Scholar]
  139. YaoJ. MaC. FengK. TanG. WenQ. Focusing on the role of natural products in overcoming cancer drug resistance: An autophagy-based perspective.Biomolecules20221211156510.3390/biom1211156536358919
    [Google Scholar]
  140. KimT.W. LeeH.G. Apigenin induces autophagy and cell death by targeting EZH2 under hypoxia conditions in gastric cancer cells.Int. J. Mol. Sci.202122241345510.3390/ijms22241345534948250
    [Google Scholar]
  141. SunX. YanP. ZouC. WongY.K. ShuY. LeeY.M. ZhangC. YangN.D. WangJ. ZhangJ. Targeting autophagy enhances the anticancer effect of artemisinin and its derivatives.Med. Res. Rev.20193962172219310.1002/med.2158030972803
    [Google Scholar]
  142. JiaG. KongR. MaZ.B. HanB. WangY.W. PanS.H. LiY.H. SunB. The activation of c-Jun NH₂-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells.J. Exp. Clin. Cancer Res.2014331810.1186/1756‑9966‑33‑824438216
    [Google Scholar]
  143. WangZ. HuW. ZhangJ-L. WuX-H. ZhouH-J. Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity.FEBS Open Bio20122110311210.1016/j.fob.2012.05.00223650588
    [Google Scholar]
  144. ChengC. WangT. SongZ. PengL. GaoM. HermineO. RousseauxS. KhochbinS. MiJ.Q. WangJ. Induction of autophagy and autophagy-dependent apoptosis in diffuse large B-cell lymphoma by a new antimalarial artemisinin derivative, SM1044.Cancer Med.20187238039610.1002/cam4.127629277967
    [Google Scholar]
  145. DeguchiA. Curcumin targets in inflammation and cancer.Endocr. Metab. Immune Disord. Drug Targets2015152889610.2174/187153031566615031612045825772169
    [Google Scholar]
  146. ChenC-Y. KaoC-L. LiuC-M. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway.Int. J. Mol. Sci.2018199272910.3390/ijms1909272930213077
    [Google Scholar]
  147. RaineyN.E. MoustaphaA. PetitP.X. Curcumin, a multifaceted hormetic agent, mediates an intricate crosstalk between mitochondrial turnover, autophagy, and apoptosis.Oxid. Med. Cell. Longev.20202020365641910.1155/2020/365641932765806
    [Google Scholar]
  148. AokiH. TakadaY. KondoS. SawayaR. AggarwalB.B. KondoY. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways.Mol. Pharmacol.2007721293910.1124/mol.106.03316717395690
    [Google Scholar]
  149. LeeH-W. JangK.S.B. ChoiH.J. JoA. CheongJ-H. ChunK-H. Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy.BMB Rep.2014471269770210.5483/bmbrep.2014.47.12.06924667175
    [Google Scholar]
  150. LiH.Y. ZhangJ. SunL.L. LiB.H. GaoH.L. XieT. ZhangN. YeZ.M. Celastrol induces apoptosis and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells: An in vitro and in vivo study.Cell Death Dis.201561e1604e160410.1038/cddis.2014.54325611379
    [Google Scholar]
  151. GuoJ. HuangX. WangH. YangH. Celastrol induces autophagy by targeting AR/miR-101 in prostate cancer cells.PLoS One20151010e014074510.1371/journal.pone.014074526473737
    [Google Scholar]
  152. KingstonD.G.I. SnyderJ.P. The quest for a simple bioactive analog of paclitaxel as a potential anticancer agent.Acc. Chem. Res.20144782682269110.1021/ar500203h25052294
    [Google Scholar]
  153. BackJ.H. ZhuY. CalabroA. QueenanC. KimA.S. ArbesmanJ. KimA.L. Resveratrol-mediated downregulation of Rictor attenuates autophagic process and suppresses UV-induced skin carcinogenesis.Photochem. Photobiol.20128851165117210.1111/j.1751‑1097.2012.01097.x22272775
    [Google Scholar]
  154. LiQ. YueY. ChenL. XuC. WangY. DuL. XueX. LiuQ. WangY. FanF. Resveratrol sensitizes carfilzomib-induced apoptosis via promoting oxidative stress in multiple myeloma cells.Front. Pharmacol.2018933410.3389/fphar.2018.0033429867453
    [Google Scholar]
  155. JiY. LiL. MaY.X. LiW.T. LiL. ZhuH.Z. WuM.H. ZhouJ.R. Quercetin inhibits growth of hepatocellular carcinoma by apoptosis induction in part via autophagy stimulation in mice.J. Nutr. Biochem.20196910811910.1016/j.jnutbio.2019.03.01831078904
    [Google Scholar]
  156. LiuQ. FangQ. JiS. HanZ. ChengW. ZhangH. Resveratrol-mediated apoptosis in renal cell carcinoma via the p53/AMP-activated protein kinase/mammalian target of rapamycin autophagy signaling pathway.Mol. Med. Rep.2017Oct10.3892/mmr.2017.786829115429
    [Google Scholar]
  157. ShanmugamM.K. ArfusoF. KumarA.P. WangL. GohB.C. AhnK.S. BishayeeA. SethiG. Modulation of diverse oncogenic transcription factors by thymoquinone, an essential oil compound isolated from the seeds of Nigella sativa Linn.Pharmacol. Res.201812935736410.1016/j.phrs.2017.11.02329162539
    [Google Scholar]
  158. WooC.C. KumarA.P. SethiG. TanK.H.B. Thymoquinone: Potential cure for inflammatory disorders and cancer.Biochem. Pharmacol.201283444345110.1016/j.bcp.2011.09.02922005518
    [Google Scholar]
  159. SiveenK.S. MustafaN. LiF. KannaiyanR. AhnK.S. KumarA.P. ChngW.J. SethiG. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model.Oncotarget20145363464810.18632/oncotarget.159624504138
    [Google Scholar]
  160. ChuS-C. HsiehY-S. YuC-C. LaiY-Y. ChenP-N. Thymoquinone induces cell death in human squamous carcinoma cells via caspase activation-dependent apoptosis and LC3-II activation-dependent autophagy.PLoS One201497e10157910.1371/journal.pone.010157925000169
    [Google Scholar]
  161. RacomaI.O. MeisenW.H. WangQ-E. KaurB. WaniA.A. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells.PLoS One201389e7288210.1371/journal.pone.007288224039814
    [Google Scholar]
  162. PazhouhiM. Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line.DOAJ2016198890898
    [Google Scholar]
  163. ChenM-C. LeeN.H. HsuH.H. HoT.J. TuC.C. HsiehD.J. LinY.M. ChenL.M. KuoW.W. HuangC.Y. Thymoquinone induces caspase-independent, autophagic cell death in CPT-11-resistant lovo colon cancer via mitochondrial dysfunction and activation of JNK and p38.J. Agric. Food Chem.20156351540154610.1021/jf505406325611974
    [Google Scholar]
  164. KlionskyD.J. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).Autophagy2016121122210.1080/15548627.2015.1100356
    [Google Scholar]
  165. WangZ. ZhangJ. WangY. XingR. YiC. ZhuH. ChenX. GuoJ. GuoW. LiW. WuL. LuY. LiuS. Matrine, a novel autophagy inhibitor, blocks trafficking and the proteolytic activation of lysosomal proteases.Carcinogenesis201334112813810.1093/carcin/bgs29523002236
    [Google Scholar]
  166. LaoY. WanG. LiuZ. WangX. RuanP. XuW. XuD. XieW. ZhangY. XuH. XuN. The natural compound oblongifolin C inhibits autophagic flux and enhances antitumor efficacy of nutrient deprivation.Autophagy201410573674910.4161/auto.2803424642486
    [Google Scholar]
  167. BraicuC. PileczkiV. PopL. PetricR.C. ChiraS. PointiereE. Achimas-CadariuP. Berindan-NeagoeI. Dual targeted therapy with p53 siRNA and Epigallocatechingallate in a triple negative breast cancer cell model.PLoS One2015104e012093610.1371/journal.pone.012093625849487
    [Google Scholar]
  168. DyshlovoyS.A. MadanchiR. HauschildJ. OtteK. AlsdorfW.H. SchumacherU. KalininV.I. SilchenkoA.S. AvilovS.A. HoneckerF. StonikV.A. BokemeyerC. von AmsbergG. The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in urothelial carcinoma cells.BMC Cancer20171719310.1186/s12885‑017‑3085‑z28143426
    [Google Scholar]
  169. BlazarB. R. TaylorP. A. SehgalS. N. ValleraD. A. Rapamycin prolongs survival of murine recipients of fully allogeneic donor grafts when administered during the graft-versus-host disease process.Ann. N. Y. Acad. Sci.19936851738510.1111/j.1749‑6632.1993.tb35854.x
    [Google Scholar]
  170. GöderA. NagelG. KrausA. DörsamB. SeiwertN. KainaB. FahrerJ. Lipoic acid inhibits the DNA repair protein O 6-methylguanine-DNA methyltransferase (MGMT) and triggers its depletion in colorectal cancer cells with concomitant autophagy induction.Carcinogenesis201536881783110.1093/carcin/bgv07025998848
    [Google Scholar]
  171. Guamán OrtizL.M. CroceA.L. ArediaF. SapienzaS. FiorilloG. SyedaT.M. BuzzettiF. LombardiP. ScovassiA.I. Effect of new berberine derivatives on colon cancer cells.Acta Biochim. Biophys. Sin.2015471082483310.1093/abbs/gmv07726341980
    [Google Scholar]
  172. NkandeuD. S. In vitro changes in mitochondrial potential, aggresome formation and caspase activity by a novel 17-β-estradiol analogue in breast adenocarcinoma cells.Cell Biochem. Funct.201331756657410.1002/cbf.2937
    [Google Scholar]
  173. MaD. CollinsJ. HudlickyT. PandeyS. Enhancement of apoptotic and autophagic induction by a novel synthetic C-1 analogue of 7-deoxypancratistatin in human breast adenocarcinoma and neuroblastoma cells with tamoxifen.J. Vis. Exp.201263358610.3791/358622688195
    [Google Scholar]
  174. WangY. WangS. XuJ. WangY. XiangL. HeX. Total steroidal saponins from black nightshade (Solanum nigrum L.) overcome tumor multidrug resistance by inducing autophagy-mediated cell death in vivo and in vitro.Phytother. Res.20233773009302410.1002/ptr.779636877123
    [Google Scholar]
  175. ShariK. RaniaR. M. Jatrophone: A cytotoxic macrocyclic diterpene targeting PI3K/AKT/NF-κB pathway, inducing apoptosis and autophagy in resistant breast cancer cells.BMC Complement. Med. Ther.202323110.1186/s12906‑023‑04113‑6
    [Google Scholar]
  176. ShanmugamM.K. KannaiyanR. SethiG. Targeting cell signaling and apoptotic pathways by dietary agents: Role in the prevention and treatment of cancer.Nutr. Cancer201163216117310.1080/01635581.2011.52350221294053
    [Google Scholar]
  177. GossnerG. ChoiM. TanL. FogorosS. GriffithK.A. KuenkerM. LiuJ.R. Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells.Gynecol. Oncol.20071051233010.1016/j.ygyno.2006.11.00917234261
    [Google Scholar]
  178. ZhaoG. HanX. ZhengS. LiZ. ShaY. NiJ. SunZ. QiaoS. SongZ. Curcumin induces autophagy, inhibits proliferation and invasion by downregulating AKT/mTOR signaling pathway in human melanoma cells.Oncol. Rep.20163521065107410.3892/or.2015.441326573768
    [Google Scholar]
  179. ParkD. JeongH. LeeM.N. KohA. KwonO. YangY.R. NohJ. SuhP.G. ParkH. RyuS.H. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition.Sci. Rep.2016612177210.1038/srep2177226902888
    [Google Scholar]
  180. LiH. HuS. PangY. LiM. ChenL. LiuF. LiuM. WangZ. ChengX. Bufalin inhibits glycolysis-induced cell growth and proliferation through the suppression of Integrin β2/FAK signaling pathway in ovarian cancer.Am. J. Cancer Res.2018871288129630094101
    [Google Scholar]
  181. QiH.Y. QuX.J. LiuJ. HouK.Z. FanY.B. CheX.F. LiuY.P. Bufalin induces protective autophagy by Cbl-b regulating mTOR and ERK signaling pathways in gastric cancer cells.Cell Biol. Int.2019431334310.1002/cbin.1107630468278
    [Google Scholar]
  182. LuoJ. HuY-L. WangH. Ursolic acid inhibits breast cancer growth by inhibiting proliferation, inducing autophagy and apoptosis, and suppressing inflammatory responses via the PI3K/AKT and NF-κB signaling pathways in vitro. Exp. Ther. Med.20171443623363110.3892/etm.2017.496529042957
    [Google Scholar]
  183. Castrejón-JiménezN.S. Leyva-ParedesK. Baltierra-UribeS.L. Castillo-CruzJ. Campillo-NavarroM. Hernández-PérezA.D. Luna-AnguloA.B. Chacón-SalinasR. Coral-VázquezR.M. Estrada-GarcíaI. Sánchez-TorresL.E. Torres-TorresC. García-PérezB.E. Ursolic and oleanolic acids induce mitophagy in A549 human lung cancer cells.Molecules20192419344410.3390/molecules2419344431547522
    [Google Scholar]
  184. WangW-B. FengL.X. YueQ.X. WuW.Y. GuanS.H. JiangB.H. YangM. LiuX. GuoD.A. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90.J. Cell. Physiol.201222752196220610.1002/jcp.2295621866552
    [Google Scholar]
  185. Pérez-HerreroE. Fernández-MedardeA. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.Euro. J. Pharm. Biopharm.201593527910.1016/j.ejpb.2015.03.018
    [Google Scholar]
  186. MozafariM.R. PardakhtyA. AzarmiS. JazayeriJ.A. NokhodchiA. OmriA. Role of nanocarrier systems in cancer nanotherapy.J. Liposome Res.200919431032110.3109/0898210090291320419863166
    [Google Scholar]
  187. BaiX. SmithZ. L. WangY. ButterworthS. TirellaA. Sustained drug release from smart nanoparticles in cancer therapy: A comprehensive review.Materials20221310162310.3390/mi13101623
    [Google Scholar]
  188. BiswasA.K. IslamM.R. ChoudhuryZ.S. MostafaA. KadirM.F. Nanotechnology based approaches in cancer therapeutics.Adv. Nat. Sci: Nanosci. Nanotechnol20145404300110.1088/2043‑6262/5/4/043001
    [Google Scholar]
  189. Mohammad Rasool KhazaeiM. Resveratrol nanoformulation inhibits invasive breast cancer cell growth through autophagy induction: An in vitro study.PubMed202426211212010.22074/cellj.2024.2016930.1458
    [Google Scholar]
  190. ZhangH. XueQ. ZhouZ. HeN. LiS. ZhaoC. Co-delivery of doxorubicin and hydroxychloroquine via chitosan/alginate nanoparticles for blocking autophagy and enhancing chemotherapy in breast cancer therapy.Front. Pharmacol.202314117623210.3389/fphar.2023.117623237229260
    [Google Scholar]
  191. CardosoR.M. Tarin-loaded nanoliposomes activate apoptosis and autophagy and inhibit the migration of human mammary adenocarcinoma cells.Int. J. Nanomedicine2023186393640810.2147/ijn.s434626
    [Google Scholar]
  192. González-PastorR. LancelotA. Morcuende-VenturaV. San AnselmoM. SierraT. SerranoJ.L. Martin-DuqueP. Combination chemotherapy with cisplatin and chloroquine: Effect of encapsulation in micelles formed by self-assembling hybrid dendritic-linear-dendritic block copolymers.Int. J. Mol. Sci.202122105223522310.3390/ijms2210522334069278
    [Google Scholar]
  193. MaZ. LiJ. LinK. RamachandranM. ZhangD. ShowalterM. De SouzaC. LindstromA. SolanoL.N. JiaB. UrayamaS. DuanY. FiehnO. LinT.Y. LiM. LiY. Author correction: Pharmacophore hybridisation and nanoscale assembly to discover self-delivering lysosomotropic new-chemical entities for cancer therapy.Nat. Commun.2021121201310.1038/s41467‑021‑22419‑233767181
    [Google Scholar]
  194. KubotaT. KurodaS. KanayaN. MorihiroT. AoyamaK. KakiuchiY. KikuchiS. NishizakiM. KagawaS. TazawaH. FujiwaraT. HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer.Nanomedicine20181461919192910.1016/j.nano.2018.05.01929885899
    [Google Scholar]
  195. CordaniM. SomozaÁ. Targeting autophagy using metallic nanoparticles: A promising strategy for cancer treatment.Cell. Mol. Life Sci.20197671215124210.1007/s00018‑018‑2973‑y30483817
    [Google Scholar]
  196. ZhangX. ZhangH. LiangX. ZhangJ. TaoW. ZhuX. ChangD. ZengX. LiuG. MeiL. Iron oxide nanoparticles induce autophagosome accumulation through multiple mechanisms: Lysosome impairment, mitochondrial damage, and ER stress.Mol. Pharm.20161372578258710.1021/acs.molpharmaceut.6b0040527287467
    [Google Scholar]
  197. HuangD. ZhouH. GaoJ. Nanoparticles modulate autophagic effect in a dispersity-dependent manner.Sci. Rep.2015511436110.1038/srep1436126394839
    [Google Scholar]
  198. XiaL. WangY. ChenY. YanJ. HaoF. SuX. ZhangC. XuM. Cuprous oxide nanoparticles inhibit the growth of cervical carcinoma by inducing autophagy.Oncotarget2017837610836109210.18632/oncotarget.1785428977848
    [Google Scholar]
  199. YuanL. ZhangF. QiX. YangY. YanC. JiangJ. DengJ. Chiral polymer modified nanoparticles selectively induce autophagy of cancer cells for tumor ablation.J. Nanobiotechnology20181615510.1186/s12951‑018‑0383‑929996877
    [Google Scholar]
  200. LatorreA. LatorreA. CastellanosM. Lafuente-GómezN. DiazC.R. Crespo-BarredaA. LeceaM. CordaniM. Martín-DuqueP. SomozaÁ. Albumin-based nanostructures for uveal melanoma treatment.Nanomedicine20213510239110.1016/j.nano.2021.10239133794371
    [Google Scholar]
  201. LewińskaA. RadońA. GilK. BłoniarzD. CiuraszkiewiczA. KubackiJ. Kądziołka-GawełM. ŁukowiecD. GębaraP. Krogul-SobczakA. PiotrowskiP. FijałkowskaO. WybraniecS. SzmatołaT. Kolano-BurianA. WnukM. Carbon-coated iron oxide nanoparticles promote reductive stress-mediated cytotoxic autophagy in drug-induced senescent breast cancer cells.ACS Appl. Mater. Interfaces20241612154571547810.1021/acsami.3c1741838483821
    [Google Scholar]
  202. CaoY. MengF. CaiT. GaoL. LeeJ. SolomevichS.O. AharodnikauU.E. GuoT. LanM. LiuF. LiQ. ViktorT. LiD. CaiY. Nanoparticle drug delivery systems responsive to tumor microenvironment: Promising alternatives in the treatment of triple-negative breast cancer.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024162e195010.1002/wnan.195038528388
    [Google Scholar]
  203. TheivendranS. XianH. QuJ. SongY. SunB. SongH. YuC. A pioglitazone nanoformulation designed for cancer-associated fibroblast reprogramming and cancer treatment.Nano Lett.202424154354436110.1021/acs.nanolett.3c0470638563599
    [Google Scholar]
  204. YangW. XuL. QinX. Application of MicroRNA-124-loaded liposome nanoparticles for suppressing pancreatic cancer cell progression and restraining autophagy through targeting BECN1.J. Biomed. Nanotechnol.202420695495910.1166/jbn.2024.3856
    [Google Scholar]
  205. LiY. ChoM.H. LeeS.S. LeeD.E. CheongH. ChoiY. Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy.J. Control. Release202032510011010.1016/j.jconrel.2020.06.02532621826
    [Google Scholar]
  206. LiY. WangS. WangZ. QianX. FanJ. ZengX. SunY. SongP. FengM. JuD. Cationic poly(amidoamine) dendrimers induced cyto-protective autophagy in hepatocellular carcinoma cells.Nanotechnology2014253636510110.1088/0957‑4484/25/36/36510125140534
    [Google Scholar]
  207. CzarnomysyR. MuszyńskaA. RokJ. RzepkaZ. BielawskiK. Mechanism of anticancer action of novel imidazole platinum(II) complex conjugated with G2 PAMAM-OH dendrimer in breast cancer cells.Int. J. Mol. Sci.20212211558110.3390/ijms2211558134070401
    [Google Scholar]
  208. JingM. LiY. WangM. ZhangH. WeiP. ZhouY. IshimweN. HuangX. WangL. WenL. WangW. ZhangY. Photoresponsive PAMAM-assembled nanocarrier loaded with autophagy inhibitor for synergistic cancer therapy.Small20211738e210229510.1002/smll.20210229534365730
    [Google Scholar]
  209. LewińskaA. Lapatinib- and fulvestrant-PAMAM dendrimer conjugates promote apoptosis in chemotherapy-induced senescent breast cancer cells with different receptor status.Biomaterials Adv.2022Sep14021304710.1016/j.bioadv.2022.213047
    [Google Scholar]
  210. ZhangQ. YangW. ManN. ZhengF. ShenY. SunK. LiY. WenL.P. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal.Autophagy2009581107111710.4161/auto.5.8.984219786831
    [Google Scholar]
  211. LiF. Ultra-small gadolinium oxide nanocrystal sensitization of non-small-cell lung cancer cells toward X-ray irradiation by promoting cytostatic autophagy.Int. J. Nanomedicine2019142415243110.2147/ijn.s193676
    [Google Scholar]
  212. YangF. WangX. SunJ. TanS. ZhouS. TuW. DongX. XiaoQ. YangF. GaoL. Mesopore-encaged active MnOx in nano-silica selectively suppresses lung cancer cells by inducing autophagy.Biomater. Sci.20231162056206410.1039/d2bm01826h36723069
    [Google Scholar]
  213. ChittineediP. PandrangiS.L. Neira MosqueraJ.A. Sánchez LlagunoS.N. MohiddinG.J. Aqueous Nyctanthes arbortristis and doxorubicin conjugated gold nanoparticles synergistically induced mTOR-dependent autophagy-mediated ferritinophagy in paclitaxel-resistant breast cancer stem cells.Front. Pharmacol.202314120131910.3389/fphar.2023.120131937841922
    [Google Scholar]
  214. XiongY. ChenT. ChenL. CaiR. Gold nanoparticles coated with SH-PEG-NH2 and loaded with ziyuglycoside i for promoting autophagy in hematopoietic stem cells.Int. J. Nanomedicine2023181347136210.2147/ijn.s399568
    [Google Scholar]
  215. JawadM.H. Induction of apoptosis and autophagy via regulation of AKT and JNK mitogen-activated protein kinase pathways in breast cancer cell lines exposed to gold nanoparticles loaded with TNF-α and combined with doxorubicin.Nanotechnol. Rev.202312110.1515/ntrev‑2023‑0148
    [Google Scholar]
  216. PiktelE. OściłowskaI. SuprewiczŁ. DepciuchJ. MarcińczykN. ChabielskaE. WolakP. WollnyT. JanionM. Parlinska-WojtanM. BuckiR. ROS-mediated apoptosis and autophagy in ovarian cancer cells treated with peanut-shaped gold nanoparticles.Int. J. Nanomedicine2021161993201110.2147/IJN.S27701433727811
    [Google Scholar]
  217. ZhangM. KimH.S. JinT. MoonW.K. Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer.J. Photochem. Photobiol. B2017170586410.1016/j.jphotobiol.2017.03.02528390259
    [Google Scholar]
  218. LinY.X. GaoY.J. WangY. QiaoZ.Y. FanG. QiaoS.L. ZhangR.X. WangL. WangH. pH-sensitive polymeric nanoparticles with gold(I) compound payloads synergistically induce cancer cell death through modulation of autophagy.Mol. Pharm.20151282869287810.1021/acs.molpharmaceut.5b0006026101892
    [Google Scholar]
  219. KhanM.I. MohammadA. PatilG. NaqviS.A.H. ChauhanL.K.S. AhmadI. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles.Biomaterials20123351477148810.1016/j.biomaterials.2011.10.08022098780
    [Google Scholar]
  220. ChenH. WenJ. Iron oxide nanoparticles loaded with paclitaxel inhibits glioblastoma by enhancing autophagy-dependent ferroptosis pathway.Eur. J. Pharmacol.202292117486010.1016/j.ejphar.2022.17486035278406
    [Google Scholar]
  221. LomphithakT. HelvaciogluS. ArmeniaI. KeshavanS. OvejeroJ.G. BaldiG. RavagliC. GrazúV. FadeelB. High-dose exposure to polymer-coated iron oxide nanoparticles elicits autophagy-dependent ferroptosis in susceptible cancer cells.Nanomaterials202313111719171910.3390/nano1311171937299622
    [Google Scholar]
  222. LiuH-L. ZhangY.L. YangN. ZhangY.X. LiuX.Q. LiC.G. ZhaoY. WangY.G. ZhangG.G. YangP. GuoF. SunY. JiangC.Y. A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling.Cell Death Dis.201125e15910.1038/cddis.2011.2721593791
    [Google Scholar]
  223. JabirM.S. Functionalized SWCNTs@Ag–TiO2 nanocomposites induce ROS-mediated apoptosis and autophagy in liver cancer cells.Nanotechnol. Rev.202312110.1515/ntrev‑2023‑0127
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266345188250304064600
Loading
/content/journals/ctmc/10.2174/0115680266345188250304064600
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test