Skip to content
2000
Volume 25, Issue 16
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Herein, we present an in-depth review focused on the application of different artificial intelligence (AI) approaches for developing protein kinase inhibitors (PKIs) targeting anticancer activity, focusing on how the AI-based tools are making promising advances in drug design and development, by predicting active compounds for essential targets involved in cancer. In this context, the machine learning (ML) approach performs a critical role by promoting a fast analysis of a thousand potential inhibitors within a small gap of time by processing large datasets of chemical data, putting it at a higher level than other traditionally used methods for screening molecules. In general, AI-based screening of compounds reduces the time of the work and increases the chances of success in the end. Additionally, we have covered recent studies focused on the application of deep neural networks (DNNs) and quantitative structure-activity relationships (QSAR) to identify PKIs. Furthermore, the paper covers new AI-based methodologies for filtering or improving datasets of potential compounds or even targets, such as generative models for the creation of novel compounds and ML-based strategies to collect information from different databases, increasing the efficiency in drug design and development. Finally, this review highlights how AI-based tools are increasing and improving the field of PKIs targeting cancer, making them an alternative for the future in the medicinal chemistry field.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266340766250124063854
2025-02-28
2025-12-09
Loading full text...

Full text loading...

References

  1. WHOGlobal cancer burden growing, amidst mounting need for services.2022Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidstmounting-need-for-services#:~:text=In
    [Google Scholar]
  2. HulvatM.C. Cancer Incidence and Trends.Surg. Clin. North Am.2020100346948110.1016/j.suc.2020.01.002 32402294
    [Google Scholar]
  3. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  4. OmranA.R. The epidemiologic transition: a theory of the epidemiology of population change. 1971.Milbank Q.200583473175710.1111/j.1468‑0009.2005.00398.x 16279965
    [Google Scholar]
  5. GerstenO. WilmothJ.R. The Cancer Transition in Japan since 1951.Demogr. Res.2002727130610.4054/DemRes.2002.7.5
    [Google Scholar]
  6. SrinathA. van MerodeF. RaoS.V. PavlovaM. Barriers to cervical cancer and breast cancer screening uptake in low- and middle-income countries: a systematic review.Health Policy Plan.202338450952710.1093/heapol/czac104 36525529
    [Google Scholar]
  7. PrameshC.S. BadweR.A. Bhoo-PathyN. BoothC.M. ChinnaswamyG. DareA.J. de AndradeV.P. HunterD.J. GopalS. GospodarowiczM. GunasekeraS. IlbawiA. KapambweS. KinghamP. KutlukT. LamichhaneN. MutebiM. OremJ. ParhamG. RanganathanP. SengarM. SullivanR. SwaminathanS. TannockI.F. TomarV. VanderpuyeV. VargheseC. WeiderpassE. Priorities for cancer research in low- and middle-income countries: a global perspective.Nat. Med.202228464965710.1038/s41591‑022‑01738‑x 35440716
    [Google Scholar]
  8. BarretinaJ. CaponigroG. StranskyN. VenkatesanK. MargolinA.A. KimS. WilsonC.J. LehárJ. KryukovG.V. SonkinD. ReddyA. LiuM. MurrayL. BergerM.F. MonahanJ.E. MoraisP. MeltzerJ. KorejwaA. Jané-ValbuenaJ. MapaF.A. ThibaultJ. Bric-FurlongE. RamanP. ShipwayA. EngelsI.H. ChengJ. YuG.K. YuJ. AspesiP.Jr de SilvaM. JagtapK. JonesM.D. WangL. HattonC. PalescandoloE. GuptaS. MahanS. SougnezC. OnofrioR.C. LiefeldT. MacConaillL. WincklerW. ReichM. LiN. MesirovJ.P. GabrielS.B. GetzG. ArdlieK. ChanV. MyerV.E. WeberB.L. PorterJ. WarmuthM. FinanP. HarrisJ.L. MeyersonM. GolubT.R. MorrisseyM.P. SellersW.R. SchlegelR. GarrawayL.A. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.Nature2012483739160360710.1038/nature11003 22460905
    [Google Scholar]
  9. SilvaB.V. HortaB.A.C. AlencastroR.B. PintoA.C. Proteínas quinases: características estruturais e inibidores químicos.Quim. Nova200932245346210.1590/S0100‑40422009000200032
    [Google Scholar]
  10. SherrC.J. RobertsJ.M. Living with or without cyclins and cyclin-dependent kinases.Genes Dev.200418222699271110.1101/gad.1256504 15545627
    [Google Scholar]
  11. AvilaC.M. RomeiroN.C. Protein Tyrosine Kinases: Challenges in the Development of Drugs Aimed at Cancer Therapy.Rev. Virtual Química20102
    [Google Scholar]
  12. DuchW. SwaminathanK. MellerJ. Artificial intelligence approaches for rational drug design and discovery.Curr. Pharm. Des.200713141497150810.2174/138161207780765954 17504169
    [Google Scholar]
  13. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  14. ZhongF. XingJ. LiX. LiuX. FuZ. XiongZ. LuD. WuX. ZhaoJ. TanX. LiF. LuoX. LiZ. ChenK. ZhengM. JiangH. Artificial intelligence in drug design.Sci. China Life Sci.201861101191120410.1007/s11427‑018‑9342‑2 30054833
    [Google Scholar]
  15. LyuJ. WangS. BaliusT.E. SinghI. LevitA. MorozY.S. O’MearaM.J. CheT. AlgaaE. TolmachovaK. TolmachevA.A. ShoichetB.K. RothB.L. IrwinJ.J. Ultra-large library docking for discovering new chemotypes.Nature2019566774322422910.1038/s41586‑019‑0917‑9 30728502
    [Google Scholar]
  16. AdeshinaY.O. DeedsE.J. KaranicolasJ. Machine learning classification can reduce false positives in structure-based virtual screening.Proc. Natl. Acad. Sci. USA202011731184771848810.1073/pnas.2000585117 32669436
    [Google Scholar]
  17. NascimentoI.J.S. de AquinoT.M. da Silva-JúniorE.F. The New Era of Drug Discovery: The Power of Computer-aided Drug Design (CADD).Lett. Drug Des. Discov.2022191195195510.2174/1570180819666220405225817
    [Google Scholar]
  18. SurabhiS. SinghB.K. COMPUTER AIDED DRUG DESIGN: AN OVERVIEW.J. Drug Deliv. Ther.20188550450910.22270/jddt.v8i5.1894
    [Google Scholar]
  19. Hassan BaigM. AhmadK. RoyS. Mohammad AshrafJ. AdilM. Haris SiddiquiM. KhanS. Amjad KamalM. ProvazníkI. ChoiI. Computer Aided Drug Design: Success and Limitations.Curr. Pharm. Des.201622557258110.2174/1381612822666151125000550 26601966
    [Google Scholar]
  20. SabeV.T. NtombelaT. JhambaL.A. MaguireG.E.M. GovenderT. NaickerT. KrugerH.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review.Eur. J. Med. Chem.202122411370510.1016/j.ejmech.2021.113705 34303871
    [Google Scholar]
  21. KimK.H. KimN.D. SeongB.L. Pharmacophore-based virtual screening: a review of recent applications.Expert Opin. Drug Discov.20105320522210.1517/17460441003592072 22823018
    [Google Scholar]
  22. AhmedL. GeorgievV. CapucciniM. ToorS. SchaalW. LaureE. SpjuthO. Efficient iterative virtual screening with Apache Spark and conformal prediction.J. Cheminform.2018101810.1186/s13321‑018‑0265‑z 29492726
    [Google Scholar]
  23. XiaoS. WeiL. HongZ. RaoL. RenY. WanJ. FengL. Design, synthesis and algicides activities of thiourea derivatives as the novel scaffold aldolase inhibitors.Bioorg. Med. Chem.201927580581210.1016/j.bmc.2019.01.023 30711311
    [Google Scholar]
  24. YaoC. ShenZ. ShenL. KadierK. ZhaoJ. GuoY. XuL. CaoJ. DongX. YangB. Identification of Potential JNK3 Inhibitors: A Combined Approach Using Molecular Docking and Deep Learning-Based Virtual Screening.Pharmaceuticals (Basel)20231610145910.3390/ph16101459 37895928
    [Google Scholar]
  25. BohrH. Drug Discovery and Molecular Modeling Using Artificial Intelligence.Artificial Intelligence in Healthcare.Elsevier2020618310.1016/B978‑0‑12‑818438‑7.00003‑4
    [Google Scholar]
  26. MendoliaI. ContinoS. PerriconeU. ArdizzoneE. PirroneR. Convolutional architectures for virtual screening.BMC Bioinformatics202021S8Suppl. 831010.1186/s12859‑020‑03645‑9 32938359
    [Google Scholar]
  27. HeF. WangX. WuQ. LiuS. CaoY. GuoX. YinS. YinN. LiB. FangM. Identification of potential ATP-competitive cyclin-dependent kinase 1 inhibitors: De novo drug generation, molecular docking, and molecular dynamics simulation.Comput. Biol. Med.202315510664510.1016/j.compbiomed.2023.106645 36774892
    [Google Scholar]
  28. PierceA.C. RaoG. BemisG.W. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease.J. Med. Chem.200447112768277510.1021/jm030543u 15139755
    [Google Scholar]
  29. DivyaV. PushpaV.L. SarithamolS. ManojK.B. Computational approach for generating robust models for discovering novel molecules as Cyclin Dependent Kinase 4 inhibitors.J. Mol. Graph. Model.201882485810.1016/j.jmgm.2018.04.001 29680736
    [Google Scholar]
  30. PangX. ZhaoY. LiG. LiuJ. YanA.A. SAR and QSAR study on cyclin dependent kinase 4 inhibitors using machine learning methods.Digit. Discov.2023241026104110.1039/D2DD00143H
    [Google Scholar]
  31. GoelS. DeCristoM.J. McAllisterS.S. ZhaoJ.J. CDK4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest.Trends Cell Biol.2018281191192510.1016/j.tcb.2018.07.002 30061045
    [Google Scholar]
  32. LoiblS. GianniL. HER2-positive breast cancer.Lancet2017389100872415242910.1016/S0140‑6736(16)32417‑5 27939064
    [Google Scholar]
  33. KleandrovaV.V. ScottiM.T. ScottiL. Speck-PlancheA. Multi-target Drug Discovery via PTML Modeling: Applications to the Design of Virtual Dual Inhibitors of CDK4 and HER2.Curr. Top. Med. Chem.202121766167510.2174/18734294MTEznNDIcy 33463472
    [Google Scholar]
  34. ZhangH. HuangJ. ChenR. CaiH. ChenY. HeS. XuJ. ZhangJ. WangL. Ligand- and structure-based identification of novel CDK9 inhibitors for the potential treatment of leukemia.Bioorg. Med. Chem.20227211699410.1016/j.bmc.2022.116994 36087428
    [Google Scholar]
  35. WenT. WangJ. LuR. TanS. LiP. YaoX. LiuH. YiZ. LiL. LiuS. GaoP. QianH. XieG. MaF. Development, validation, and evaluation of a deep learning model to screen cyclin-dependent kinase 12 inhibitors in cancers.Eur. J. Med. Chem.202325011519910.1016/j.ejmech.2023.115199 36827953
    [Google Scholar]
  36. SharmaT. SaralammaV.V.G. LeeD.C. ImranM.A. ChoiJ. BaigM.H. DongJ.J. Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors.Int. J. Biol. Macromol.2022222Pt A23925010.1016/j.ijbiomac.2022.09.151 36130643
    [Google Scholar]
  37. GaultonA. HerseyA. NowotkaM. BentoA.P. ChambersJ. MendezD. MutowoP. AtkinsonF. BellisL.J. Cibrián-UhalteE. DaviesM. DedmanN. KarlssonA. MagariñosM.P. OveringtonJ.P. PapadatosG. SmitI. LeachA.R. The ChEMBL database in 2017.Nucleic Acids Res.201745D1D945D95410.1093/nar/gkw1074 27899562
    [Google Scholar]
  38. GoodsellD.S. ZardeckiC. Di CostanzoL. DuarteJ.M. HudsonB.P. PersikovaI. SeguraJ. ShaoC. VoigtM. WestbrookJ.D. YoungJ.Y. BurleyS.K. RCSB Protein Data Bank: Enabling biomedical research and drug discovery.Protein Sci.2020291526510.1002/pro.3730 31531901
    [Google Scholar]
  39. HalderD. DasS. R, A.; R S, J. Molecular docking and dynamics based approach for the identification of kinase inhibitors targeting PI3Kα against non-small cell lung cancer: a computational study.RSC Advances20221233214522146710.1039/D2RA03451D 35975074
    [Google Scholar]
  40. ZhuJ. LiK. XuL. CaiY. ChenY. ZhaoX. LiH. HuangG. JinJ. Discovery of novel selective PI3Kγ inhibitors through combining machine learning-based virtual screening with multiple protein structures and bio-evaluation.J. Adv. Res.20223611310.1016/j.jare.2021.04.007 35127160
    [Google Scholar]
  41. WeinM.N. ForetzM. FisherD.E. XavierR.J. KronenbergH.M. Salt-Inducible Kinases: Physiology, Regulation by cAMP, and Therapeutic Potential.Trends Endocrinol. Metab.2018291072373510.1016/j.tem.2018.08.004 30150136
    [Google Scholar]
  42. ZhuW. LiuX. LiQ. GaoF. LiuT. ChenX. ZhangM. AliperA. RenF. DingX. ZhavoronkovA. Discovery of novel and selective SIK2 inhibitors by the application of AlphaFold structures and generative models.Bioorg. Med. Chem.20239111741410.1016/j.bmc.2023.117414 37467565
    [Google Scholar]
  43. Nuche-BerenguerB. JensenR.T. Gastrointestinal hormones/neurotransmitters and growth factors can activate P21 activated kinase 2 in pancreatic acinar cells by novel mechanisms.Biochim. Biophys. Acta Mol. Cell Res.20151853102371238210.1016/j.bbamcr.2015.05.011 25979836
    [Google Scholar]
  44. RaneC. SenapedisW. BalogluE. LandesmanY. CrochiereM. Das-GuptaS. MindenA. A novel orally bioavailable compound KPT-9274 inhibits PAK4, and blocks triple negative breast cancer tumor growth.Sci. Rep.2017714255510.1038/srep42555 28198380
    [Google Scholar]
  45. IwaloyeO. ElekofehintiO.O. KikiowoB. OluwarotimiE.A. FadipeT.M. Machine Learning-Based Virtual Screening Strategy RevealsSome Natural Compounds as Potential PAK4 Inhibitors in Triple Negative Breast Cancer.Curr. Proteomics202118575376910.2174/1570164618999201223092209
    [Google Scholar]
  46. QinZ. QinL. FengX. LiZ. BianJ. Development of Cdc2-like Kinase 2 Inhibitors: Achievements and Future Directions.J. Med. Chem.20216418131911321110.1021/acs.jmedchem.1c00985 34519506
    [Google Scholar]
  47. LindbergM.F. MeijerL. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview.Int. J. Mol. Sci.20212211604710.3390/ijms22116047 34205123
    [Google Scholar]
  48. Al-TawilM.F. DaoudS. HatmalM.M. TahaM.O. Discovery of new Cdc2-like kinase 4 (CLK4) inhibitors via pharmacophore exploration combined with flexible docking-based ligand/receptor contact fingerprints and machine learning.RSC Advances20221217106861070010.1039/D2RA00136E 35424985
    [Google Scholar]
  49. YangR. ZhaX. GaoX. WangK. ChengB. YanB. Multi-stage virtual screening of natural products against p38α mitogen-activated protein kinase: predictive modeling by machine learning, docking study and molecular dynamics simulation.Heliyon202289e1049510.1016/j.heliyon.2022.e10495 36105464
    [Google Scholar]
  50. VettorazziM. DíazI. AngelinaE. SalidoS. GutierrezL. AlvarezS.E. CoboJ. EnrizR.D. Second generation of pyrimidin-quinolone hybrids obtained from virtual screening acting as sphingosine kinase 1 inhibitors and potential anticancer agents.Bioorg. Chem.202414410711210.1016/j.bioorg.2024.107112 38237390
    [Google Scholar]
  51. DongX. JiangC. HuH. YanJ. ChenJ. HuY. QSAR study of Akt/protein kinase B (PKB) inhibitors using support vector machine.Eur. J. Med. Chem.200944104090409710.1016/j.ejmech.2009.04.050 19497644
    [Google Scholar]
  52. EricksonJ.A. MaderM.M. WatsonI.A. WebsterY.W. HiggsR.E. BellM.A. ViethM. Structure-guided expansion of kinase fragment libraries driven by support vector machine models.Biochim. Biophys. Acta. Proteins Proteomics20101804364265210.1016/j.bbapap.2009.12.002 20005305
    [Google Scholar]
  53. KongY. YanA. QSAR models for predicting the bioactivity of Polo-like Kinase 1 inhibitors.Chemom. Intell. Lab. Syst.201716721422510.1016/j.chemolab.2017.06.011
    [Google Scholar]
  54. SchöningV. KrähenbühlS. DreweJ. The hepatotoxic potential of protein kinase inhibitors predicted with Random Forest and Artificial Neural Networks.Toxicol. Lett.201829914514810.1016/j.toxlet.2018.10.009 30315951
    [Google Scholar]
  55. MiljkovićF. Rodríguez-PérezR. BajorathJ. Machine Learning Models for Accurate Prediction of Kinase Inhibitors with Different Binding Modes.J. Med. Chem.202063168738874810.1021/acs.jmedchem.9b00867 31469557
    [Google Scholar]
  56. ArianR. HaririA. MehridehnaviA. FassihiA. GhasemiF. Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm.Comput. Biol. Chem.20208610726910.1016/j.compbiolchem.2020.107269 32413830
    [Google Scholar]
  57. ZhouY. PortelliS. PatM. RodriguesC.H.M. NguyenT.B. PiresD.E.V. AscherD.B. Structure-guided machine learning prediction of drug resistance mutations in Abelson 1 kinase.Comput. Struct. Biotechnol. J.2021195381539110.1016/j.csbj.2021.09.016 34667533
    [Google Scholar]
  58. TanramlukD. PakotipraphaD. PhoochaijaroenS. ChantravisutP. ThampradidS. VanichtanankulJ. NarupiyakulL. AkavipatR. YuvaniyamaJ. MANORAA: A machine learning platform to guide protein-ligand design by anchors and influential distances.Structure2022301181189.e510.1016/j.str.2021.09.004 34614393
    [Google Scholar]
  59. ShimazakiT. TachikawaM. Collaborative Approach between Explainable Artificial Intelligence and Simplified Chemical Interactions to Explore Active Ligands for Cyclin-Dependent Kinase 2.ACS Omega2022712103721038110.1021/acsomega.1c06976 35382271
    [Google Scholar]
  60. YoshizawaT. IshidaS. SatoT. OhtaM. HonmaT. TerayamaK. Selective Inhibitor Design for Kinase Homologs Using Multiobjective Monte Carlo Tree Search.J. Chem. Inf. Model.202262225351536010.1021/acs.jcim.2c00787 36334094
    [Google Scholar]
  61. LiuC. KutchukianP. NguyenN.D. AlQuraishiM. SorgerP.K. A Hybrid Structure-Based Machine Learning Approach for Predicting Kinase Inhibition by Small Molecules.J. Chem. Inf. Model.202363175457547210.1021/acs.jcim.3c00347 37595065
    [Google Scholar]
  62. ZhouJ.B. TangD. HeL. LinS. LeiJ.H. SunH. XuX. DengC.X. Machine learning model for anti-cancer drug combinations: Analysis, prediction, and validation.Pharmacol. Res.202319410683010.1016/j.phrs.2023.106830 37343647
    [Google Scholar]
  63. QianX. DaiX. LuoL. LinM. XuY. ZhaoY. HuangD. QiuH. LiangL. LiuH. LiuY. GuL. LuT. ChenY. ZhangY. An Interpretable Multitask Framework BiLAT Enables Accurate Prediction of Cyclin-Dependent Protein Kinase Inhibitors.J. Chem. Inf. Model.202363113350336810.1021/acs.jcim.3c00473 37171216
    [Google Scholar]
  64. SrisongkramT. KhamtangP. WeerapreeyakulN. Prediction of KRASG12C inhibitors using conjoint fingerprint and machine learning-based QSAR models.J. Mol. Graph. Model.202312210846610.1016/j.jmgm.2023.108466 37058997
    [Google Scholar]
  65. LinX. MaQ. ChenL. GuoW. HuangZ. HuangT. CaiY.D. Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods.Biochim. Biophys. Acta, Gen. Subj.202318671213048410.1016/j.bbagen.2023.130484 37805078
    [Google Scholar]
  66. ZhangV.Y. O’ConnorS.L. WelshW.J. JamesM.H. Machine learning models to predict ligand binding affinity for the orexin 1 receptor.Artificial Intelligence Chemistry20242110004010.1016/j.aichem.2023.100040 38476266
    [Google Scholar]
  67. DuanH. ZhangY. QiuH. FuX. LiuC. ZangX. XuA. WuZ. LiX. ZhangQ. ZhangZ. CuiF. Machine learning-based prediction model for distant metastasis of breast cancer.Comput. Biol. Med.202416910794310.1016/j.compbiomed.2024.107943 38211382
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266340766250124063854
Loading
/content/journals/ctmc/10.2174/0115680266340766250124063854
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test