Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Phenyl amino pyrimidine attracts researchers due to its versatile scaffold and medicinal significance. This significant moiety present in the Imatinib contributed to medicinal chemistry. In this manuscript, we reviewed various derivatives of Imatinib containing 2-phenylamino-pyrimidine, which has a variety of roles, especially in the anti-cancer category. This manuscript aims to prepare a scientific report that underscores the novel Imatinib derivatives in the field of chemistry for various activities such as anti-cancer, anti-microbial, and miscellaneous focused on cardiovascular, anti-platelets, and anti-parasitic, . Finally, this manuscript may attract researchers for new structure design, and the development of novel phenyl amino pyrimidine scaffolds that are more active and less harmful. We propose a compilation and analysis of around 100 Imatinib derivatives having main chromatophores, such as phenylaminopyrimidine. A large number of researchers are interested in Imatnib-based analogs as they have wide biological potential in the largely developing chemical world of the heterocyclic moiety. The phenylamino pyrimidine moiety became an important moiety for researchers to discover combinational libraries and implement the efforts in search of the lead entities. Phenylaminopyrimidine has been manifesting to be an effective moiety in the current respective disease scenario. It has been discovered that phenylaminopyrimidine and its derivatives have an extensive spectrum of pharmacological potential with numerous applications in academic interest, in the pharmaceutical industry, medicinal chemistry, . Imatinib containing phenylaminopyrimidine and its novel synthetic derivatives are a prominent heterocyclic compound class with intriguing use in medicinal chemistry. Thus, in brief, attention should be given to other chemical approaches for synthesizing novel compounds containing phenylaminopyrimidine moiety, hence potentiating their efficacy.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266332163241127114029
2025-01-06
2025-09-03
Loading full text...

Full text loading...

References

  1. CapdevilleR. BuchdungerE. ZimmermannJ. MatterA. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug.Nat. Rev. Drug Discov.20021749350210.1038/nrd83912120256
    [Google Scholar]
  2. VigneriP. WangJ.Y.J. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR–ABL tyrosine kinase.Nat. Med.20017222823410.1038/8468311175855
    [Google Scholar]
  3. YaishP. GazitA. GilonC. LevitzkiA. Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors.Science1988242488093393510.1126/science.32637023263702
    [Google Scholar]
  4. ZhangQ. ZhangX. YouQ. Lead discovery of type II BRAF V600E inhibitors targeting the structurally validated DFG-out conformation based upon selected fragments.Molecules201621787910.3390/molecules2107087927438814
    [Google Scholar]
  5. ReevesP.M. BommariusB. LebeisS. McNultyS. ChristensenJ. SwimmA. ChahroudiA. ChavanR. FeinbergM.B. VeachD. BornmannW. ShermanM. KalmanD. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases.Nat. Med.200511773173910.1038/nm126515980865
    [Google Scholar]
  6. Ferreira PimentelL.C. CunhaA.C. Boas HoelzL.V. CanzianH.F. Leite Firmino MarinhoD.I. BoechatN. BastosM.M. Phenylamino-pyrimidine (PAP) Privileged structure: Synthesis and medicinal applications.Curr. Top. Med. Chem.202020322724310.2174/156802662066620012409494931976834
    [Google Scholar]
  7. ZimmermannJ. BuchdungerE. MettH. MeyerT. LydonN.B. TraxlerP. Phenylamino-pyrimidine (PAP) — derivatives: A new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors.Bioorg. Med. Chem. Lett.19966111221122610.1016/0960‑894X(96)00197‑7
    [Google Scholar]
  8. GearyC.G. The story of chronic myeloid leukaemia.Br. J. Haematol.2000110121110.1046/j.1365‑2141.2000.02137.x10930974
    [Google Scholar]
  9. LydonN.B. DrukerB.J. Lessons learned from the development of imatinib.Leuk. Res.200428Suppl. 1293810.1016/j.leukres.2003.10.00215036939
    [Google Scholar]
  10. MohamedA.N. PembertonP. ZonderJ. SchifferC.A. The effect of imatinib mesylate on patients with Philadelphia chromosome-positive chronic myeloid leukemia with secondary chromosomal aberrations.Clin. Cancer Res.2003941333133712684401
    [Google Scholar]
  11. MarcucciG. PerrottiD. CaligiuriM.A. Understanding the molecular basis of imatinib mesylate therapy in chronic myelogenous leukemia and the related mechanisms of resistance.Clin. Cancer Res.2003941248125212684391
    [Google Scholar]
  12. RossariF. MinutoloF. OrciuoloE. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy.J. Hematol. Oncol.20181118410.1186/s13045‑018‑0624‑229925402
    [Google Scholar]
  13. HochhausA. LarsonR.A. GuilhotF. RadichJ.P. BranfordS. HughesT.P. BaccaraniM. DeiningerM.W. CervantesF. FujiharaS. OrtmannC.E. MenssenH.D. KantarjianH. O’BrienS.G. DrukerB.J. Long-term outcomes of imatinib treatment for chronic myeloid leukemia.N. Engl. J. Med.20173761091792710.1056/NEJMoa160932428273028
    [Google Scholar]
  14. RumpoldH. WebersinkeG. Molecular pathogenesis of Philadelphia-positive chronic myeloid leukemia - is it all BCR-ABL?Curr. Cancer Drug Targets201111131910.2174/15680091179374361921062244
    [Google Scholar]
  15. IqbalS. ShaikhN.N. KhanK.M. KiranS. NazS. Synthesis of 2-aminopyrimidine derivatives and their evaluation as β-glucuronidase inhibitors: In vitro and in silico studies.Molecules20222722778610.3390/molecules27227786
    [Google Scholar]
  16. SangwanK. KhuranaS. DhaklaP. Imatinib Analogs in Chronic Myeloid Leukemia: a Systematic Qualitative Review.Curr. Pharmacol. Rep.2023939911610.1007/s40495‑023‑00316‑0
    [Google Scholar]
  17. WallerC.F. Imatinib Mesylate.Recent Results Cancer Res.201821212710.1007/978‑3‑319‑91439‑8_1
    [Google Scholar]
  18. WallerC.F. Imatinib mesylate.Small Molecules in Oncology200932010.1007/978‑3‑642‑01222‑8_1
    [Google Scholar]
  19. TakimotoC.H. CalvoE. Principles of Oncologic Pharmacotherapy.2008Available from:https://www.cancernetwork.com/view/principles-oncologic-pharmacotherapy (accessed on 12-11-2024).
  20. DeiningerM. BuchdungerE. DrukerB.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia.Blood200510572640265310.1182/blood‑2004‑08‑309715618470
    [Google Scholar]
  21. MusumeciF. SchenoneS. GrossiG. BrulloC. SannaM. Analogs, formulations and derivatives of imatinib: a patent review.Expert Opin. Ther. Pat.201525121411142110.1517/13543776.2015.108923326372795
    [Google Scholar]
  22. RoskoskiR.Jr STI-571: an anticancer protein-tyrosine kinase inhibitor.Biochem. Biophys. Res. Commun.2003309470971710.1016/j.bbrc.2003.08.05513679030
    [Google Scholar]
  23. DeiningerM.W.N. DrukerB.J. Specific targeted therapy of chronic myelogenous leukemia with imatinib.Pharmacol. Rev.200355340142310.1124/pr.55.3.412869662
    [Google Scholar]
  24. HochhausA. KreilS. CorbinA.S. La RoséeP. MüllerM.C. LahayeT. HanfsteinB. SchochC. CrossN.C.P. BergerU. GschaidmeierH. DrukerB.J. HehlmannR. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy.Leukemia200216112190219610.1038/sj.leu.240274112399961
    [Google Scholar]
  25. Roche-LestienneC. Soenen-CornuV. Grardel-DuflosN. LaïJ.L. PhilippeN. FaconT. FenauxP. PreudhommeC. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment.Blood200210031014101810.1182/blood.V100.3.101412130516
    [Google Scholar]
  26. DrukerB.J. TalpazM. RestaD.J. PengB. BuchdungerE. FordJ.M. LydonN.B. KantarjianH. CapdevilleR. Ohno-JonesS. SawyersC.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia.N. Engl. J. Med.2001344141031103710.1056/NEJM20010405344140111287972
    [Google Scholar]
  27. IvanovA.S. ShishkovS.V. Synthesis of imatinib: a convergent approach revisited.Monatsh. Chem.2009140661962310.1007/s00706‑008‑0105‑3
    [Google Scholar]
  28. KrystalG.W. HonsawekS. LitzJ. BuchdungerE. The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth.Clin. Cancer Res.2000683319332610955819
    [Google Scholar]
  29. IqbalN. IqbalN. Imatinib: a breakthrough of targeted therapy in cancer.Chemother. Res. Pract.201420141910.1155/2014/35702724963404
    [Google Scholar]
  30. KrishnamurtyR. MalyD.J. Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors.ACS Chem. Biol.20105112113810.1021/cb900265620044834
    [Google Scholar]
  31. Oncology/Cancer: 2023 Advancements and Breakthroughs.2023Available from:https://www.healthline.com/health-news/oncology-cancer-2023-advancements-and-breakthroughs#Strides-in-cancer-survival(accessed on 12-11-2024).
  32. American Cancer Society. Cancer Facts & Figures 2023.2023Available from:https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2023/2023-cancer-facts-and-figures.pdf(accessed on 12-11-2024).
  33. Worldwide cancer data.Available from:https://www.wcrf.org/cancer-trends/worldwide-cancer-data/(accessed on 12-11-2024).
  34. MullardA. 2022 FDA approvals.Nat. Rev. Drug Discov.20232228388https://www.nature.com/articles/d41573-024-00001-x10.1038/d41573‑023‑00001‑336596858
    [Google Scholar]
  35. JiangH. WangY. JiangM. YaoL. Privileged fragment-based design, synthesis and in vitro antitumor activity of imatinib analogues.Turk. J. Chem.202347242643510.55730/1300‑0527.354937528931
    [Google Scholar]
  36. FiroozpourL. MoghimiS. Fallah BarzegarM.H. ToolabiM. SalarinejadS. BijanzadehH.R. Sadat EbrahimiS.E. SafariF. ForoumadiA. Synthesis, molecular docking, and biological evaluation of pyridin-3-yl-pyrimidin-2-yl-triazole derivatives as anti-cancer agents.Polycycl. Aromat. Compd.20231-510.1080/10406638.2023.2212101
    [Google Scholar]
  37. SangwanK. SinghB. Antiproliferative activity of novel imatinib analogue as potential anticancer agents, synthesis and in vitro screening.Ind. J. Pharm. Edu. Res.202357S2453458
    [Google Scholar]
  38. SangwanK. SinghB. Synthesis and in-vitro screening of Imatinib Schiff’s base as potential anticancer agents.Eur. Chem. Bull.202312Special Issue 4554566
    [Google Scholar]
  39. QinJ. ChenX. LiuW. ChenJ. LiuW. XiaY. LiZ. LiM. WangS. YuanQ. QiuY. WuZ. FangM. Discovery of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carboxamide derivatives as novel anti-cancer agents targeting Nur77.Eur. J. Med. Chem.202224411484910.1016/j.ejmech.2022.11484936274272
    [Google Scholar]
  40. GünayF. BaltaS. NgY.Y. UlucanÖ. TurgutZ. GünkaraÖ.T. Synthesis, molecular modeling and biological evaluation of novel imatinib derivatives as anticancer agents.Turk. J. Chem.20214618610210.3906/kim‑2107‑2338143894
    [Google Scholar]
  41. SantosC. PimentelL. CanzianH. OliveiraA. JuniorF. DantasR. HoelzL. MarinhoD. CunhaA. BastosM. BoechatN. Hybrids of imatinib with quinoline: synthesis, antimyeloproliferative activity evaluation, and molecular docking.Pharmaceuticals202215330910.3390/ph1503030935337107
    [Google Scholar]
  42. OliveiraA. MouraS. PimentelL. NetoJ. DantasR. Silva-JrF. BastosM. BoechatN. New imatinib derivatives with antiproliferative activity against a549 and k562 cancer cells.Molecules202227375010.3390/molecules2703075035164014
    [Google Scholar]
  43. AitaS. BadavathV.N. GundluruM. SudiletiM. NemallapudiB.R. GundalaS. ZyryanovG.V. ChamartiN.R. CirandurS.R. Novel α-aminophosphonates of imatinib intermediate: Synthesis, anticancer activity, human abl tyrosine kinase inhibition, ADME and toxicity prediction.Bioorg. Chem.202110910471810.1016/j.bioorg.2021.10471833618257
    [Google Scholar]
  44. PimentelL.C.F. HoelzL.V.B. CanzianH.F. BrancoF.S.C. de OliveiraA.P. CamposV.R. JúniorF.P.S. DantasR.F. ResendeJ.A.L.C. CunhaA.C. BoechatN. BastosM.M. (Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: Searching for novel compounds against chronic myeloid leukemia.Beilstein J. Org. Chem.2021172260226910.3762/bjoc.17.14434621389
    [Google Scholar]
  45. WuJ. HuH. AoM. CuiZ. ZhouX. QinJ. GuoY. ChenJ. XueY. FangM. Design, synthesis, and biological evaluation of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1 H -Indole-2-Carbohydrazide derivatives: the methuosis inducer 12A as a Novel and selective anticancer agent.J. Enzyme Inhib. Med. Chem.20213611435145210.1080/14756366.2021.194099234229558
    [Google Scholar]
  46. TüreA. ErgülM. ErgülM. AltunA. Küçükgüzelİ. Design, synthesis, and anticancer activity of novel 4-thiazolidinone-phenylaminopyrimidine hybrids.Mol. Divers.20212521025105010.1007/s11030‑020‑10087‑132328961
    [Google Scholar]
  47. HuH. WuJ. AoM. ZhouX. LiB. CuiZ. WuT. WangL. XueY. WuZ. FangM. Design, synthesis and biological evaluation of methylenehydrazine-1-carboxamide derivatives with (5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole scaffold: Novel potential CDK9 inhibitors.Bioorg. Chem.202010210406410.1016/j.bioorg.2020.10406432653610
    [Google Scholar]
  48. RahimA. SyedR. PoornachandraY. MalikM.S. ReddyC.V.R. AlvalaM. BoppanaK. SridharB. AmanchyR. KamalA. Synthesis and biological evaluation of phenyl-amino-pyrimidine and indole/oxindole conjugates as potential BCR-ABL inhibitors.Med. Chem. Res.201928563364510.1007/s00044‑019‑02318‑4
    [Google Scholar]
  49. HenidiH.A. Al-AbdA.M. Al-AbbasiF.A. BinMahfouzH.A. El-DeebI.M. Design and synthesis of novel phenylaminopyrimidines with antiproliferative activity against colorectal cancer.RSC Advances2019937215782158610.1039/C9RA03359A35521305
    [Google Scholar]
  50. ZhouZ. WangY. LiJ. HuB. LinX. ChenY. WangR. LiuJ. LiuH. Design, synthesis, and biological evaluation of Cyclobentinib (CB1107) as a potential anti-CML agent.Med. Chem. Res.20182781863187510.1007/s00044‑018‑2198‑5
    [Google Scholar]
  51. AzevedoL.D. BastosM.M. VasconcelosF.C. HoelzL.V.B. JuniorF.P.S. DantasR.F. de AlmeidaA.C.M. de OliveiraA.P. GomesL.C. MaiaR.C. BoechatN. Imatinib derivatives as inhibitors of K562 cells in chronic myeloid leukemia.Med. Chem. Res.201726112929294110.1007/s00044‑017‑1993‑8
    [Google Scholar]
  52. ManchandaP. ParshadB. KumarA. TiwariR.K. ShiraziA.N. ParangK. SharmaS.K. Design, synthesis, and evaluation of the kinase inhibition potential of pyridylpyrimidinylaminophenyl derivatives.Arch. Pharm.20173503-4160039010.1002/ardp.20160039028317151
    [Google Scholar]
  53. KambappaV. ChandrashekaraG.K. RekhaN.D. ShivaramuP.D. PalleK. Synthesis, anti-angiogenic and DNA cleavage studies of novel N-(4-methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)piperidine-4-carboxamide derivatives.Chem. Cent. J.201711112210.1186/s13065‑017‑0354‑529189954
    [Google Scholar]
  54. Cortes-GarcíaC.J. Islas-JácomeA. Rentería-GómezA. Gámez-MontañoR. Synthesis of 1,5-disubstituted tetrazoles containing a fragment of the anticancer drug imatinib via a microwave-assisted Ugi-azide reaction.Monatsh. Chem.201614771277129010.1007/s00706‑016‑1686‑x
    [Google Scholar]
  55. LiY.T. WangJ.H. PanC.W. MengF.F. ChuX.Q. DingY. QuW.Z. LiH. YangC. ZhangQ. BaiC.G. ChenY. Syntheses and biological evaluation of 1,2,3-triazole and 1,3,4-oxadiazole derivatives of imatinib.Bioorg. Med. Chem. Lett.20162651419142710.1016/j.bmcl.2016.01.06826850004
    [Google Scholar]
  56. ChenS. HeL. WangX. GongX. ZhangH. Synthesis and Cytotoxic Activity of Imatinib Derivatives.Youji Huaxue20153511237710.6023/cjoc201506030
    [Google Scholar]
  57. KorchK.M. EidamshausC. BehennaD.C. NamS. HorneD. StoltzB.M. Enantioselective synthesis of α-secondary and α-tertiary piperazin-2-ones and piperazines by catalytic asymmetric allylic alkylation.Angew. Chem. Int. Ed.201554117918310.1002/anie.20140860925382664
    [Google Scholar]
  58. YaoR.S. GuanQ.X. LuX.Q. RuanB.F. Design, synthesis and cytotoxic evaluation of novel imatinib amide derivatives that target Abl kinase.Lett. Drug Des. Discov.2014121202810.2174/1570180811666140812231519
    [Google Scholar]
  59. PengZ. MaxwellD.S. SunD. Bhanu PrasadB.A. PalA. WangS. BalatoniJ. GhoshP. LimS.T. VolginA. ShavrinA. AlauddinM.M. GelovaniJ.G. BornmannW.G. Imatinib analogs as potential agents for PET imaging of Bcr-Abl and c-KIT expression at a kinase level.Bioorg. Med. Chem.201422162363210.1016/j.bmc.2013.10.04024280068
    [Google Scholar]
  60. ThakurA. A Pharmacophore based dryg design approach to overcome Imatinib resistance and get more potent BCR-Abl tyrosine kinase inhibitor.Int. J. Pharma Sci.201455178810.13040/IJPSR.0975‑8232.5(4).1788‑00
    [Google Scholar]
  61. AmalaK. RaoA.K.S.B. GorantlaB. GondiC.S. RaoJ.S. Design, synthesis and preclinical evaluation of NRC-AN-019.Int. J. Oncol.201342116817810.3892/ijo.2012.169723151973
    [Google Scholar]
  62. GlekasA.P. PillarsettyN.K. PunzalanB. KhanN. Smith-JonesP. LarsonS.M. In vivo imaging of Bcr-Abl overexpressing tumors with a radiolabeled imatinib analog as an imaging surrogate for imatinib.J. Nucl. Med.20115281301130710.2967/jnumed.110.08505021764785
    [Google Scholar]
  63. ArioliF. BorrelliS. ColomboF. FalchiF. FilippiI. CrespanE. NaldiniA. ScaliaG. SilvaniA. MagaG. CarraroF. BottaM. PassarellaD. N ‐[2‐Methyl‐5‐(triazol‐1‐yl)phenyl]pyrimidin‐2‐amine as a Scaffold for the Synthesis of Inhibitors of Bcr‐Abl.ChemMedChem20116112009201810.1002/cmdc.20110030421990039
    [Google Scholar]
  64. LüS. LuoQ. HaoX. LiX. JiL. ZhengW. WangF. Synthesis and docking study of 2-phenylaminopyrimidine Abl tyrosine kinase inhibitors.Bioorg. Med. Chem. Lett.201121236964696810.1016/j.bmcl.2011.09.12722033461
    [Google Scholar]
  65. DietrichJ. HulmeC. HurleyL.H. The design, synthesis, and evaluation of 8 hybrid DFG-out allosteric kinase inhibitors: A structural analysis of the binding interactions of Gleevec®, Nexavar®, and BIRB-796.Bioorg. Med. Chem.201018155738574810.1016/j.bmc.2010.05.06320621496
    [Google Scholar]
  66. SkobridisK. KinigopoulouM. TheodorouV. GiannousiE. RussellA. ChauhanR. SalaR. BrownlowN. KiriakidisS. DominJ. TzakosA.G. DibbN.J. Novel imatinib derivatives with altered specificity between Bcr-Abl and FMS, KIT, and PDGF receptors.ChemMedChem20105113013910.1002/cmdc.20090039419950162
    [Google Scholar]
  67. ChangS. YinS.L. WangJ. JingY.K. DongJ.H. Design and synthesis of novel 2-phenylaminopyrimidine (PAP) derivatives and their antiproliferative effects in human chronic myeloid leukemia cells.Molecules200914104166417910.3390/molecules1410416619924055
    [Google Scholar]
  68. AsakiT. SugiyamaY. HamamotoT. HigashiokaM. UmeharaM. NaitoH. NiwaT. Design and synthesis of 3-substituted benzamide derivatives as Bcr-Abl kinase inhibitors.Bioorg. Med. Chem. Lett.20061651421142510.1016/j.bmcl.2005.11.04216332440
    [Google Scholar]
  69. ManleyP.W. BreitensteinW. BrüggenJ. Cowan-JacobS.W. FuretP. MestanJ. MeyerT. Urea derivatives of STI571 as inhibitors of Bcr-Abl and PDGFR kinases.Bioorg. Med. Chem. Lett.200414235793579710.1016/j.bmcl.2004.09.04215501042
    [Google Scholar]
  70. RachidZ. KatsoulasA. BrahimiF. Jean-ClaudeB.J. Synthesis of pyrimidinopyridine–triazene conjugates targeted to abl tyrosine kinase.Bioorg. Med. Chem. Lett.200313193297330010.1016/S0960‑894X(03)00553‑512951113
    [Google Scholar]
  71. FangZ. LiY. ZhengY. LiX. LuY.J. YanS.C. WongW.L. ChanK.F. WongK. SunN. Antibacterial activity and mechanism of action of a thiophenyl substituted pyrimidine derivative.RSC Advances2019919107391074410.1039/C9RA01001G35515309
    [Google Scholar]
  72. HannaC.C. HermantY.O. HarrisP.W.R. BrimbleM.A. Discovery, synthesis, and optimization of peptide-based antibiotics.Acc. Chem. Res.20215481878189010.1021/acs.accounts.0c0084133750106
    [Google Scholar]
  73. ChandrasekharM. PrasadG.S. VenkataramaiahC. Naga RajuC. SeshaiahK. RajendraW. Synthesis, spectral characterization, docking studies and biological activity of urea, thiourea, sulfonamide and carbamate derivatives of imatinib intermediate.Mol. Divers.201923372373810.1007/s11030‑018‑9906‑430560342
    [Google Scholar]
  74. MallikarjunaswamyC. BhadregowdaD.G. MalleshaL. Synthesis and antimicrobial activity of pyrimidine salts with chloranilic and picric acids.J. Chem.20132013172718210.1155/2013/727182
    [Google Scholar]
  75. PatoliyaM.J. KharadiG.J. Synthesis and Bioevaluation of Novel Imatinib Base Derivatives via 1,1′‐Carbonyldiimidazole Catalyst.J. Chem.20132013191538110.1155/2013/915381
    [Google Scholar]
  76. MohanaK.N. MalleshaL. Synthesis and in vitro biological activity of N-(5-amino-2-methylphenyl)-4-(3-pyridyl)-2-pyrimidinamine derivatives.Izv. Him.2011433395400
    [Google Scholar]
  77. MalleshaL. MohanaK.N. Synthesis and in vitro antimicrobial activity of N-(5-amino-2-methylphenyl)-4-(3-pyridyl)-2-pyrimidinamine derivatives.J. Chem.2010247582
    [Google Scholar]
  78. LorenC.P. AslanJ.E. RiggR.A. NowakM.S. HealyL.D. GruberA. DrukerB.J. McCartyO.J.T. The BCR-ABL inhibitor ponatinib inhibits platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling, platelet activation and aggregate formation under shear.Thromb. Res.2015135115516010.1016/j.thromres.2014.11.00925527332
    [Google Scholar]
  79. PantaziD. NtemouN. BrentasA. AlivertisD. SkobridisK. TselepisA.D. Molecular Requirements for the Expression of Antiplatelet Effects by Synthetic Structural Optimized Analogues of the Anticancer Drugs Imatinib and Nilotinib.Drug Des. Devel. Ther.2019134225423810.2147/DDDT.S21190731849454
    [Google Scholar]
  80. PatilS.B. Recent medicinal approaches of novel pyrimidine analogs: A review.Heliyon202396e1677310.1016/j.heliyon.2023.e1677337346348
    [Google Scholar]
  81. BallingerM.L. OsmanN. WilksA.F. SuS. BurnsC.J. BuX. LittleP.J. Pyrido-pyrimidine derivative CYC10424 inhibits glycosaminoglycan changes on vascular smooth muscle-derived proteoglycans and reduces lipoprotein binding.J. Cardiovasc. Pharmacol.200852540341210.1097/FJC.0b013e31818a890719033819
    [Google Scholar]
  82. Nesic de FreitasL.S.F. da SilvaC.F. IntagliataS. AmataE. SalernoL. SoeiroM.N.C. In vitro and in silico analysis of imatinib analogues as anti- Trypanosoma cruzi drug candidates.Parasitology2023150435936410.1017/S003118202300005736632017
    [Google Scholar]
  83. DuW. ElementoO. Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies.Oncogene201534253215322510.1038/onc.2014.29125220419
    [Google Scholar]
  84. HanH.J. EkweremaduC. PatelN. Advanced drug delivery system with nanomaterials for personalised medicine to treat breast cancer.J. Drug Deliv. Sci. Technol.2019521051106010.1016/j.jddst.2019.05.024
    [Google Scholar]
  85. JainK. MehraN.K. JainN.K. Potentials and emerging trends in nanopharmacology.Curr. Opin. Pharmacol.2014159710610.1016/j.coph.2014.01.00624598376
    [Google Scholar]
  86. LongmireM. ChoykeP.L. KobayashiH. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats.Nanomedicine (Lond.)20083570371710.2217/17435889.3.5.70318817471
    [Google Scholar]
  87. BlackK.C.L. WangY. LuehmannH.P. CaiX. XingW. PangB. ZhaoY. CutlerC.S. WangL.V. LiuY. XiaY. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution.ACS Nano2014854385439410.1021/nn406258m24766522
    [Google Scholar]
  88. XiaoK. LiY. LuoJ. LeeJ.S. XiaoW. GonikA.M. AgarwalR.G. LamK.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles.Biomaterials201132133435344610.1016/j.biomaterials.2011.01.02121295849
    [Google Scholar]
  89. BaetkeS.C. LammersT. KiesslingF. Applications of nanoparticles for diagnosis and therapy of cancer.Br. J. Radiol.20158810542015020710.1259/bjr.2015020725969868
    [Google Scholar]
  90. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  91. KouL. SunJ. ZhaiY. HeZ. The endocytosis and intracellular fate of nanomedicines: Implication for rational design.Asian J. Pharm. Sci.20138111010.1016/j.ajps.2013.07.001
    [Google Scholar]
  92. NicholsJ.W. BaeY.H. Odyssey of a cancer nanoparticle: From injection site to site of action.Nano Today20127660661810.1016/j.nantod.2012.10.01023243460
    [Google Scholar]
  93. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.333026348965
    [Google Scholar]
  94. CaoY. The toxicity of nanoparticles to human endothelial cells.Adv. Exp. Med. Biol.20181048596910.1007/978‑3‑319‑72041‑8_4
    [Google Scholar]
  95. BhullarS. GoyalN. GuptaS. FericipXT-coated PEGylated rutile TiO 2 nanoparticles in drug delivery: in vitro assessment of imatinib release.RSC Advances20241433238862390110.1039/D4RA02439G39081656
    [Google Scholar]
  96. BhullarS. GoyalN. GuptaS. In-vitro pH-responsive release of imatinib from iron-supplement coated anatase TiO2 nanoparticles.Sci. Rep.2022121460010.1038/s41598‑022‑08090‑735301335
    [Google Scholar]
  97. KarimiM. KarimianK. HeliH. A nanoemulsion-based delivery system for imatinib and in vitro anticancer efficacy.Braz. J. Pharm. Sci.2021202156e18973
    [Google Scholar]
  98. SobierajskaP. Serwotka-SuszczakA. SzymanskiD. MaryczK. WigluszR.J. Nanohydroxyapatite-Mediated Imatinib Delivery for Specific Anticancer Applications.Molecules20202520460210.3390/molecules2520460233050306
    [Google Scholar]
  99. CiL. HuangZ. LvF. WangJ. FengL. SunF. CaoS. LiuZ. LiuY. WeiG. LuW. Enhanced delivery of imatinib into vaginal mucosa via a new positively charged nanocrystal-loaded in situ hydrogel formulation for treatment of cervical cancer.Pharmaceutics20191111510.3390/pharmaceutics1101001530621141
    [Google Scholar]
  100. SheebaC.J. MarslinG. RevinaA.M. KhandelwalV. BalakumarK. PrakashJ. FranklinG. Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity.Int. J. Nanomedicine201510103163317010.2147/IJN.S7596225995626
    [Google Scholar]
  101. GuptaB. RamasamyT. PoudelB.K. PathakS. RegmiS. ChoiJ.Y. SonY. ThapaR.K. JeongJ.H. KimJ.R. ChoiH.G. YongC.S. KimJ.O. Development of bioactive PEGylated nanostructured platforms for sequential delivery of doxorubicin and imatinib to overcome drug resistance in metastatic tumors.ACS Appl. Mater. Interfaces20179119280929010.1021/acsami.6b0916328240860
    [Google Scholar]
  102. GreishK. JasimA. ParayathN. AbdelghanyS. AlkhateebA. TaurinS. NehoffH. Micellar formulations of Crizotinib and Dasatinib in the management of glioblastoma multiforme.J. Drug Target.201826869270810.1080/1061186X.2017.141935729251531
    [Google Scholar]
  103. DongC. LiB. LiZ. ShettyS. FuJ. Dasatinib-loaded albumin nanoparticles possess diminished endothelial cell barrier disruption and retain potent anti-leukemia cell activity.Oncotarget2016731496994970910.18632/oncotarget.1043527391073
    [Google Scholar]
  104. NizaE. Noblejas-LópezM.M. BravoI. Nieto-JiménezC. Castro-OsmaJ.A. Canales-VázquezJ. Lara-SanchezA. Galán MoyaE.M. BurgosM. OcañaA. Alonso-MorenoC. Trastuzumab-Targeted Biodegradable Nanoparticles for Enhanced Delivery of Dasatinib in HER2+ Metastasic Breast Cancer.Nanomaterials (Basel)2019912179310.3390/nano912179331888247
    [Google Scholar]
  105. NizaE. Nieto-JiménezC. Noblejas-LópezM.M. BravoI. Castro-OsmaJ.A. de la Cruz-MartínezF. Martínez de Sarasa BuchacaM. PosadasI. Canales-VázquezJ. Lara-SanchezA. Hermida-MerinoD. SolanoE. OcañaA. Alonso-MorenoC. Poly (cyclohexene phthalate) nanoparticles for controlled dasatinib delivery in breast cancer therapy.Nanomaterials (Basel)201999120810.3390/nano909120831461998
    [Google Scholar]
  106. ChauhanR. BalgemannR. GrebC. NunnB.M. UedaS. NomaH. McDonaldK. KaplanH.J. TamiyaS. O’TooleM.G. Production of dasatinib encapsulated spray-dried poly (lactic-co-glycolic acid) particles.J. Drug Deliv. Sci. Technol.20195310120410.1016/j.jddst.2019.101204
    [Google Scholar]
  107. AdenaS.K.R. UpadhyayM. VardhanH. MishraB. Gold nanoparticles for sustained antileukemia drug release: development, optimization and evaluation by quality-by-design approach.Nanomedicine (Lond.)201914785187010.2217/nnm‑2018‑030630901283
    [Google Scholar]
  108. SabraS.A. SheweitaS.A. HarounM. RagabD. EldemellawyM.A. XiaY. GoodaleD. AllanA.L. ElzoghbyA.O. RohaniS. Magnetically Guided Self-Assembled Protein Micelles for Enhanced Delivery of Dasatinib to Human Triple-Negative Breast Cancer Cells.J. Pharm. Sci.201910851713172510.1016/j.xphs.2018.11.04430528944
    [Google Scholar]
  109. KallusS. EnglingerB. SenkivJ. LaemmererA. HeffeterP. BergerW. KowolC.R. KepplerB.K. Nanoformulations of anticancer FGFR inhibitors with improved therapeutic index.Nanomedicine20181482632264310.1016/j.nano.2018.08.00130121385
    [Google Scholar]
  110. XuX. TangX. WuX. FengX. Biosynthesis of sorafenib coated graphene nanosheets for the treatment of gastric cancer in patients in nursing care.J. Photochem. Photobiol. B20191911510.1016/j.jphotobiol.2018.11.01330557787
    [Google Scholar]
  111. TaurinS. ArchibaldM. PritchardT. NehoffH. RosengrenR.J. GreishK. A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer.Int. J. Nanomedicine20161117920010.2147/IJN.S9728626811677
    [Google Scholar]
  112. Nazari-VananiR. AzarpiraN. HeliH. KarimianK. SattarahmadyN. A novel self-nanoemulsifying formulation for sunitinib: Evaluation of anticancer efficacy.Colloids Surf. B Biointerfaces2017160657210.1016/j.colsurfb.2017.09.00828917151
    [Google Scholar]
  113. WangJ. WangH. LiJ. LiuZ. XieH. WeiX. LuD. ZhuangR. XuX. ZhengS. iRGD-decorated polymeric nanoparticles for the efficient delivery of vandetanib to hepatocellular carcinoma: preparation and in vitro and in vivo evaluation.ACS Appl. Mater. Interfaces2016830192281923710.1021/acsami.6b0316627381493
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266332163241127114029
Loading
/content/journals/ctmc/10.2174/0115680266332163241127114029
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test