Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Alzheimer's Disease (AD), a progressive neurodegenerative disorder, is characterized by the accumulation of neurofibrillary tangles and β-amyloid plaques, leading to a decline in cognitive function. AD is characterized by tau protein hyperphosphorylation and extracellular β-amyloid accumulation. Even after much research, there are still no proven cures for AD. The neuroprotective, anti-inflammatory, and antioxidant qualities of melatonin, a hormone mostly produced by the pineal gland, have drawn interest as a possible treatment option for AD. This study looks at new evidence that suggests melatonin overexpression to be a promising therapy option for AD. Melatonin levels naturally decline with age and decrease more significantly in individuals with AD, worsening neurodegenerative processes. Melatonin has therapeutic potential as it inhibits Aβ formation, prevents amyloid fibril extension through structure-dependent interactions, and protects neurons from Aβ-induced toxicity. Melatonin promotes neurogenesis, which is decreased in AD, suggesting it may treat the disease's many pathologies. The review emphasizes the importance of melatonin's mechanisms of action, including its capacity to reduce neuroinflammation, regulate mitochondrial function, scavenge free radicals, and influence apoptotic pathways. As research into AD continues, this article provides a forward-looking perspective on how future studies could leverage melatonin’s multifaceted neuroprotective properties to develop more effective treatments for AD.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266327614241121050448
2025-01-29
2025-11-07
Loading full text...

Full text loading...

References

  1. ManchesterL.C. TanD.X. ReiterR.J. ParkW. MonisK. QiW. High levels of melatonin in the seeds of edible plants.Life Sci.200067253023302910.1016/S0024‑3205(00)00896‑1 11125839
    [Google Scholar]
  2. ReiterR.J. TanD.X. Melatonin.Ann. N. Y. Acad. Sci.2002957134134410.1111/j.1749‑6632.2002.tb02938.x 12074994
    [Google Scholar]
  3. TanD.X. ManchesterL.C. HardelandR. Lopez-BurilloS. MayoJ.C. SainzR.M. ReiterR.J. Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin.J. Pineal Res.2003341757810.1034/j.1600‑079X.2003.02111.x 12485375
    [Google Scholar]
  4. TanD. ReiterR. ManchesterL. YanM. El-SawiM. SainzR. MayoJ. KohenR. AllegraM. HardelanR. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger.Curr. Top. Med. Chem.20022218119710.2174/1568026023394443 11899100
    [Google Scholar]
  5. RodriguezC. MayoJ.C. SainzR.M. AntolínI. HerreraF. MartínV. ReiterR.J. Regulation of antioxidant enzymes: a significant role for melatonin.J. Pineal Res.20043611910.1046/j.1600‑079X.2003.00092.x 14675124
    [Google Scholar]
  6. FerrariE. ArcainiA. GornatiR. PelanconiL. CravelloL. FioravantiM. SolerteS.B. MagriF. Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia.Exp. Gerontol.2000359-101239125010.1016/S0531‑5565(00)00160‑1 11113605
    [Google Scholar]
  7. OhashiY. OkamotoN. UchidaK. IyoM. MoriN. MoritaY. Daily rhythm of serum melatonin levels and effect of light exposure in patients with dementia of the Alzheimer’s type.Biol. Psychiatry199945121646165210.1016/S0006‑3223(98)00255‑8 10376127
    [Google Scholar]
  8. ZhouJ.N. LiuR.Y. KamphorstW. HofmanM.A. SwaabD.F. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels.J. Pineal Res.200335212513010.1034/j.1600‑079X.2003.00065.x 12887656
    [Google Scholar]
  9. CardinaliD.P. BruscoL.I. Pérez LloretS. FurioA.M. Melatonin in sleep disorders and jet-lag.Neuroendocrinol. Lett.200223Suppl. 1913 12019344
    [Google Scholar]
  10. FriedlandR.P. LuxenbergJ.S. KossE. A quantitative study of intracranial calcification in dementia of the Alzheimer type.Int. Psychogeriatr.199021374310.1017/S104161029000028X 2101296
    [Google Scholar]
  11. RousseauA. PetrénS. PlannthinJ. EklundhT. NordinC. Serum and cerebrospinal fluid concentrations of melatonin: a pilot study in healthy male volunteers.J. Neural Transm. (Vienna)19991069-1088388810.1007/s007020050208 10599870
    [Google Scholar]
  12. KavakliA. SahnaE. ParlakpinarH. YahsiS. OgeturkM. AcetA. The effects of melatonin on focal cerebral ischemia-reperfusion model.Saudi Med. J.2004251117511752 15573223
    [Google Scholar]
  13. PandiperumalS. TrakhtI. SrinivasanV. SpenceD. MaestroniG. ZisapelN. CardinaliD. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways.Prog. Neurobiol.200885333535310.1016/j.pneurobio.2008.04.001 18571301
    [Google Scholar]
  14. MoodleyK.K. ChanD. The hippocampus in neurodegenerative disease.Front Neurol. Neurosci.2014349510810.1159/000356430 24777134
    [Google Scholar]
  15. 2011 Alzheimer’s disease facts and figures.Alzheimers Dement.20117220824410.1016/j.jalz.2011.02.004 21414557
    [Google Scholar]
  16. HebertL.E. ScherrP.A. BieniasJ.L. BennettD.A. EvansD.A. Alzheimer disease in the US population: prevalence estimates using the 2000 census.Arch. Neurol.20036081119112210.1001/archneur.60.8.1119 12925369
    [Google Scholar]
  17. PistollatoF. OhayonE.L. LamA. LangleyG.R. NovakT.J. PamiesD. PerryG. TrushinaE. WilliamsR.S.B. RoherA.E. HartungT. HarnadS. BarnardN. MorrisM.C. LaiM.C. MerkleyR. ChandrasekeraP.C. Alzheimer disease research in the 21st century: past and current failures, new perspectives and funding priorities.Oncotarget2016726389993901610.18632/oncotarget.9175 27229915
    [Google Scholar]
  18. PrinceM. BryceR. AlbaneseE. WimoA. RibeiroW. FerriC.P. The global prevalence of dementia: A systematic review and metaanalysis.Alzheimers Dement.2013916375.e210.1016/j.jalz.2012.11.007 23305823
    [Google Scholar]
  19. DebA. ThorntonJ.D. SambamoorthiU. InnesK. Direct and indirect cost of managing alzheimer’s disease and related dementias in the United States.Expert Rev. Pharmacoecon. Outcomes Res.201717218920210.1080/14737167.2017.1313118 28351177
    [Google Scholar]
  20. BatureF. GuinnB. PangD. PappasY. Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016.BMJ Open201778e01574610.1136/bmjopen‑2016‑015746 28851777
    [Google Scholar]
  21. TanS.Z.K. ZhaoR.C. ChakrabartiS. StamblerI. JinK. LimL.W. Interdisciplinary research in Alzheimer’s disease and the roles international societies can play.Aging Dis.2021121364110.14336/AD.2020.0602 33532125
    [Google Scholar]
  22. CarrascalL. Nunez-AbadesP. AyalaA. CanoM. Role of melatonin in the inflammatory process and its therapeutic potential.Curr. Pharm. Des.201824141563158810.2174/1381612824666180426112832 29701146
    [Google Scholar]
  23. LernerA.B. CaseJ.D. TakahashiY. LeeT.H. MoriW. Isolation of melatonin, the pineal gland factor that lightens melanocytes 1.J. Am. Chem. Soc.195880102587258710.1021/ja01543a060
    [Google Scholar]
  24. UeckM. WakeK. The pinealocyte--a paraneuron? A review.Arch. Histol. Jpn.197740Suppl.26127810.1679/aohc1950.40.Supplement_261 354581
    [Google Scholar]
  25. StehleJ.H. SaadeA. RawashdehO. AckermannK. JilgA. SebestényT. MarondeE. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases.J. Pineal Res.2011511174310.1111/j.1600‑079X.2011.00856.x 21517957
    [Google Scholar]
  26. AlghamdiB.S. The neuroprotective role of melatonin in neurological disorders.J. Neurosci. Res.20189671136114910.1002/jnr.24220 29498103
    [Google Scholar]
  27. CardinaliD.P. FurioA.M. BruscoL.I. Clinical aspects of melatonin intervention in Alzheimer’s disease progression.Curr. Neuropharmacol.20108321822710.2174/157015910792246209 21358972
    [Google Scholar]
  28. NilesL.P. ArmstrongK.J. Rincón CastroL.M. DaoC.V. SharmaR. McMillanC.R. DoeringL.C. KirkhamD.L. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1receptor with neuronal and glial markers.BMC Neurosci.2004514110.1186/1471‑2202‑5‑41 15511288
    [Google Scholar]
  29. DubocovichM.L. MarkowskaM. Functional MT1 and MT2 melatonin receptors in mammals.Endocr. J.200527210111010.1385/ENDO:27:2:101 16217123
    [Google Scholar]
  30. NgK.Y. LeongM.K. LiangH. PaxinosG. Melatonin receptors: distribution in mammalian brain and their respective putative functions.Brain Struct. Funct.201722272921293910.1007/s00429‑017‑1439‑6 28478550
    [Google Scholar]
  31. SavaskanE. AyoubM.A. RavidR. AngeloniD. FraschiniF. MeierF. EckertA. Müller-SpahnF. JockersR. Reduced hippocampal MT 2 melatonin receptor expression in Alzheimer’s disease.J. Pineal Res.2005381101610.1111/j.1600‑079X.2004.00169.x 15617532
    [Google Scholar]
  32. ReiterR.J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions.Endocr. Rev.199112215118010.1210/edrv‑12‑2‑151 1649044
    [Google Scholar]
  33. GreilbergerJ. FuchsD. LeblhuberF. GreilbergerM. WintersteigerR. TafeitE. Carbonyl proteins as a clinical marker in Alzheimer’s disease and its relation to tryptophan degradation and immune activation.Clin. Lab.2010569-10441448 21086789
    [Google Scholar]
  34. ZubenkoG.S. MoossyJ. MartinezA.J. RaoG. ClaassenD. RosenJ. KoppU. Neuropathologic and neurochemical correlates of psychosis in primary dementia.Arch. Neurol.199148661962410.1001/archneur.1991.00530180075020 1710105
    [Google Scholar]
  35. OuchiY. YoshikawaE. FutatsubashiM. YagiS. UekiT. NakamuraK. Altered brain serotonin transporter and associated glucose metabolism in Alzheimer disease.J. Nucl. Med.20095081260126610.2967/jnumed.109.063008 19617327
    [Google Scholar]
  36. KvetnoyI.M. ReiterR.J. KhavinsonV.K. Letter to the Editor. Claude Bernard was right: hormones may be produced by “non-endocrine” cells.Neuroendocrinol. Lett.2000213173174 11455347
    [Google Scholar]
  37. Dominguez-RodriguezA. Abreu-GonzalezP. Sanchez-SanchezJ.J. KaskiJ.C. ReiterR.J. Melatonin and circadian biology in human cardiovascular disease.J. Pineal Res.2010491no.10.1111/j.1600‑079X.2010.00773.x 20536686
    [Google Scholar]
  38. RomeroA. EgeaJ. GarcíaA.G. LópezM.G. Synergistic neuroprotective effect of combined low concentrations of galantamine and melatonin against oxidative stress in SH-SY5Y neuroblastoma cells.J. Pineal Res.201049214114810.1111/j.1600‑079X.2010.00778.x 20536682
    [Google Scholar]
  39. GałeckiP. SzemrajJ. BartoszG. BieńkiewiczM. GałeckaE. FlorkowskiA. LewińskiA. Karbownik-LewińskaM. Single‐nucleotide polymorphisms and mRNA expression for melatonin synthesis rate‐limiting enzyme in recurrent depressive disorder.J. Pineal Res.201048431131710.1111/j.1600‑079X.2010.00754.x 20433639
    [Google Scholar]
  40. SotthibundhuA. Phansuwan-PujitoP. GovitrapongP. Melatonin increases proliferation of cultured neural stem cells obtained from adult mouse subventricular zone.J. Pineal Res.201049329130010.1111/j.1600‑079X.2010.00794.x 20663047
    [Google Scholar]
  41. ReiterR.J. The ageing pineal gland and its physiological consequences.BioEssays199214316917510.1002/bies.950140307 1586370
    [Google Scholar]
  42. GalanoA. On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals.Phys. Chem. Chem. Phys.201113157178718810.1039/c0cp02801k 21409256
    [Google Scholar]
  43. ReiterR.J. ParedesS.D. ManchesterL.C. TanD.X. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin.Crit. Rev. Biochem. Mol. Biol.200944417520010.1080/10409230903044914 19635037
    [Google Scholar]
  44. NiuS. LiF. TanD.X. ZhangL. IdleJ.R. GonzalezF.J. MaX. Analysis of N1-acetyl-N2-formyl-5-methoxykynuramine/N1-acetyl-5-methoxy-kynuramine formation from melatonin in mice.J. Pineal Res.201049210611410.1111/j.1600‑079X.2010.00771.x 20545825
    [Google Scholar]
  45. KueselJ.T. HardelandR. PfoertnerH. AeckerleN. Reactions of the melatonin metabolite N1 ‐acetyl‐5‐methoxykynuramine with carbamoyl phosphate and related compounds.J. Pineal Res.2010481475410.1111/j.1600‑079X.2009.00723.x 19919600
    [Google Scholar]
  46. TanD.X. ManchesterL.C. BurkhardtS. SainzR.M. MayoJ.C. KohenR. ShohamiE. HuoY.S. HardelandR. ReiterR.J. N1 ‐acetyl‐ N2 ‐formyl‐5‐methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant.FASEB J.2001151211610.1096/fj.01‑0309fje 11511530
    [Google Scholar]
  47. KilańczykE. BryszewskaM. The effect of melatonin on antioxidant enzymes in human diabetic skin fibroblasts.Cell. Mol. Biol. Lett.200382333336 12813567
    [Google Scholar]
  48. KhatoonS. Grundke-IqbalI. IqbalK. Brain levels of microtubule-associated protein tau are elevated in Alzheimer’s disease: a radioimmuno-slot-blot assay for nanograms of the protein.J. Neurochem.199259275075310.1111/j.1471‑4159.1992.tb09432.x 1629745
    [Google Scholar]
  49. KhatoonS. Grundke-IqbalI. IqbalK. Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains.FEBS Lett.19943511808410.1016/0014‑5793(94)00829‑9 8076698
    [Google Scholar]
  50. YangX. YangY. FuZ. LiY. FengJ. LuoJ. ZhangQ. WangQ. TianQ. Melatonin ameliorates Alzheimer-like pathological changes and spatial memory retention impairment induced by calyculin A.J. Psychopharmacol.20112581118112510.1177/0269881110367723 20542922
    [Google Scholar]
  51. 45. Wang, Y.P.; Li, X.T.; Liu, S.J.; Zhou, X.W.; Wang, X.C.; Wang, J.Z. Melatonin ameliorated okadaic-acid induced Alzheimer-like lesions.Acta Pharmacol. Sin.200425276280
    [Google Scholar]
  52. LiuS.J. WangJ.Z. Alzheimer-like tau phosphorylation induced by wortmannin in vivo and its attenuation by melatonin.Acta Pharmacol. Sin.2002232183187 11866882
    [Google Scholar]
  53. GongC.X. LiuF. Grundke-IqbalI. IqbalK. Post-translational modifications of tau protein in Alzheimer’s disease.J. Neural Transm. (Vienna)2005112681383810.1007/s00702‑004‑0221‑0 15517432
    [Google Scholar]
  54. BordtS.L. McKeonR.M. LiP.K. Witt-EnderbyP.A. MelanM.A. N1E-115 mouse neuroblastoma cells express mt1 melatonin receptors and produce neurites in response to melatonin.Biochim. Biophys. Acta Mol. Cell Res.20011499325726410.1016/S0167‑4889(00)00127‑0 11341973
    [Google Scholar]
  55. Witt-EnderbyP.A. MacKenzieR.S. McKeonR.M. CarrollE.A. BordtS.L. MelanM.A. Melatonin induction of filamentous structures in non-neuronal cells that is dependent on expression of the human mt1 melatonin receptor.Cell Motil. Cytoskeleton2000461284210.1002/(SICI)1097‑0169(200005)46:1<28::AID‑CM4>3.0.CO;2‑5 10842331
    [Google Scholar]
  56. Benitez-KingG. TúnezI. BellonA. OrtízG.G. Antón-TayF. Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in n1e-115 cells.Exp. Neurol.2003182115115910.1016/S0014‑4886(03)00085‑2 12821385
    [Google Scholar]
  57. Benítez-KingG. HernándezM.E. TovarR. RamírezG. Melatonin activates PKC-α but not PKC-ε in N1E-115 cells.Neurochem. Int.20013929510210.1016/S0197‑0186(01)00021‑3 11408087
    [Google Scholar]
  58. EidenmüllerJ. FathT. HellwigA. ReedJ. SontagE. BrandtR. Structural and functional implications of tau hyperphosphorylation: information from phosphorylation-mimicking mutated tau proteins.Biochemistry20003943131661317510.1021/bi001290z 11052669
    [Google Scholar]
  59. AvilaJ. Tau aggregation into fibrillar polymers: taupathies.FEBS Lett.20004761-2899210.1016/S0014‑5793(00)01676‑8 10878257
    [Google Scholar]
  60. SelkoeD.J. Alzheimer’s disease is a synaptic failure.Science2002298559478979110.1126/science.1074069 12399581
    [Google Scholar]
  61. SelkoeD. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease.Trends Cell Biol.199881144745310.1016/S0962‑8924(98)01363‑4 9854312
    [Google Scholar]
  62. MatsubaraE. Bryant-ThomasT. Pacheco QuintoJ. HenryT.L. PoeggelerB. HerbertD. Cruz-SanchezF. ChyanY.J. SmithM.A. PerryG. ShojiM. AbeK. LeoneA. Grundke-IkbalI. WilsonG.L. GhisoJ. WilliamsC. RefoloL.M. PappollaM.A. ChainD.G. NeriaE. Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease.J. Neurochem.20038551101110810.1046/j.1471‑4159.2003.01654.x 12753069
    [Google Scholar]
  63. LahiriD.K. ChenD. GeY.W. BondyS.C. SharmanE.H. Dietary supplementation with melatonin reduces levels of amyloid beta‐peptides in the murine cerebral cortex.J. Pineal Res.200436422423110.1111/j.1600‑079X.2004.00121.x 15066046
    [Google Scholar]
  64. ZhangY.C. WangZ.F. WangQ. WangY.P. WangJ.Z. Melatonin attenuates beta-amyloid-induced inhibition of neurofilament expression.Acta Pharmacol. Sin.200425444745110.1111/j.1745‑7254.2006.00281.x 15066211
    [Google Scholar]
  65. WangX.C. ZhangY.C. ChatterjieN. Grundke-IqbalI. IqbalK. WangJ.Z. Effect of melatonin and melatonylvalpromide on beta-amyloid and neurofilaments in N2a cells.Neurochem. Res.20083361138114410.1007/s11064‑007‑9563‑y 18231852
    [Google Scholar]
  66. SuY. RyderJ. LiB. WuX. FoxN. SolenbergP. BruneK. PaulS. ZhouY. LiuF. NiB. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing.Biochemistry200443226899690810.1021/bi035627j 15170327
    [Google Scholar]
  67. RyderJ. SuY. LiuF. LiB. ZhouY. NiB. Divergent roles of GSK3 and CDK5 in APP processing.Biochem. Biophys. Res. Commun.2003312492292910.1016/j.bbrc.2003.11.014 14651959
    [Google Scholar]
  68. TescoG. TanziR.E. GSK3 beta forms a tetrameric complex with endogenous PS1-CTF/NTF and beta-catenin. Effects of the D257/D385A and FAD-linked mutations.Ann. N. Y. Acad. Sci.2000920122723210.1111/j.1749‑6632.2000.tb06927.x 11193155
    [Google Scholar]
  69. BieschkeJ. ZhangQ. PowersE.T. LernerR.A. KellyJ.W. Oxidative metabolites accelerate Alzheimer’s amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation.Biochemistry200544134977498310.1021/bi0501030 15794636
    [Google Scholar]
  70. MagriF. LocatelliM. BalzaG. MollaG. CuzzoniG. FioravantiM. SolerteS.B. FerrariE. Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging.Chronobiol. Int.199714438539610.3109/07420529709001459 9262874
    [Google Scholar]
  71. SkeneD.J. Vivien-RoelsB. SparksD.L. HunsakerJ.C. PévetP. RavidD. SwaabD.F. Daily variation in the concentration of melatonin and 5-methoxytryptophol in the human pineal gland: effect of age and Alzheimer’s disease.Brain Res.1990528117017410.1016/0006‑8993(90)90214‑V 2245336
    [Google Scholar]
  72. SkeneD. SwaabD.F. Melatonin rhythmicity: effect of age and Alzheimer’s disease.Exp. Gerontol.2003381-219920610.1016/S0531‑5565(02)00198‑5 12543278
    [Google Scholar]
  73. WuY.H. FeenstraM.G. ZhouJ.N. LiuR.Y. ToranoJ.S. van KanH.J. FischerD.F. RavidR. SwaabD.F. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: Alterations in preclinical and clinical stages. J. Clin. Endocrinol. Metab. 2003, 88, 5898–5906.Antioxidants20143273
    [Google Scholar]
  74. CardinaliD. VigoD. OlivarN. VidalM. BruscoL. Melatonin therapy in patients with Alzheimer’s disease.Antioxidants20143224527710.3390/antiox3020245 26784870
    [Google Scholar]
  75. FainsteinI. BonettoA.J. BruscoL.I. CardinaliD.P. Effects of melatonin in elderly patients with sleep disturbance: a pilot study.Curr. Ther. Res. Clin. Exp.19975812990100010.1016/S0011‑393X(97)80066‑5
    [Google Scholar]
  76. Cohen-MansfieldJ. GarfinkelD. LipsonS. Melatonin for treatment of sundowning in elderly persons with dementia – a preliminary study.Arch. Gerontol. Geriatr.2000311657610.1016/S0167‑4943(00)00068‑6 10989165
    [Google Scholar]
  77. BruscoL.I. MarquezM. CardinaliD.P. Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer’s disease.Neuroendocrinol. Lett.199819111115 11455329
    [Google Scholar]
  78. BruscoL.I. MárquezM. CardinaliD.P. Monozygotic twins with Alzheimer’s disease treated with melatonin: Case report.J. Pineal Res.199825426026310.1111/j.1600‑079X.1998.tb00396.x 9885996
    [Google Scholar]
  79. MishimaK. OkawaM. HozumiS. HishikawaY. Supplementary administration of artificial bright light and melatonin as potent treatment for disorganized circadian rest-activity and dysfunctional autonomic and neuroendocrine systems in institutionalized demented elderly persons.Chronobiol. Int.200017341943210.1081/CBI‑100101055 10841214
    [Google Scholar]
  80. AsayamaK. YamaderaH. ItoT. SuzukiH. KudoY. EndoS. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia.J. Nippon Med. Sch.200370433434110.1272/jnms.70.334 12928714
    [Google Scholar]
  81. SingerC. TractenbergR.E. KayeJ. SchaferK. GamstA. GrundmanM. ThomasR. ThalL.J. A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease.Sleep200326789390110.1093/sleep/26.7.893 14655926
    [Google Scholar]
  82. FariasS.T. MungasD. ReedB.R. HarveyD. DeCarliC. Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts.Arch. Neurol.20096691151115710.1001/archneurol.2009.106 19752306
    [Google Scholar]
  83. PriceJ.L. MorrisJ.C. Tangles and plaques in nondemented aging and? preclinical? Alzheimer’s disease.Ann. Neurol.199945335836810.1002/1531‑8249(199903)45:3<358::AID‑ANA12>3.0.CO;2‑X 10072051
    [Google Scholar]
  84. BraakH. BraakE. Staging of alzheimer’s disease-related neurofibrillary changes.Neurobiol. Aging199516327127810.1016/0197‑4580(95)00021‑6 7566337
    [Google Scholar]
  85. BraakH. BraakE. Evolution of neuronal changes in the course of Alzheimer’s disease.J. Neural Transm. Suppl.19985312714010.1007/978‑3‑7091‑6467‑9_11 9700651
    [Google Scholar]
  86. ArendsY.M. DuyckaertsC. RozemullerJ.M. EikelenboomP. HauwJ-J. Microglia, amyloid and dementia in Alzheimer disease.Neurobiol. Aging2000211394710.1016/S0197‑4580(00)00094‑4 10794847
    [Google Scholar]
  87. CombadièreC. FeumiC. RaoulW. KellerN. RodéroM. PézardA. LavaletteS. HoussierM. JonetL. PicardE. DebréP. SirinyanM. DeterreP. FerroukhiT. CohenS.Y. ChauvaudD. JeannyJ.C. ChemtobS. Behar-CohenF. SennlaubF. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration.J. Clin. Invest.2007117102920292810.1172/JCI31692 17909628
    [Google Scholar]
  88. HardyJ.A. HigginsG.A. Alzheimer’s disease: the amyloid cascade hypothesis.Science1992256505418418510.1126/science.1566067 1566067
    [Google Scholar]
  89. TuppoE.E. AriasH.R. The role of inflammation in Alzheimer’s disease.Int. J. Biochem. Cell Biol.200537228930510.1016/j.biocel.2004.07.009 15474976
    [Google Scholar]
  90. ParkS.Y. JinM.L. KimY.H. KimY. LeeS.J. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia.Int. Immunopharmacol.2012141132010.1016/j.intimp.2012.06.003 22728094
    [Google Scholar]
  91. ChungS.Y. HanS.H. Melatonin attenuates kainic acid‐induced hippocampal neurodegeneration and oxidative stress through microglial inhibition.J. Pineal Res.20033429510210.1034/j.1600‑079X.2003.00010.x 12562500
    [Google Scholar]
  92. MohanN. SadeghiK. ReiterR.J. MeltzM.L. The neurohormone melatonin inhibits cytokine, mitogen and ionizing radiation induced NF-kappa B.Biochem. Mol. Biol. Int.199537610631070 8747536
    [Google Scholar]
  93. ChuangJ.I. MohanN. MeltzM.L. ReiterR.J. EFFECT OF MELATONIN ON NF‐κB DNA‐BINDING ACTIVITY IN THE RAT SPLEEN.Cell Biol. Int.1996201068769210.1006/cbir.1996.0091 8969462
    [Google Scholar]
  94. ShenY. ZhangG. LiuL. XuS. Suppressive effects of melatonin on amyloid-beta-induced glial activation in rat hippocampus.Arch. Med. Res.200738328429010.1016/j.arcmed.2006.10.007 17350477
    [Google Scholar]
  95. TanD.X. ManchesterL.C. LiuX. Rosales-CorralS.A. Acuna-CastroviejoD. ReiterR.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes.J. Pineal Res.201354212713810.1111/jpi.12026 23137057
    [Google Scholar]
  96. LiuY.J. ZhuangJ. ZhuH.Y. ShenY.X. TanZ.L. ZhouJ.N. Cultured rat cortical astrocytes synthesize melatonin: absence of a diurnal rhythm.J. Pineal Res.200743323223810.1111/j.1600‑079X.2007.00466.x 17803519
    [Google Scholar]
  97. MarkusR.P. FernandesP.A. KinkerG.S. da Silveira Cruz-MachadoS. MarçolaM. Immune‐pineal axis – acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes.Br. J. Pharmacol.2018175163239325010.1111/bph.14083 29105727
    [Google Scholar]
  98. Karimi-ZandiL. GhorbandaiepourT. ZahmatkeshM. SadroddinyE. GnRH protective effects against long-term potentiation impairment induced by AANAT-siRNA.Neuropeptides202410810247410.1016/j.npep.2024.102474 39305554
    [Google Scholar]
  99. VermaA.K. SinghS. RizviS.I. Therapeutic potential of melatonin and its derivatives in aging and neurodegenerative diseases.Biogerontology202324218320610.1007/s10522‑022‑10006‑x 36550377
    [Google Scholar]
  100. AndersonG. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses.Explor. Target. Antitumor Ther.20234596299310.37349/etat.2023.00176 37970210
    [Google Scholar]
  101. GosztylaM.L. BrothersH.M. RobinsonS.R. Alzheimer’s Amyloid-β is an Antimicrobial Peptide: A Review of the Evidence.J. Alzheimers Dis.20186241495150610.3233/JAD‑171133 29504537
    [Google Scholar]
  102. QianJ. AndersonP. StefanovskiD. VujovicN. KellyL. LepsonJ. NguyenH. ByrneS. Mandrup-PoulsenT. AdlerG. WangW. GarauletM. SaxenaR. ScheerF. 0887 Effects of Melatonin on Glucose, Insulin, and C-Peptide Dynamics in Carriers of MTNR1B Type 2 Diabetes Risk Variant.Sleep202447Suppl. 1A38110.1093/sleep/zsae067.0887
    [Google Scholar]
  103. XuJ. WangL.L. DammerE.B. LiC.B. XuG. ChenS.D. WangG. Melatonin for sleep disorders and cognition in dementia: a meta-analysis of randomized controlled trials.Am. J. Alzheimers Dis. Other Demen.201530543944710.1177/1533317514568005 25614508
    [Google Scholar]
  104. NairA. JacobS. A simple practice guide for dose conversion between animals and human.J. Basic Clin. Pharm.201672273110.4103/0976‑0105.177703 27057123
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266327614241121050448
Loading
/content/journals/ctmc/10.2174/0115680266327614241121050448
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Alzheimer's disease; amyloid-β; melatonin; neurogenesis; neuroinflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test