Skip to content
2000
Volume 25, Issue 12
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Ongoing research and development efforts are currently focused on creating COVID-19 vaccines using a variety of platforms. Among these, mRNA technology stands out as a cutting-edge method for vaccine development. There is a growing public awareness of mRNA and its potential in vaccine development. Despite being relatively recent, extensive scientific research has been dedicated to vaccines for a considerable period. mRNA vaccines are created by synthesizing the spike protein from a DNA template. This review delves into the various aspects of these vaccines and thoroughly explores the intricacies of COVID-19 vaccinations. It is essential to choose a reliable, efficient, and widely accessible vaccine to combat COVID-19. However, due to the possibility of virus mutations, developing a dependable and safe vaccine is crucial to prepare for future outbreaks of SARS-CoV-2 variants. Meanwhile, concerns remain regarding the potential risks associated with these vaccines.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266325847241121034100
2025-01-06
2025-09-02
Loading full text...

Full text loading...

References

  1. PlotkinS.A. Vaccines: The fourth century.Clin. Vaccine Immunol.200916121709171910.1128/CVI.00290‑0919793898
    [Google Scholar]
  2. GoteV. BollaP.K. KommineniN. ButreddyA. NukalaP.K. PalakurthiS.S. KhanW. A comprehensive review of mRNA vaccines.Int. J. Mol. Sci.2023243270010.3390/ijms2403270036769023
    [Google Scholar]
  3. RzymskiP. Szuster-CiesielskaA. DzieciątkowskiT. GwenziW. FalA. mRNA vaccines: The future of prevention of viral infections?J. Med. Virol.2023952e2857210.1002/jmv.2857236762592
    [Google Scholar]
  4. PardiN. HoganM.J. PorterF.W. WeissmanD. mRNA vaccines - A new era in vaccinology.Nat. Rev. Drug Discov.201817426127910.1038/nrd.2017.24329326426
    [Google Scholar]
  5. HoganM.J. PardiN. mRNA vaccines in the COVID-19 pandemic and beyond.Annu. Rev. Med.2022731173910.1146/annurev‑med‑042420‑11272534669432
    [Google Scholar]
  6. PardiN. HoganM.J. WeissmanD. Recent advances in mRNA vaccine technology.Curr. Opin. Immunol.202065142010.1016/j.coi.2020.01.00832244193
    [Google Scholar]
  7. PolackF.P. ThomasS.J. KitchinN. AbsalonJ. GurtmanA. LockhartS. PerezJ.L. Pérez MarcG. MoreiraE.D. ZerbiniC. BaileyR. SwansonK.A. RoychoudhuryS. KouryK. LiP. KalinaW.V. CooperD. FrenckR.W. HammittL.L. TüreciÖ. NellH. SchaeferA. ÜnalS. TresnanD.B. MatherS. DormitzerP.R. ŞahinU. JansenK.U. GruberW.C. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine.N. Engl. J. Med.2020383272603261510.1056/NEJMoa203457733301246
    [Google Scholar]
  8. BadenL.R. El SahlyH.M. EssinkB. KotloffK. FreyS. NovakR. DiemertD. SpectorS.A. RouphaelN. CreechC.B. McGettiganJ. KhetanS. SegallN. SolisJ. BroszA. FierroC. SchwartzH. NeuzilK. CoreyL. GilbertP. JanesH. FollmannD. MarovichM. MascolaJ. PolakowskiL. LedgerwoodJ. GrahamB.S. BennettH. PajonR. KnightlyC. LeavB. DengW. ZhouH. HanS. IvarssonM. MillerJ. ZaksT. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine.N. Engl. J. Med.2021384540341610.1056/NEJMoa203538933378609
    [Google Scholar]
  9. ChavdaV. SoniS. VoraL. SoniS. KhadelaA. AjabiyaJ. mRNA-based vaccines and therapeutics for COVID-19 and future pandemics.Vaccines (Basel)20221012215010.3390/vaccines1012215036560560
    [Google Scholar]
  10. WojtczakB.A. SikorskiP.J. Fac-DabrowskaK. NowickaA. WarminskiM. KubackaD. NowakE. NowotnyM. KowalskaJ. JemielityJ. 5′-phosphorothiolate dinucleotide cap analogues: Reagents for messenger RNA modification and potent small-molecular inhibitors of decapping enzymes.J. Am. Chem. Soc.2018140185987599910.1021/jacs.8b0259729676910
    [Google Scholar]
  11. LiB. LuoX. DongY. Effects of chemically modified messenger RNA on protein expression.Bioconjug. Chem.201627384985310.1021/acs.bioconjchem.6b0009026906521
    [Google Scholar]
  12. SvitkinY.V. ChengY.M. ChakrabortyT. PresnyakV. JohnM. SonenbergN. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density.Nucleic Acids Res.201745106023603610.1093/nar/gkx13528334758
    [Google Scholar]
  13. KaczmarekJ.C. KowalskiP.S. AndersonD.G. Advances in the delivery of RNA therapeutics: From concept to clinical reality.Genome Med.2017916010.1186/s13073‑017‑0450‑028655327
    [Google Scholar]
  14. ZhuN. ZhangD. WangW. LiX. YangB. SongJ. ZhaoX. HuangB. ShiW. LuR. NiuP. ZhanF. MaX. WangD. XuW. WuG. GaoG.F. TanW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa200101731978945
    [Google Scholar]
  15. ChavdaV.P. JogiG. DaveS. PatelB.M. Vineela NallaL. KoradiaK. mRNA-based vaccine for COVID-19: They are new but not unknown!Vaccines (Basel)202311350710.3390/vaccines1103050736992091
    [Google Scholar]
  16. ChavdaV. ChhabriaM. ApostolopoulosV. Aged population and immunocompromised patients: Impact on SARS-CoV-2 variants and treatment outcomes.Biologics20222316517010.3390/biologics2030013
    [Google Scholar]
  17. KyriakidisN.C. López-CortésA. GonzálezE.V. GrimaldosA.B. PradoE.O. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates.NPJ Vaccines2021612810.1038/s41541‑021‑00292‑w33619260
    [Google Scholar]
  18. SsentongoP. SsentongoA.E. VoletiN. GroffD. SunA. BaD.M. NunezJ. ParentL.J. ChinchilliV.M. PaulesC.I. SARS-CoV-2 vaccine effectiveness against infection, symptomatic and severe COVID-19: A systematic review and meta-analysis.BMC Infect. Dis.202222143910.1186/s12879‑022‑07418‑y35525973
    [Google Scholar]
  19. KaurS.P. GuptaV. COVID-19 vaccine: A comprehensive status report.Virus Res.202028819811410.1016/j.virusres.2020.19811432800805
    [Google Scholar]
  20. VasireddyD. AtluriP. MalayalaS.V. VanaparthyR. MohanG. Review of COVID-19 vaccines approved in the United States of America for emergency use.J. Clin. Med. Res.202113420421310.14740/jocmr449034007358
    [Google Scholar]
  21. FerraraP. PonticelliD. LosaL. RomeoC. MagliuoloR. VitaleA. ZampellaA. AlleanzaL. BorrelliM. SchiavoneB. MantovaniL.G. Risk of repeated adverse effects following booster dose of mRNA COVID-19 vaccine: Results from the MOSAICO study.Vaccines (Basel)202311224710.3390/vaccines1102024736851125
    [Google Scholar]
  22. GiannottaG. MurroneA. GiannottaN. COVID-19 mRNA vaccines: The molecular basis of some adverse events.Vaccines (Basel)202311474710.3390/vaccines1104074737112659
    [Google Scholar]
  23. XuW. RenW. WuT. WangQ. LuoM. YiY. LiJ. Real-world safety of COVID-19 mRNA vaccines: A systematic review and meta-analysis.Vaccines (Basel)2023116111810.3390/vaccines1106111837376508
    [Google Scholar]
  24. ZhengC. ShaoW. ChenX. ZhangB. WangG. ZhangW. Real-world effectiveness of COVID-19 vaccines: A literature review and meta-analysis.Int. J. Infect. Dis.202211425226010.1016/j.ijid.2021.11.00934800687
    [Google Scholar]
  25. AlagozO. SethiA.K. PattersonB.W. ChurpekM. AlhanaeeG. ScariaE. SafdarN. The impact of vaccination to control COVID-19 burden in the United States: A simulation modeling approach.PLoS One2021167e025445610.1371/journal.pone.025445634260633
    [Google Scholar]
  26. CromerD. SteainM. ReynaldiA. SchlubT.E. WheatleyA.K. JunoJ.A. KentS.J. TriccasJ.A. KhouryD.S. DavenportM.P. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: A meta-analysis.Lancet Microbe202231e52e6110.1016/S2666‑5247(21)00267‑634806056
    [Google Scholar]
  27. ChavdaV.P. ViholD.R. SolankiH.K. ApostolopoulosV. The vaccine world of COVID-19: India’s contribution.Vaccines (Basel)20221011194310.3390/vaccines1011194336423038
    [Google Scholar]
  28. LuR. ZhaoX. LiJ. NiuP. YangB. WuH. WangW. SongH. HuangB. ZhuN. BiY. MaX. ZhanF. WangL. HuT. ZhouH. HuZ. ZhouW. ZhaoL. ChenJ. MengY. WangJ. LinY. YuanJ. XieZ. MaJ. LiuW.J. WangD. XuW. HolmesE.C. GaoG.F. WuG. ChenW. ShiW. TanW. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑832007145
    [Google Scholar]
  29. ZhangH. PenningerJ.M. LiY. ZhongN. SlutskyA.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target.Intensive Care Med.202046458659010.1007/s00134‑020‑05985‑932125455
    [Google Scholar]
  30. HarveyW.T. CarabelliA.M. JacksonB. GuptaR.K. ThomsonE.C. HarrisonE.M. LuddenC. ReeveR. RambautA. PeacockS.J. RobertsonD.L. SARS-CoV-2 variants, spike mutations and immune escape.Nat. Rev. Microbiol.202119740942410.1038/s41579‑021‑00573‑034075212
    [Google Scholar]
  31. Masrour-RoudsariJ. EbrahimpourS. Causal role of infectious agents in cancer: An overview.Caspian J. Intern. Med.20178315315828932365
    [Google Scholar]
  32. JahankhaniK. AhangariF. AdcockI.M. MortazE. Possible cancer-causing capacity of COVID-19: Is SARS-CoV-2 an oncogenic agent?Biochimie202321313013810.1016/j.biochi.2023.05.01437230238
    [Google Scholar]
  33. GoyalK. GoelH. BaranwalP. TewaryA. DixitA. PandeyA.K. BenjaminM. TanwarP. DeyA. KhanF. PandeyP. GuptaP.K. KumarD. RoychoudhuryS. JhaN.K. UpadhyayT.K. KesariK.K. Immunological mechanisms of vaccine-induced protection against SARS-CoV-2 in humans.Immuno20211444245610.3390/immuno1040032
    [Google Scholar]
  34. IavaroneC. O’haganD.T. YuD. DelahayeN.F. UlmerJ.B. Mechanism of action of mRNA-based vaccines.Expert Rev. Vaccines201716987188110.1080/14760584.2017.135524528701102
    [Google Scholar]
  35. DesterroJ. Bak-GordonP. Carmo-FonsecaM. Targeting mRNA processing as an anticancer strategy.Nat. Rev. Drug Discov.202019211212910.1038/s41573‑019‑0042‑331554928
    [Google Scholar]
  36. FabbriL. ChakrabortyA. RobertC. VagnerS. The plasticity of mRNA translation during cancer progression and therapy resistance.Nat. Rev. Cancer202121955857710.1038/s41568‑021‑00380‑y34341537
    [Google Scholar]
  37. QinS. TangX. ChenY. ChenK. FanN. XiaoW. ZhengQ. LiG. TengY. WuM. SongX. mRNA-based therapeutics: Powerful and versatile tools to combat diseases.Signal Transduct. Target. Ther.20227116610.1038/s41392‑022‑01007‑w35597779
    [Google Scholar]
  38. JarallahS.J. AldossaryA.M. TawfikE.A. AltamimiR.M. AlsharifW.K. AlzahraniN.M. As SobeaiH.M. QamarW. AlfahadA.J. AlshabibiM.A. AlqahtaniS.H. AlshehriA.A. AlmughemF.A. GL67 lipid-based liposomal formulation for efficient siRNA delivery into human lung cancer cells.Saudi Pharm. J.20233171139114810.1016/j.jsps.2023.05.01737273265
    [Google Scholar]
  39. FangE. LiuX. LiM. ZhangZ. SongL. ZhuB. WuX. LiuJ. ZhaoD. LiY. Advances in COVID-19 mRNA vaccine development.Signal Transduct. Target. Ther.2022719410.1038/s41392‑022‑00950‑y35322018
    [Google Scholar]
  40. ParveenA. ElkordyA.A. Brief insights into mRNA vaccines: Their successful production and nanoformulation for effective response against COVID-19 and their potential success for influenza A and B.Pathogens202413650010.3390/pathogens1306050038921798
    [Google Scholar]
  41. KonE. EliaU. PeerD. Principles for designing an optimal mRNA lipid nanoparticle vaccine.Curr. Opin. Biotechnol.20227332933610.1016/j.copbio.2021.09.01634715546
    [Google Scholar]
  42. BettiniE. LocciM. SARS-CoV-2 mRNA vaccines: Immunological mechanism and beyond.Vaccines (Basel)20219214710.3390/vaccines902014733673048
    [Google Scholar]
  43. BloomK. van den BergF. ArbuthnotP. Self-amplifying RNA vaccines for infectious diseases.Gene Ther.2021283-411712910.1038/s41434‑020‑00204‑y33093657
    [Google Scholar]
  44. PapukashviliD. RcheulishviliN. LiuC. JiY. HeY. WangP.G. Self-amplifying RNA approach for protein replacement therapy.Int. J. Mol. Sci.202223211288410.3390/ijms23211288436361673
    [Google Scholar]
  45. FrosJ. PijlmanG. Alphavirus infection: Host cell shut-off and inhibition of antiviral responses.Viruses20168616610.3390/v806016627294951
    [Google Scholar]
  46. GötteB. LiuL. McInerneyG. The enigmatic alphavirus non-structural protein 3 (nsP3) revealing its secrets at last.Viruses201810310510.3390/v1003010529495654
    [Google Scholar]
  47. Al FayezN. NassarM.S. AlshehriA.A. AlnefaieM.K. AlmughemF.A. AlshehriB.Y. AlawadA.O. TawfikE.A. Recent advancement in mRNA vaccine development and applications.Pharmaceutics2023157197210.3390/pharmaceutics1507197237514158
    [Google Scholar]
  48. KimJ. EygerisY. GuptaM. SahayG. Self-assembled mRNA vaccines.Adv. Drug Deliv. Rev.20211708311210.1016/j.addr.2020.12.01433400957
    [Google Scholar]
  49. FesselJ. A vaccine to prevent initial loss of cognition and eventual Alzheimer’s disease in elderly persons.Alzheimers Dement. (N.Y.)202171e1212610.1002/trc2.1212633598529
    [Google Scholar]
  50. WangY.S. KumariM. ChenG.H. HongM.H. YuanJ.P.Y. TsaiJ.L. WuH.C. mRNA-based vaccines and therapeutics: An in-depth survey of current and upcoming clinical applications.J. Biomed. Sci.20233018410.1186/s12929‑023‑00977‑537805495
    [Google Scholar]
  51. IgyártóB.Z. QinZ. The mRNA-LNP vaccines – The good, the bad and the ugly?Front. Immunol.202415133690610.3389/fimmu.2024.133690638390323
    [Google Scholar]
  52. PoliskeyJ.A. CrowleyS.T. RamanathanR. WhiteC.W. MathewB. RiceK.G. Metabolically stabilized double-stranded mRNA polyplexes.Gene Ther.201825747348410.1038/s41434‑018‑0038‑330154525
    [Google Scholar]
  53. TanL. ZhengT. LiM. ZhongX. TangY. QinM. SunX. Optimization of an mRNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates.Drug Deliv. Transl. Res.202010367868910.1007/s13346‑020‑00725‑432048201
    [Google Scholar]
  54. KaczmarekJ.C. KauffmanK.J. FentonO.S. SadtlerK. PatelA.K. HeartleinM.W. DeRosaF. AndersonD.G. Optimization of a degradable polymer-lipid nanoparticle for potent systemic delivery of mRNA to the lung endothelium and immune cells.Nano Lett.201818106449645410.1021/acs.nanolett.8b0291730211557
    [Google Scholar]
  55. ZhouK. NguyenL.H. MillerJ.B. YanY. KosP. XiongH. LiL. HaoJ. MinnigJ.T. ZhuH. SiegwartD.J. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model.Proc. Natl. Acad. Sci. USA2016113352052510.1073/pnas.152075611326729861
    [Google Scholar]
  56. UlkoskiD. BakA. WilsonJ.T. KrishnamurthyV.R. Recent advances in polymeric materials for the delivery of RNA therapeutics.Expert Opin. Drug Deliv.201916111149116710.1080/17425247.2019.166382231498013
    [Google Scholar]
  57. KimY. KimH. KimE.H. JangH. JangY. ChiS.G. YangY. KimS.H. The potential of cell-penetrating peptides for mRNA delivery to cancer cells.Pharmaceutics2022146127110.3390/pharmaceutics1406127135745843
    [Google Scholar]
  58. ChintakuntaR. BuaronN. KahnN. MoriahA. LifshizR. GoldbartR. TraitelT. TylerB. BremH. KostJ. Synthesis, characterization, and self-assembly with plasmid DNA of a quaternary ammonium derivative of pectic galactan and its fluorescent labeling for bioimaging applications.Carbohydr. Polym.201615030831810.1016/j.carbpol.2016.05.01527312642
    [Google Scholar]
  59. SolomunJ.I. CinarG. MapfumoP. RichterF. MoekE. HausigF. MartinL. HoeppenerS. NischangI. TraegerA. Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery.Int. J. Pharm.202159312008010.1016/j.ijpharm.2020.12008033246046
    [Google Scholar]
  60. ZhaoM. LiM. ZhangZ. GongT. SunX. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA.Drug Deliv.20162372596260710.3109/10717544.2015.103885626024387
    [Google Scholar]
  61. LiM. ZhaoM. FuY. LiY. GongT. ZhangZ. SunX. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways.J. Control. Release201622891910.1016/j.jconrel.2016.02.04326941035
    [Google Scholar]
  62. ChoiH.Y. LeeT.J. YangG.M. OhJ. WonJ. HanJ. JeongG.J. KimJ. KimJ.H. KimB.S. ChoS.G. Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells.J. Control. Release201623522223510.1016/j.jconrel.2016.06.00727266364
    [Google Scholar]
  63. SchoenmakerL. WitzigmannD. KulkarniJ.A. VerbekeR. KerstenG. JiskootW. CrommelinD.J.A. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability.Int. J. Pharm.202160112058610.1016/j.ijpharm.2021.12058633839230
    [Google Scholar]
  64. HouX. ZaksT. LangerR. DongY. Lipid nanoparticles for mRNA delivery.Nat. Rev. Mater.20216121078109410.1038/s41578‑021‑00358‑034394960
    [Google Scholar]
  65. BuckJ. GrossenP. CullisP.R. HuwylerJ. WitzigmannD. Lipid-based DNA therapeutics: Hallmarks of non-viral gene delivery.ACS Nano20191343754378210.1021/acsnano.8b0785830908008
    [Google Scholar]
  66. KauffmanK.J. WebberM.J. AndersonD.G. Materials for non-viral intracellular delivery of messenger RNA therapeutics.J. Control. Release201624022723410.1016/j.jconrel.2015.12.03226718856
    [Google Scholar]
  67. CullisP.R. HopeM.J. Lipid nanoparticle systems for enabling gene therapies.Mol. Ther.20172571467147510.1016/j.ymthe.2017.03.01328412170
    [Google Scholar]
  68. ParhizH. Atochina-VassermanE.N. WeissmanD. mRNA-based therapeutics: Looking beyond COVID-19 vaccines.Lancet2024403104321192120410.1016/S0140‑6736(23)02444‑338461842
    [Google Scholar]
  69. LiM. DuC. GuoN. TengY. MengX. SunH. LiS. YuP. GalonsH. Composition design and medical application of liposomes.Eur. J. Med. Chem.201916464065310.1016/j.ejmech.2019.01.00730640028
    [Google Scholar]
  70. DuC. LiS. LiY. GalonsH. GuoN. TengY. ZhangY. LiM. YuP. F7 and topotecan co-loaded thermosensitive liposome as a nano-drug delivery system for tumor hyperthermia.Drug Deliv.202027183684710.1080/10717544.2020.177240932508162
    [Google Scholar]
  71. GkionisL. AojulaH. HarrisL.K. TirellaA. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics.Int. J. Pharm.202160412071110.1016/j.ijpharm.2021.12071134015381
    [Google Scholar]
  72. RamirezR.E.R. OrthE.S. PiresC. ZawadzkiS.F. de FreitasR.A. DODAB-DOPE liposome surface coating using in-situ acrylic acid polymerization.J. Mol. Liq.202133011568910.1016/j.molliq.2021.115689
    [Google Scholar]
  73. LiJ. ZhouS. YuJ. CaiW. YangY. KuangX. LiuH. HeZ. WangY. Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy.J. Control. Release202133530631910.1016/j.jconrel.2021.05.04034081995
    [Google Scholar]
  74. Mojarad-JabaliS. FarshbafM. WalkerP.R. HemmatiS. FatahiY. Zakeri-MilaniP. SarfrazM. ValizadehH. An update on actively targeted liposomes in advanced drug delivery to glioma.Int. J. Pharm.202160212064510.1016/j.ijpharm.2021.12064533915182
    [Google Scholar]
  75. TakataH. ShimizuT. KawaguchiY. UedaH. ElsadekN.E. AndoH. IshimaY. IshidaT. Nucleic acids delivered by PEGylated cationic liposomes in systemic lupus erythematosus-prone mice: A possible exacerbation of lupus nephritis in the presence of pre-existing anti-nucleic acid antibodies.Int. J. Pharm.202160112052910.1016/j.ijpharm.2021.12052933781884
    [Google Scholar]
  76. LiM. LiY. LiS. JiaL. WangH. LiM. DengJ. ZhuA. MaL. LiW. YuP. ZhuT. The nano delivery systems and applications of mRNA.Eur. J. Med. Chem.202222711391010.1016/j.ejmech.2021.11391034689071
    [Google Scholar]
  77. BlakneyA.K. AbdouniY. YilmazG. LiuR. McKayP.F. BoutonC.R. ShattockR.J. BecerC.R. Mannosylated poly (ethylene imine) copolymers enhance saRNA uptake and expression in human skin explants.Biomacromolecules20202162482249210.1021/acs.biomac.0c0044532250603
    [Google Scholar]
  78. VogelA.B. LambertL. KinnearE. BusseD. ErbarS. ReuterK.C. WickeL. PerkovicM. BeissertT. HaasH. ReeceS.T. SahinU. TregoningJ.S. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses.Mol. Ther.201826244645510.1016/j.ymthe.2017.11.01729275847
    [Google Scholar]
  79. SolimanO.Y. AlamehM.G. De CresenzoG. BuschmannM.D. LavertuM. Efficiency of chitosan/hyaluronan-based mRNA delivery systems in vitro: Influence of composition and structure.J. Pharm. Sci.202010941581159310.1016/j.xphs.2019.12.02031891675
    [Google Scholar]
  80. GuoQ. ZhangL. HeM. JiangX. TianJ. LiQ. LiuZ. WangL. SunH. Doxorubicin-loaded natural daptomycin micelles with enhanced targeting and anti-tumor effect in vivo.Eur. J. Med. Chem.202122211358210.1016/j.ejmech.2021.11358234126458
    [Google Scholar]
  81. RoloffA. NellesD.A. ThompsonM.P. YeoG.W. GianneschiN.C. Self-transfecting micellar RNA: Modulating nanoparticle cell interactions via high density display of small molecule ligands on micelle coronas.Bioconjug. Chem.201829112613510.1021/acs.bioconjchem.7b0065729286237
    [Google Scholar]
  82. ChanL.Y. KhungY.L. LinC.Y. Preparation of messenger RNA nanomicelles via non-cytotoxic PEG-polyamine nanocomplex for intracerebroventicular delivery: A proof-of-concept study in mouse models.Nanomaterials (Basel)2019916710.3390/nano901006730621291
    [Google Scholar]
  83. AndersonE.J. RouphaelN.G. WidgeA.T. JacksonL.A. RobertsP.C. MakheneM. ChappellJ.D. DenisonM.R. StevensL.J. PruijssersA.J. McDermottA.B. FlachB. LinB.C. Doria-RoseN.A. O’DellS. SchmidtS.D. CorbettK.S. SwansonP.A. PadillaM. NeuzilK.M. BennettH. LeavB. MakowskiM. AlbertJ. CrossK. EdaraV.V. FloydK. SutharM.S. MartinezD.R. BaricR. BuchananW. LukeC.J. PhadkeV.K. RostadC.A. LedgerwoodJ.E. GrahamB.S. BeigelJ.H. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults.N. Engl. J. Med.2020383252427243810.1056/NEJMoa202843632991794
    [Google Scholar]
  84. ChoiA. KochM. WuK. ChuL. MaL. HillA. NunnaN. HuangW. OestreicherJ. ColpittsT. BennettH. LegaultH. PailaY. NestorovaB. DingB. MontefioriD. PajonR. MillerJ.M. LeavB. CarfiA. McPheeR. EdwardsD.K. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: An interim analysis.Nat. Med.202127112025203110.1038/s41591‑021‑01527‑y34526698
    [Google Scholar]
  85. Al-QeremW. Al BawabA.Q. HammadA. LingJ. AlasmariF. Willingness of the jordanian population to receive a COVID-19 booster dose: A cross-sectional study.Vaccines (Basel)202210341010.3390/vaccines1003041035335042
    [Google Scholar]
  86. ChaudharyN. WeissmanD. WhiteheadK.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation.Nat. Rev. Drug Discov.2021201181783810.1038/s41573‑021‑00283‑534433919
    [Google Scholar]
  87. AlbererM. Gnad-VogtU. HongH.S. MehrK.T. BackertL. FinakG. GottardoR. BicaM.A. GarofanoA. KochS.D. Fotin-MleczekM. HoerrI. ClemensR. von SonnenburgF. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open-label, non-randomised, prospective, first-in-human phase 1 clinical trial.Lancet2017390101011511152010.1016/S0140‑6736(17)31665‑328754494
    [Google Scholar]
  88. FeldmanR.A. FuhrR. SmolenovI. Mick RibeiroA. PantherL. WatsonM. SennJ.J. SmithM. AlmarssonӦ. PujarH.S. LaskaM.E. ThompsonJ. ZaksT. CiaramellaG. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials.Vaccine201937253326333410.1016/j.vaccine.2019.04.07431079849
    [Google Scholar]
  89. LutzJ. LazzaroS. HabbeddineM. SchmidtK.E. BaumhofP. MuiB.L. TamY.K. MaddenT.D. HopeM.J. HeidenreichR. Fotin-MleczekM. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines.NPJ Vaccines2017212910.1038/s41541‑017‑0032‑629263884
    [Google Scholar]
  90. BadenL.R. El SahlyH.M. EssinkB. FollmannD. HachigianG. StroutC. OvercashJ.S. Doblecki-LewisS. WhitakerJ.A. AndersonE.J. NeuzilK. CoreyL. PriddyF. TomassiniJ.E. BrownM. GirardB. StolmanD. UrdanetaV. WangX. DengW. ZhouH. DixitA. DasR. MillerJ.M. Long-term safety and effectiveness of mRNA-1273 vaccine in adults: COVE trial open-label and booster phases.Nat. Commun.2024151746910.1038/s41467‑024‑50376‑z39209823
    [Google Scholar]
  91. JungS.W. JeonJ.J. KimY.H. ChoeS.J. LeeS. Long-term risk of autoimmune diseases after mRNA-based SARS-CoV2 vaccination in a Korean, nationwide, population-based cohort study.Nat. Commun.2024151618110.1038/s41467‑024‑50656‑839039113
    [Google Scholar]
  92. HoerrI. ObstR. RammenseeH.G. JungG. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies.Eur. J. Immunol.20003011710.1002/1521‑4141(200001)30:1<1::AID‑IMMU1>3.0.CO;2‑#10602021
    [Google Scholar]
  93. KaramM. DaoudG. mRNA vaccines: Past, present, future.Asian J. Pharm. Sci.202217449152210.1016/j.ajps.2022.05.00336105317
    [Google Scholar]
  94. SahinU. KarikóK. TüreciÖ. mRNA-based therapeutics - Developing a new class of drugs.Nat. Rev. Drug Discov.2014131075978010.1038/nrd427825233993
    [Google Scholar]
  95. MossP. The T cell immune response against SARS-CoV-2.Nat. Immunol.202223218619310.1038/s41590‑021‑01122‑w35105982
    [Google Scholar]
  96. NanceK.D. MeierJ.L. Modifications in an emergency: The role of N1-methylpseudouridine in COVID-19 vaccines.ACS Cent. Sci.20217574875610.1021/acscentsci.1c0019734075344
    [Google Scholar]
  97. KremsnerP.G. Ahuad GuerreroR.A. Arana-ArriE. Aroca MartinezG.J. BontenM. ChandlerR. CorralG. De BlockE.J.L. EckerL. GaborJ.J. Garcia LopezC.A. GonzalesL. Granados GonzálezM.A. GoriniN. GrobuschM.P. HrabarA.D. JunkerH. KimuraA. LanataC.F. LehmannC. Leroux-RoelsI. MannP. Martinez-ReséndezM.F. OchoaT.J. PoyC.A. Reyes FentanesM.J. Rivera MejiaL.M. Ruiz HerreraV.V. Sáez-LlorensX. Schönborn-KellenbergerO. SchunkM. Sierra GarciaA. VergaraI. VerstraetenT. VicoM. OostvogelsL. LovesioL. DiezF. GrazzianiF. GanahaM.C. ZalatnikV.J. DittrichR.J. EspínolaL. LambertS. LonghiA. VecchioC. MastruzzoM. FernandezA. BorchowiekS. PotitoR. Ahuad GuerreroR.A. GuardianiF.M. CastellaS. FoccoliM. PederneraA. BraidaA. DuriganV. MartellaC. BobatA. BoggiaB.E. NemiS.A. TartaglioneJ.G. PiedimonteF.C. De BieJ. Reynales LondoñoH. Rodríguez OrdoñezP.A. García CruzJ.M. Bautista TolozaL. Ladino GonzálezM.C. Zambrano OchoaA.P. Prieto PraderaI. Torres HernandezD. Mazo ElorzaD.P. Collazos LennisM.F. Vanegas DominguezB. Solano MosqueraL.M. FendelR. FleischmannW.A. KoehneE. KreidenweissA. KöhlerC. EsenM. HornC. EbertsS. KroidlA. HuberK. ThielV. Mazara RosarioS. ReyesG. RiveraL. DonastorgY. LantiguaF. Torres AlmanzarD. CandelarioR. Peña MendezL. Rosario GomezN. Portolés-PérezA. Ascaso del RíoA. Laredo VelascoL. Bustinduy OdriozolaM.J. Larrea ArranzI. Martínez AlcortaL.I. Durán LaviñaM.I. Imaz-AyoN. MeijideS. García-de-VicuñaA. SantorcuatoA. GallegoM. Aguirre-GarcíaG.M. Olmos VegaJ. González LimónP. Vázquez VillarA. Chávez BarónJ. Arredondo SaldañaF. Luján PalaciosJ.D. Camacho ChozaL.J. Vázquez SaldañaE.G. Ortega DominguezS.J. Vega OrozcoK.S. Torres QuirozI.A. Martinez AvendañoA. Herrera SanchezJ. GuzmanE. Castro CastrezanaL. Ruiz Palacios y SantosG.M. de WinterR.F.J. de JongeH.K. SchnyderJ.L. BoersmaW. HesselsL. DjaminR. van der SarS. DeAntonioR. PeñaM. RebollonG. RojasM. EscobarJ. Hammerschlag IcazaB. Wong TD.Y. Barrera PerigaultP. RuizS. ChanM. Arias HooD.J. GilA.I. CelisC.R. BalmacedaM.P. FloresO. OchoaM. PeñaB. de la FlorC. WebbC.M. CornejoE. SanesF. MayorgaV. ValdiviezoG. Ramírez LamasS.P. Grandez CastilloG.A. LamaJ.R. Matta AguirreM.E. Arancibia LunaL.A. Carbajal PauletÓ. Zambrano OrtizJ. CamaraA. Guzman QuintanillaF. Diaz-ParraC. Morales-OlivaJ. CornejoR.E. RicaldeS.A. VidalJ. Rios NogalesL. Cheatham-SeitzD. GregoraciG. BrecxA. WalzL. VahrenhorstD. SeibelT. QuintiniG. Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial.Lancet Infect. Dis.202222332934010.1016/S1473‑3099(21)00677‑034826381
    [Google Scholar]
  98. (a BhattacharyaM. SharmaA.R. GhoshP. PatraP. PatraB.C. LeeS.S. ChakrabortyC. Bioengineering of novel non-replicating mRNA (NRM) and self-amplifying mRNA (SAM) vaccine candidates against sars-cov-2 using immunoinformatics approach.Mol. Biotechnol.202264551052510.1007/s12033‑021‑00432‑634981440
    [Google Scholar]
  99. (bBlakney, A.K., S. Ip, and A.J. Geall, An Update on Self-Amplifying mRNA Vaccine Development.Vaccines20219297
    [Google Scholar]
  100. JacksonN.A.C. KesterK.E. CasimiroD. GurunathanS. DeRosaF. The promise of mRNA vaccines: A biotech and industrial perspective.NPJ Vaccines2020511110.1038/s41541‑020‑0159‑832047656
    [Google Scholar]
  101. PascoloS. The messenger’s great message for vaccination.Expert Rev. Vaccines201514215315610.1586/14760584.2015.100087125586101
    [Google Scholar]
  102. RosaS.S. PrazeresD.M.F. AzevedoA.M. MarquesM.P.C. mRNA vaccines manufacturing: Challenges and bottlenecks.Vaccine202139162190220010.1016/j.vaccine.2021.03.03833771389
    [Google Scholar]
  103. PascoloS. Messenger RNA: The inexpensive biopharmaceutical.J. Multidiscip. Eng. Sci. Technol.201746937
    [Google Scholar]
  104. ChavdaV. HossainM. BeladiyaJ. ApostolopoulosV. Nucleic acid vaccines for COVID-19: A paradigm shift in the vaccine development arena.Biologics20211333735610.3390/biologics1030020
    [Google Scholar]
  105. ChavdaV.P. PandyaR. ApostolopoulosV. DNA vaccines for SARS-CoV-2: Toward third-generation vaccination era.Expert Rev. Vaccines202120121549156010.1080/14760584.2021.198722334582298
    [Google Scholar]
  106. YangH. RaoZ. Structural biology of SARS-CoV-2 and implications for therapeutic development.Nat. Rev. Microbiol.2021191168570010.1038/s41579‑021‑00630‑834535791
    [Google Scholar]
  107. KardaniK. BolhassaniA. ShahbaziS. Prime-boost vaccine strategy against viral infections: Mechanisms and benefits.Vaccine201634441342310.1016/j.vaccine.2015.11.06226691569
    [Google Scholar]
  108. AsturiasE.J. DuclosP. MacDonaldN.E. NohynekH. LambertP.H. Advanced vaccinology education: Landscaping its growth and global footprint.Vaccine202038304664467010.1016/j.vaccine.2020.05.03832475535
    [Google Scholar]
  109. AshrafM.U. KimY. KumarS. SeoD. AshrafM. BaeY.S. COVID-19 vaccines (revisited) and oral-mucosal vector system as a potential vaccine platform.Vaccines (Basel)20219217110.3390/vaccines902017133670630
    [Google Scholar]
  110. VikkurthiR. AnsariA. PaiA.R. JhaS.N. SachanS. PanditS. NikamB. KaliaA. JitB.P. ParrayH.A. SinghS. KshetrapalP. WadhwaN. ShrivastavaT. CoshicP. KumarS. SharmaP. SharmaN. TanejaJ. PandeyA.K. SharmaA. ThiruvengadamR. GrifoniA. WeiskopfD. SetteA. BhatnagarS. GuptaN. Inactivated whole-virion vaccine BBV152/Covaxin elicits robust cellular immune memory to SARS-CoV-2 and variants of concern.Nat. Microbiol.20227797498510.1038/s41564‑022‑01161‑535681012
    [Google Scholar]
  111. ChavdaV. BezbaruahR. DekaK. NongrangL. KalitaT. The Delta and omicron variants of SARS-CoV-2: What we know so far.Vaccines (Basel)20221011192610.3390/vaccines1011192636423021
    [Google Scholar]
  112. ChavdaV.P. ChenY. DaveJ. ChenZ.S. ChauhanS.C. YallapuM.M. UverskyV.N. BezbaruahR. PatelS. ApostolopoulosV. COVID-19 and vaccination: Myths vs science.Expert Rev. Vaccines202221111603162010.1080/14760584.2022.211490035980281
    [Google Scholar]
  113. ChavdaV.P. VuppuS. MishraT. KamarajS. PatelA.B. SharmaN. ChenZ.S. Recent review of COVID-19 management: Diagnosis, treatment and vaccination.Pharmacol. Rep.20227461120114810.1007/s43440‑022‑00425‑536214969
    [Google Scholar]
  114. ChavdaV.P. ApostolopoulosV. COVID-19 vaccine design and vaccination strategy for emerging variants.Expert Rev. Vaccines202221101359136110.1080/14760584.2022.211257135949150
    [Google Scholar]
  115. ChavdaV.P. BezbaruahR. AthalyeM. ParikhP.K. ChhipaA.S. PatelS. ApostolopoulosV. Replicating viral vector-based vaccines for COVID-19: Potential avenue in vaccination arena.Viruses202214475910.3390/v1404075935458489
    [Google Scholar]
  116. ChavdaV.P. ApostolopoulosV. Is booster dose strategy sufficient for omicron variant of SARS-CoV-2?Vaccines (Basel)202210336710.3390/vaccines1003036735334999
    [Google Scholar]
  117. LesserK. WhittakerG.R. Vaccination for COVID-19: Benchmarks in public health and virus transmission.Public Health2021197e2310.1016/j.puhe.2021.02.00233771367
    [Google Scholar]
  118. ZhaoZ. DengY. NiuP. SongJ. WangW. DuY. HuangB. WangW. ZhangL. ZhaoP. TanW. Co-immunization with CHIKV VLP and DNA vaccines induces a promising humoral response in mice.Front. Immunol.20211265574310.3389/fimmu.2021.65574333868299
    [Google Scholar]
  119. KalamsS.A. ParkerS.D. ElizagaM. MetchB. EdupugantiS. HuralJ. De RosaS. CarterD.K. RybczykK. FrankI. FuchsJ. KoblinB. KimD.H. JosephP. KeeferM.C. BadenL.R. EldridgeJ. BoyerJ. SherwatA. CardinaliM. AllenM. PensieroM. ButlerC. KhanA.S. YanJ. SardesaiN.Y. KublinJ.G. WeinerD.B. Safety and comparative immunogenicity of an HIV-1 DNA vaccine in combination with plasmid interleukin 12 and impact of intramuscular electroporation for delivery.J. Infect. Dis.2013208581882910.1093/infdis/jit23623840043
    [Google Scholar]
  120. BezbaruahR. ChavdaV.P. NongrangL. AlomS. DekaK. KalitaT. AliF. BhattacharjeeB. VoraL. Nanoparticle-based delivery systems for vaccines.Vaccines (Basel)20221011194610.3390/vaccines1011194636423041
    [Google Scholar]
  121. ShangJ. WanY. LuoC. YeG. GengQ. AuerbachA. LiF. Cell entry mechanisms of SARS-CoV-2.Proc. Natl. Acad. Sci. USA202011721117271173410.1073/pnas.200313811732376634
    [Google Scholar]
  122. DaganN. BardaN. KeptenE. MironO. PerchikS. KatzM.A. HernánM.A. LipsitchM. ReisB. BalicerR.D. BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting.N. Engl. J. Med.2021384151412142310.1056/NEJMoa210176533626250
    [Google Scholar]
  123. ArevaloC.P. BoltonM.J. Le SageV. YeN. FureyC. MuramatsuH. AlamehM.G. PardiN. DrapeauE.M. ParkhouseK. GarretsonT. MorrisJ.S. MonclaL.H. TamY.K. FanS.H.Y. LakdawalaS.S. WeissmanD. HensleyS.E. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes.Science2022378662289990410.1126/science.abm027136423275
    [Google Scholar]
  124. AoD. HeX. LiuJ. XuL. Strategies for the development and approval of COVID-19 vaccines and therapeutics in the post-pandemic period.Signal Transduct. Target. Ther.20238146610.1038/s41392‑023‑01724‑w38129394
    [Google Scholar]
  125. ZhongN.S. ZhengB.J. LiY.M. PoonL.L.M. XieZ.H. ChanK.H. LiP.H. TanS.Y. ChangQ. XieJ.P. LiuX.Q. XuJ. LiD.X. YuenK.Y. PeirisJ.S.M. GuanY. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003.Lancet200336293931353135810.1016/S0140‑6736(03)14630‑214585636
    [Google Scholar]
  126. LiY.D. ChiW.Y. SuJ.H. FerrallL. HungC.F. WuT.C. Coronavirus vaccine development: From SARS and MERS to COVID-19.J. Biomed. Sci.202027110410.1186/s12929‑020‑00695‑233341119
    [Google Scholar]
  127. TsengC.T. SbranaE. Iwata-YoshikawaN. NewmanP.C. GarronT. AtmarR.L. PetersC.J. CouchR.B. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus.PLoS One201274e3542110.1371/journal.pone.003542122536382
    [Google Scholar]
  128. BlidenK.P. LiuT. SreedharD. KostJ. HsiungJ. ZhaoS. ShanD. UsmanA. WaliaN. ChoA. JerjianC. Evolution of anti-SARS-CoV-2 IgG antibody and IgG avidity post Pfizer and Moderna mRNA vaccinations.medRxiv202110.1101/2021.06.28.21259338
    [Google Scholar]
  129. MacdonaldP.J. SchaubJ.M. RuanQ. WilliamsC.L. ProstkoJ.C. TetinS.Y. Affinity of anti-spike antibodies to three major SARS-CoV-2 variants in recipients of three major vaccines.Commun. Med. (Lond.)2109202210.1038/s43856‑022‑00174‑936034646
    [Google Scholar]
  130. LiuL. WeiQ. LinQ. FangJ. WangH. KwokH. TangH. NishiuraK. PengJ. TanZ. WuT. CheungK.W. ChanK.H. AlvarezX. QinC. LacknerA. PerlmanS. YuenK.Y. ChenZ. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection.JCI Insight201944e12315810.1172/jci.insight.12315830830861
    [Google Scholar]
  131. ShimizuJ. SasakiT. KoketsuR. MoritaR. YoshimuraY. MurakamiA. SaitoY. KusunokiT. SamuneY. NakayamaE.E. MiyazakiK. ShiodaT. Reevaluation of antibody-dependent enhancement of infection in anti-SARS-CoV-2 therapeutic antibodies and mRNA-vaccine antisera using FcR- and ACE2-positive cells.Sci. Rep.20221211561210.1038/s41598‑022‑19993‑w36114224
    [Google Scholar]
  132. WanY. Molecular mechanism for antibody-dependent enhancement of coronavirus entry.J. Virol.945e02015e02019202010.1128/JVI.02015‑19
    [Google Scholar]
  133. RickeD.O. Two different antibody-dependent enhancement (ADE) risks for SARS-CoV-2 antibodies.Front. Immunol.20211264009310.3389/fimmu.2021.64009333717193
    [Google Scholar]
  134. ThomasS. SmattiM.K. OuhtitA. CyprianF.S. AlmaslamaniM.A. ThaniA.A. YassineH.M. Antibody-Dependent Enhancement (ADE) and the role of complement system in disease pathogenesis.Mol. Immunol.202215217218210.1016/j.molimm.2022.11.01036371813
    [Google Scholar]
  135. Sánchez-ZunoG.A. Matuz-FloresM.G. González-EstevezG. NicolettiF. Turrubiates-HernándezF.J. ManganoK. Muñoz-ValleJ.F. A review: Antibody-dependent enhancement in COVID-19: The not so friendly side of antibodies.Int. J. Immunopathol. Pharmacol.2021352058738421105019910.1177/2058738421105019934632844
    [Google Scholar]
  136. XuL. MaZ. LiY. PangZ. XiaoS. Antibody dependent enhancement: Unavoidable problems in vaccine development.Adv. Immunol.20211519913310.1016/bs.ai.2021.08.00334656289
    [Google Scholar]
  137. LeeW.S. WheatleyA.K. KentS.J. DeKoskyB.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies.Nat. Microbiol.20205101185119110.1038/s41564‑020‑00789‑532908214
    [Google Scholar]
  138. LurieN. SavilleM. HatchettR. HaltonJ. Developing Covid-19 vaccines at pandemic speed.N. Engl. J. Med.2020382211969197310.1056/NEJMp200563032227757
    [Google Scholar]
  139. LondonA.J. KimmelmanJ. Against pandemic research exceptionalism.Science2020368649047647710.1126/science.abc173132327600
    [Google Scholar]
  140. TizardI.R. Vaccination against coronaviruses in domestic animals.Vaccine202038335123513010.1016/j.vaccine.2020.06.02632563608
    [Google Scholar]
  141. TakanoT. NakaguchiM. DokiT. HohdatsuT. Antibody-dependent enhancement of serotype II feline enteric coronavirus infection in primary feline monocytes.Arch. Virol.2017162113339334510.1007/s00705‑017‑3489‑828730523
    [Google Scholar]
  142. HamiltonZ. ReynoldsD. DonaldL. Antibody dependent enhancement of infectious bronchitis virus in poultry.2022Available from: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1303&context=ucareresearch
  143. BrandãoP.E. BergM. SilvaS.O.S. TaniwakiS.A. Emergence of Avian coronavirus escape mutants under suboptimal antibody titers.J. Mol. Evol.202290217618110.1007/s00239‑022‑10050‑835195749
    [Google Scholar]
  144. EldemeryF. LiY. YuQ. van SantenV.L. ToroH. Infectious bronchitis virus S2 of 4/91 expressed from recombinant virus does not protect against ark-type challenge.Avian Dis.201761339740110.1637/11632‑032017‑ResNoteR28957002
    [Google Scholar]
  145. RavikumarR. ChanJ. PrabakaranM. Vaccines against major poultry viral diseases: Strategies to improve the breadth and protective efficacy.Viruses2022146119510.3390/v1406119535746665
    [Google Scholar]
  146. ShaoG. ChenT. FengK. ZhaoQ. ZhangX. LiH. LinW. XieQ. Efficacy of commercial polyvalent avian infectious bronchitis vaccines against Chinese QX-like and TW-like strain via different vaccination strategies.Poult. Sci.202099104786479410.1016/j.psj.2020.06.06232988513
    [Google Scholar]
  147. HalmaM.T.J. RoseJ. LawrieT. The novelty of mRNA viral vaccines and potential harms: A scoping review.Multidiscip. Sci. J.62220235202310.3390/j6020017
    [Google Scholar]
  148. GerdtsV. ZakhartchoukA. Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses.Vet. Microbiol.2017206455110.1016/j.vetmic.2016.11.02927964998
    [Google Scholar]
  149. BuzhdyganT.P. DeOreB.J. Baldwin-LeclairA. BullockT.A. McGaryH.M. KhanJ.A. RazmpourR. HaleJ.F. GalieP.A. PotulaR. AndrewsA.M. RamirezS.H. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier.Neurobiol. Dis.202014610513110.1016/j.nbd.2020.10513133053430
    [Google Scholar]
  150. ForsythC.B. ZhangL. BhushanA. SwansonB. ZhangL. MamedeJ.I. VoigtR.M. ShaikhM. EngenP.A. KeshavarzianA. The SARS-CoV-2 S1 Spike Protein Promotes MAPK and NF-kB Activation in Human Lung Cells and Inflammatory Cytokine Production in Human Lung and Intestinal Epithelial Cells.Microorganisms20221010199610.3390/microorganisms1010199636296272
    [Google Scholar]
  151. ChoiJ.Y. ParkJ.H. JoC. KimK.C. KohY.H. SARS-CoV-2 spike S1 subunit protein-mediated increase of beta-secretase 1 (BACE1) impairs human brain vessel cells.Biochem. Biophys. Res. Commun.2022626667110.1016/j.bbrc.2022.07.11335970046
    [Google Scholar]
  152. NyströmS. HammarströmP. Amyloidogenesis of SARS-CoV-2 Spike Protein.J. Am. Chem. Soc.2022144208945895010.1021/jacs.2c0392535579205
    [Google Scholar]
  153. LeiY. ZhangJ. SchiavonC.R. HeM. ChenL. ShenH. ZhangY. YinQ. ChoY. AndradeL. ShadelG.S. HepokoskiM. LeiT. WangH. ZhangJ. YuanJ.X.J. MalhotraA. ManorU. WangS. YuanZ.Y. ShyyJ.Y.J. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE 2.Circ. Res.202112891323132610.1161/CIRCRESAHA.121.31890233784827
    [Google Scholar]
  154. KhanS. ShafieiM.S. LongoriaC. SchogginsJ.W. SavaniR.C. ZakiH. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway.eLife202110e6856310.7554/eLife.6856334866574
    [Google Scholar]
  155. WorobeyM. PekarJ. LarsenB.B. NelsonM.I. HillV. JoyJ.B. RambautA. SuchardM.A. WertheimJ.O. LemeyP. The emergence of sars-cov-2 in europe and north america.Science2020370651656457010.1126/science.abc816932912998
    [Google Scholar]
  156. DearloveB. LewitusE. BaiH. LiY. ReevesD.B. JoyceM.G. ScottP.T. AmareM.F. VasanS. MichaelN.L. ModjarradK. RollandM. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants.Proc. Natl. Acad. Sci. USA202011738236522366210.1073/pnas.200828111732868447
    [Google Scholar]
  157. RauschJ.W. CapoferriA.A. KatusiimeM.G. PatroS.C. KearneyM.F. Low genetic diversity may be an Achilles heel of SARS-CoV-2.Proc. Natl. Acad. Sci. USA202011740246142461610.1073/pnas.201772611732958678
    [Google Scholar]
  158. YangJ. WangW. ChenZ. LuS. YangF. BiZ. BaoL. MoF. LiX. HuangY. HongW. YangY. ZhaoY. YeF. LinS. DengW. ChenH. LeiH. ZhangZ. LuoM. GaoH. ZhengY. GongY. JiangX. XuY. LvQ. LiD. WangM. LiF. WangS. WangG. YuP. QuY. YangL. DengH. TongA. LiJ. WangZ. YangJ. ShenG. ZhaoZ. LiY. LuoJ. LiuH. YuW. YangM. XuJ. WangJ. LiH. WangH. KuangD. LinP. HuZ. GuoW. ChengW. HeY. SongX. ChenC. XueZ. YaoS. ChenL. MaX. ChenS. GouM. HuangW. WangY. FanC. TianZ. ShiM. WangF.S. DaiL. WuM. LiG. WangG. PengY. QianZ. HuangC. LauJ.Y.N. YangZ. WeiY. CenX. PengX. QinC. ZhangK. LuG. WeiX. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity.Nature2020586783057257710.1038/s41586‑020‑2599‑832726802
    [Google Scholar]
  159. CarabelliA.M. PeacockT.P. ThorneL.G. HarveyW.T. HughesJ. de SilvaT.I. PeacockS.J. BarclayW.S. de SilvaT.I. TowersG.J. RobertsonD.L. SARS-CoV-2 variant biology: Immune escape, transmission and fitness.Nat. Rev. Microbiol.202321316217710.1038/s41579‑022‑00841‑736653446
    [Google Scholar]
  160. MarkovP.V. GhafariM. BeerM. LythgoeK. SimmondsP. StilianakisN.I. KatzourakisA. The evolution of SARS-CoV-2.Nat. Rev. Microbiol.202321636137910.1038/s41579‑023‑00878‑237020110
    [Google Scholar]
  161. ColsonP. ChaudetH. DelerceJ. PontarottiP. LevasseurA. FantiniJ. La ScolaB. DevauxC. RaoultD. Role of SARS-CoV-2 mutations in the evolution of the COVID-19 pandemic.J. Infect.202488510615010.1016/j.jinf.2024.10615038570164
    [Google Scholar]
  162. MeneboM.M. Temperature and precipitation associate with Covid-19 new daily cases: A correlation study between weather and Covid-19 pandemic in Oslo, Norway.Sci. Total Environ.202073713965910.1016/j.scitotenv.2020.13965932492607
    [Google Scholar]
  163. ChanK.H. PeirisJ.S.M. LamS.Y. PoonL.L.M. YuenK.Y. SetoW.H. The effects of temperature and relative humidity on the viability of the SARS coronavirus.Adv. Virol.2011201111710.1155/2011/73469022312351
    [Google Scholar]
  164. GirmaA. The many mutations of the COVID-19 variant: Current perspectives on EG.5/Eris.Environ. Health Insights2023171178630223121780510.1177/1178630223121780538084254
    [Google Scholar]
  165. MiyahY. BenjellounM. LairiniS. LahrichiA. COVID‐19 impact on public health, environment, human psychology, global Socioeconomy, and education.ScientificWorldJournal2022202211810.1155/2022/557828435069037
    [Google Scholar]
  166. NavecaF.G. NascimentoV. de SouzaV.C. CoradoA.L. NascimentoF. SilvaG. CostaÁ. DuarteD. PessoaK. MejíaM. BrandãoM.J. JesusM. GonçalvesL. da CostaC.F. SampaioV. BarrosD. SilvaM. MattosT. PontesG. AbdallaL. SantosJ.H. ArantesI. DezordiF.Z. SiqueiraM.M. WallauG.L. ResendeP.C. DelatorreE. GräfT. BelloG. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence.Nat. Med.20212771230123810.1038/s41591‑021‑01378‑734035535
    [Google Scholar]
  167. MathavanS. KumarS. Evaluation of the effect of D614G, N501Y and S477N mutation in SARS-CoV-2 through computational approach.Preprints2020120710202010.20944/preprints202012.0710.v1
    [Google Scholar]
  168. KhanM.Z.I. NazliA. Al-furasH. AsadM.I. AjmalI. KhanD. ShahJ. FarooqM.A. JiangW. An overview of viral mutagenesis and the impact on pathogenesis of SARS-CoV-2 variants.Front. Immunol.202213103444410.3389/fimmu.2022.103444436518757
    [Google Scholar]
  169. BarretoH.G. de Pádua MilagresF.A. de AraújoG.C. DaúdeM.M. BeneditoV.A. Diagnosing the novel SARS-CoV-2 by quantitative RT-PCR: Variations and opportunities.J. Mol. Med. (Berl.)202098121727173610.1007/s00109‑020‑01992‑x33067676
    [Google Scholar]
  170. JayamohanH. LambertC.J. SantH.J. JafekA. PatelD. FengH. BeemanM. MahmoodT. NzeU. GaleB.K. SARS-CoV-2 pandemic: A review of molecular diagnostic tools including sample collection and commercial response with associated advantages and limitations.Anal. Bioanal. Chem.20214131497110.1007/s00216‑020‑02958‑133073312
    [Google Scholar]
  171. VogelsC.B.F. BritoA.F. WyllieA.L. FauverJ.R. OttI.M. KalinichC.C. PetroneM.E. Casanovas-MassanaA. Catherine MuenkerM. MooreA.J. KleinJ. LuP. Lu-CulliganA. JiangX. KimD.J. KudoE. MaoT. MoriyamaM. OhJ.E. ParkA. SilvaJ. SongE. TakahashiT. TauraM. TokuyamaM. VenkataramanA. WeizmanO.E. WongP. YangY. CheemarlaN.R. WhiteE.B. LapidusS. EarnestR. GengB. VijayakumarP. OdioC. FournierJ. BermejoS. FarhadianS. Dela CruzC.S. IwasakiA. KoA.I. LandryM.L. FoxmanE.F. GrubaughN.D. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets.Nat. Microbiol.20205101299130510.1038/s41564‑020‑0761‑632651556
    [Google Scholar]
  172. WuF. ZhaoS. YuB. ChenY.M. WangW. SongZ.G. HuY. TaoZ.W. TianJ.H. PeiY.Y. YuanM.L. ZhangY.L. DaiF.H. LiuY. WangQ.M. ZhengJ.J. XuL. HolmesE.C. ZhangY.Z. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526910.1038/s41586‑020‑2008‑332015508
    [Google Scholar]
  173. DelpinoM.V. QuarleriJ. SARS-CoV-2 pathogenesis: Imbalance in the renin-angiotensin system favors lung fibrosis.Front. Cell. Infect. Microbiol.20201034010.3389/fcimb.2020.0034032596170
    [Google Scholar]
  174. WigénJ. LöfdahlA. BjermerL. Elowsson RendinL. Westergren-ThorssonG. Converging pathways in pulmonary fibrosis and Covid-19 - The fibrotic link to disease severity.Respir. Med. X2020210002310.1016/j.yrmex.2020.10002333083782
    [Google Scholar]
  175. OlajuyinA.M. ZhangX. JiH.L. Alveolar type 2 progenitor cells for lung injury repair.Cell Death Discov.2019516310.1038/s41420‑019‑0147‑930774991
    [Google Scholar]
  176. AhnD.G. ShinH.J. KimM.H. LeeS. KimH.S. MyoungJ. KimB.T. KimS.J. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19).J. Microbiol. Biotechnol.202030331332410.4014/jmb.2003.0301132238757
    [Google Scholar]
  177. FernandezI.E. EickelbergO. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis.Lancet2012380984268068810.1016/S0140‑6736(12)61144‑122901889
    [Google Scholar]
  178. HarapanH. ItohN. YufikaA. WinardiW. KeamS. TeH. MegawatiD. HayatiZ. WagnerA.L. MudatsirM. Coronavirus disease 2019 (COVID-19): A literature review.J. Infect. Public Health202013566767310.1016/j.jiph.2020.03.01932340833
    [Google Scholar]
  179. SinghN. BabyD. RajguruJ. PatilP. ThakkannavarS. PujariV. Inflammation and cancer.Ann. Afr. Med.201918312112610.4103/aam.aam_56_1831417011
    [Google Scholar]
  180. WuG. XuG. ChenD.W. GaoW.X. XiongJ.Q. ShenH.Y. GaoY.Q. Hypoxia exacerbates inflammatory acute lung injury via the toll-like receptor 4 signaling pathway.Front. Immunol.20189166710.3389/fimmu.2018.0166730083155
    [Google Scholar]
  181. OsmanM.S. van EedenC. Cohen TervaertJ.W. Fatal COVID-19 infections: Is NK cell dysfunction a link with autoimmune HLH?Autoimmun. Rev.202019710256110.1016/j.autrev.2020.10256132376401
    [Google Scholar]
  182. ZhouS. WangY. ZhuT. XiaL. CT features of coronavirus disease 2019 (COVID-19) pneumonia in 62 patients in Wuhan, China.AJR Am. J. Roentgenol.202021461287129410.2214/AJR.20.2297532134681
    [Google Scholar]
  183. LuoL. LuoZ. JiaY. ZhouC. HeJ. LyuJ. ShenX. CT differential diagnosis of COVID-19 and non-COVID-19 in symptomatic suspects: A practical scoring method.BMC Pulm. Med.202020112910.1186/s12890‑020‑1170‑632381057
    [Google Scholar]
  184. LeeL. IyerS. JoseR.J. ManuelA. COVID-19 follow-up planning: What will we be missing?ERJ Open Res.20206200198-202010.1183/23120541.00198‑202032494576
    [Google Scholar]
  185. AlipoorS.D. JamaatiH. TabarsiP. MortazE. Immunopathogenesis of pneumonia in COVID-19.Tanaffos2020192798233262791
    [Google Scholar]
  186. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑531986264
    [Google Scholar]
  187. Costela-RuizV.J. Illescas-MontesR. Puerta-PuertaJ.M. RuizC. Melguizo-RodríguezL. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease.Cytokine Growth Factor Rev.202054627510.1016/j.cytogfr.2020.06.00132513566
    [Google Scholar]
  188. RiemersmaK.K. HaddockL.A. WilsonN.A. MinorN. EickhoffJ. GroganB.E. Kita-YarbroA. HalfmannP.J. SegaloffH.E. KocharianA. FlorekK.R. WestergaardR. BatemanA. JeppsonG.E. KawaokaY. O’ConnorD.H. FriedrichT.C. GrandeK.M. Shedding of infectious SARS-CoV-2 despite vaccination.PLoS Pathog.2022189e101087610.1371/journal.ppat.101087636178969
    [Google Scholar]
  189. KampfG. The epidemiological relevance of the COVID-19-vaccinated population is increasing.Lancet Reg. Health Eur.20211110027210.1016/j.lanepe.2021.10027234841383
    [Google Scholar]
  190. SinganayagamA. HakkiS. DunningJ. MadonK.J. CroneM.A. KoychevaA. Derqui-FernandezN. BarnettJ.L. WhitfieldM.G. VarroR. CharlettA. KunduR. FennJ. CutajarJ. QuinnV. ConibearE. BarclayW. FreemontP.S. TaylorG.P. AhmadS. ZambonM. FergusonN.M. LalvaniA. BadhanA. DustanS. TejpalC. KetkarA.V. NareanJ.S. HammettS. McDermottE. PillayT. HoustonH. LucaC. SamuelJ. BremangS. EvettsS. PohJ. AndersonC. JacksonD. MiahS. EllisJ. LackenbyA. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: A prospective, longitudinal, cohort study.Lancet Infect. Dis.202222218319510.1016/S1473‑3099(21)00648‑434756186
    [Google Scholar]
  191. HetemäkiI. KääriäinenS. AlhoP. MikkolaJ. Savolainen-KopraC. IkonenN. NohynekH. LyytikäinenO. An outbreak caused by the SARS-CoV-2 Delta variant (B.1.617.2) in a secondary care hospital in Finland, May 2021.Euro Surveill.20212630210063610.2807/1560‑7917.ES.2021.26.30.210063634328076
    [Google Scholar]
  192. ChauN.V.V. NgocN.M. NguyetL.A. QuangV.M. NyN.T.H. KhoaD.B. PhongN.T. ToanL.M. HongN.T.T. TuyenN.T.K. PhatV.V. NhuL.N.T. TrucN.H.T. ThatB.T.T. ThaoH.P. ThaoT.N.P. VuongV.T. TamT.T.T. TaiN.T. BaoH.T. NhungH.T.K. MinhN.T.N. TienN.T.M. HuyN.C. ChoisyM. ManD.N.H. TyD.T.B. AnhN.T. UyenL.T.T. TuT.N.H. YenL.M. DungN.T. HungL.M. TruongN.T. ThanhT.T. ThwaitesG. TanL.V. An observational study of breakthrough SARS-CoV-2 Delta variant infections among vaccinated healthcare workers in Vietnam.EClinicalMedicine20214110114310.1016/j.eclinm.2021.10114334608454
    [Google Scholar]
  193. SivanG. ShlezingerR. PerezG. LotanR. PeretzA. Ben-TovA. CohenD. MuhsenK. ChodickG. PatalonJ. Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity: Reinfections versus breakthrough infections.medRxiv202110.1101/2021.08.24.21262415
    [Google Scholar]
  194. TsengH.F. AckersonB.K. BruxvoortK.J. SyL.S. TubertJ.E. LeeG.S. KuJ.H. FloreaA. LuoY. QiuS. ChoiS.K. TakharH.S. AragonesM. PailaY.D. ChaversS. TalaricoC.A. QianL. Effectiveness of mRNA-1273 vaccination against SARS-CoV-2 omicron subvariants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5.Nat. Commun.202314118910.1038/s41467‑023‑35815‑736635284
    [Google Scholar]
  195. LiuW.J. ZhaoM. LiuK. XuK. WongG. TanW. GaoG.F. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV.Antiviral Res.2017137829210.1016/j.antiviral.2016.11.00627840203
    [Google Scholar]
  196. HenningsV. ThörnK. AlbinssonS. LingblomC. AnderssonK. AnderssonC. JärburK. PulleritsR. IdornM. PaludanS.R. ErikssonK. WenneråsC. The presence of serum anti‐SARS‐CoV‐2 IgA appears to protect primary health care workers from COVID‐19.Eur. J. Immunol.202252580080910.1002/eji.20214965535128644
    [Google Scholar]
  197. SeneffS. NighG.L. Worse than the disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19.Int. J. Vaccine Theory Pract. Res.213879202110.56098/ijvtpr.v2i1.23
    [Google Scholar]
  198. FurerV. ZismanD. KibariA. RimarD. ParanY. ElkayamO. Herpes zoster following BNT162b2 mRNA COVID-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: A case series.Rheumatology60S1S190S195202110.1093/rheumatology/keab345
    [Google Scholar]
  199. HuppertJ. Adolescents with Vulvar Ulcers: COVID-19 disease, COVID-19 Vaccines, and the Value of Case Reports.J. Pediatr. Adolesc. Gynecol.202235210911110.1016/j.jpag.2022.01.00635104637
    [Google Scholar]
  200. PrashantP. PandeyA.K. MishraA. GuptaP. TripathiP.V. MenonM.B. GomesJ. VivekanandanP. KunduB. Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag.bioRxiv202010.1101/2020.01.30.927871
    [Google Scholar]
  201. KodidelaS. GodseS. KumarA. NguyenX.H. CernasevA. ZhouL. SinghA.K. BhatH.K. KumarS. Nutraceuticals in HIV and COVID-19-related neurological complications: Opportunity to use extracellular vesicles as drug delivery modality.Biology (Basel)202211217710.3390/biology1102017735205044
    [Google Scholar]
  202. GoldmanS. BronD. TousseynT. VierasuI. DewispelaereL. HeimannP. CoganE. GoldmanM. Rapid progression of angioimmunoblastic T cell lymphoma following BNT162b2 mRNA vaccine booster shot: A case report.Front. Med. (Lausanne)2021879809510.3389/fmed.2021.79809534901098
    [Google Scholar]
  203. SeneffS. KyriakopoulosA.K. NighG. SARS-CoV-2 spike protein in the pathogenesis of prion-like diseases.Authorea202210.22541/au.166069342.27133443/v1
    [Google Scholar]
  204. SeneffS. NighG. KyriakopoulosA.M. McCulloughP.A. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs.Food Chem. Toxicol.202216411300810.1016/j.fct.2022.11300835436552
    [Google Scholar]
  205. OgataA.F. ChengC.A. DesjardinsM. SenussiY. ShermanA.C. PowellM. NovackL. VonS. LiX. BadenL.R. WaltD.R. Circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine antigen detected in the plasma of mRNA-1273 vaccine recipients.Clin. Infect. Dis.202274471571810.1093/cid/ciab46534015087
    [Google Scholar]
  206. FöhseF.K. GeckinB. OverheulG.J. de MaatJ.V. KilicG. BulutO. DijkstraH. LemmersH. SarleaS.A. ReijndersM. HoogerwerfJ. The BNT162b2 mRNA vaccine against SARS-CoV-2 reprograms both adaptive and innate immune responses.medRxiv202110.1101/2021.05.03.21256520
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266325847241121034100
Loading
/content/journals/ctmc/10.2174/0115680266325847241121034100
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COVID-19; DNA template; mRNA; SARS-CoV-2; Spike protein; Vaccination
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test