Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

a member of the Caryophyllaceae family, is a rare edible weed in Iran. It possesses various medicinal properties, including insecticidal, antimicrobial, antibacterial, and allelopathic effects.

Methods

This study represents the investigation into the phytochemical contents, compounds, and biological activities of six different fractions (petroleum ether, chloroform, dichloromethane, ethyl acetate, methanol, and water) obtained from the leaves and stems of this species, with the aim of developing new natural drugs.

Results

The methanol fractions of both the leaves and stems exhibited the highest levels of total phenolic and flavonoid contents and demonstrated strong antioxidant activity in the DPPH free radical scavenging method, with IC values of 5.1± 1.34 and 9.67 ± 0.02 µg/mL, respectively, surpassing the activity of BHT. Additionally, the chloroform and methanol fractions showed moderate antimicrobial activity against bacterial strains, with MIC values ranging from 0.0625 to 0.5 mg/ml when compared to gentamicin. The more active fractions (chloroform and methanol) were further analyzed to identify bioactive compounds. GC-MS analysis detected forty and forty-five compounds, representing 97.97% and 99.22% of the total composition, in the chloroform fractions of the leaves and stems, respectively. The main constituents of the leaves were fatty acid derivatives (54.66%) and terpene derivatives (21.94%), whereas the stems contained terpene derivatives (40.46%) and hydrocarbon derivatives (31.41%). LC-ESI-MS analysis of the methanol fractions revealed the presence of common groups, including flavonoids, steroids, and triterpenoid saponins. Several bioactive compounds have been identified, including rutin, kaempferol-neohesperidoside derivative, diosmin, sileneoside, hesperidin, luteolin-di-glucoside, orientin-glucoside, vitexin--rhamnoside, and swertisin--glucoside. Heatmap analysis was conducted to visualize the differences in metabolite profiles among the samples.

Conclusion

The analyzed fractions contained compounds with potential pharmacological activities.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266324758241223063534
2025-01-30
2025-11-05
Loading full text...

Full text loading...

References

  1. RamalingumN. MahomoodallyM.F. The therapeutic potential of medicinal foods.Adv. Pharmacol. Sci.2014201411810.1155/2014/35426424822061
    [Google Scholar]
  2. RaiS.N. BirlaH. SinghS.S. ZahraW. PatilR.R. JadhavJ.P. GeddaM.R. SinghS.P. Mucuna pruriens Protects against MPTP Intoxicated Neuroinflammation in Parkinson’s Disease through NF-κB/pAKT Signaling Pathways.Front. Aging Neurosci.2017942110.3389/fnagi.2017.0042129311905
    [Google Scholar]
  3. YadavS.K. RaiS.N. SinghS.P. Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model.J. Chem. Neuroanat.20178011010.1016/j.jchemneu.2016.11.00927919828
    [Google Scholar]
  4. PrakashJ. ChouhanS. YadavS.K. WestfallS. RaiS.N. SinghS.P. Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons.Neurochem. Res.201439122527253610.1007/s11064‑014‑1443‑725403619
    [Google Scholar]
  5. RaiS.N. BirlaH. ZahraW. SinghS.S. SinghS.P. Immunomodulation of Parkinson’s disease using Mucuna pruriens (Mp).J. Chem. Neuroanat.201785273510.1016/j.jchemneu.2017.06.00528642128
    [Google Scholar]
  6. TripathiP. LodhiA. RaiS. NandiN. DumogaS. YadavP. TiwariA. SinghS. El-ShorbagiA.N. ChaudharyS. Review of Pharmacotherapeutic Targets in Alzheimer’s Disease and Its Management Using Traditional Medicinal Plants.Degener. Neurol. Neuromuscul. Dis.202414477410.2147/DNND.S45200938784601
    [Google Scholar]
  7. AstolfiA. NanniniM. IndioV. SchipaniA. RizzoA. PerroneA.M. De IacoP. PiriniM.G. De LeoA. UrbiniM. SecchieroP. PantaleoM.A. Genomic Database Analysis of Uterine Leiomyosarcoma Mutational Profile.Cancers2020128212610.3390/cancers1208212632751892
    [Google Scholar]
  8. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic Significance of the Royal Marsden Hospital (RMH) Score in Patients with Cancer: A Systematic Review and Meta-Analysis.Cancers20241610183510.3390/cancers1610183538791914
    [Google Scholar]
  9. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. De LucaR. RizzoA. Immune checkpoint inhibitor-related hearing loss: a systematic review and analysis of individual patient data.Support. Care Cancer2023311162410.1007/s00520‑023‑08083‑w37819422
    [Google Scholar]
  10. AkhtarM.S. HossainM.A. SaidS.A. Isolation and characterization of antimicrobial compound from the stem-bark of the traditionally used medicinal plant Adenium obesum. J. Tradit. Complement. Med.20177329630010.1016/j.jtcme.2016.08.00328725623
    [Google Scholar]
  11. MahomoodallyM.F. DilmohamedS. Antibacterial and antibiotic potentiating activity of Vangueria madagascariensis leaves and ripe fruit pericarp against human pathogenic clinical bacterial isolates.J. Tradit. Complement. Med.20166439940310.1016/j.jtcme.2015.09.00227774426
    [Google Scholar]
  12. GreuterW. Silene (Caryophyllaceae) in Greece: a subgeneric and sectional classification.Taxon199544454358110.2307/1223499
    [Google Scholar]
  13. HoseiniE. GhahremaninejadF. AssadiM. EdalatiyanM.N. Seed micromorphology and its implication in subgeneric classification of Silene (Caryophyllaceae, Sileneae).Flora (Jena)2017228313810.1016/j.flora.2017.01.006
    [Google Scholar]
  14. MabberleyD.J. Mabberley’s plant-book: a portable dictionary of plants, their classification and uses.Cambridge university press201710.1017/9781316335581
    [Google Scholar]
  15. EggensF. PoppM. NepokroeffM. WagnerW.L. OxelmanB. The origin and number of introductions of the Hawaiian endemic Silene species (Caryophyllaceae).Am. J. Bot.200794221021810.3732/ajb.94.2.21021642223
    [Google Scholar]
  16. Cytogenetical approach to the taxonomy of Silene conoidea-conica complex. In: Khoshoo, T.N.; Bhatia, S., Eds.; Proc. Indian Natl. Sci. Acad.Springer1963
    [Google Scholar]
  17. Cytology of some Rubiaceae of the north-western Himalayas. In: Khoshoo, T.; Bhatia, S., Eds.; Proc. Indian Natl. Sci. Acad.Springer India New Delhi1963
    [Google Scholar]
  18. ZenginG. MahomoodallyM.F. AktumsekA. CeylanR. UysalS. MocanA. YilmazM.A. Picot-AllainC.M.N. ĆirićA. GlamočlijaJ. SokovićM. Functional constituents of six wild edible Silene species: A focus on their phytochemical profiles and bioactive properties.Food Biosci.201823758210.1016/j.fbio.2018.03.010
    [Google Scholar]
  19. MamadalievaN. LafontR. WinkM. Diversity of secondary metabolites in the genus Silene L.(Caryophyllaceae)—Structures, distribution, and biological properties.Diversity20146341549910.3390/d6030415
    [Google Scholar]
  20. UllahF. AyazA. SaqibS. ZamanW. ButtM.A. UllahA. Silene conoidea L.: A Review on its Systematic, Ethnobotany and Phytochemical profile.Plant Sci. Today20196437338210.14719/pst.2019.6.4.571
    [Google Scholar]
  21. WeiR. MaQ. ZhongG. Anti-Ache Benzylbenzofuran Derivatives from Silene conoidea.Chem. Nat. Compd.201955465465710.1007/s10600‑019‑02771‑y
    [Google Scholar]
  22. LiigandP. LiigandJ. KaupmeesK. KruveA. 30 Years of research on ESI/MS response: Trends, contradictions and applications.Anal. Chim. Acta2021115223811710.1016/j.aca.2020.11.04933648645
    [Google Scholar]
  23. PantP. PandeyS. Dall’AcquaS. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review.Chem. Biodivers.20211811e210034510.1002/cbdv.20210034534533273
    [Google Scholar]
  24. Gholamalipour AlamdariE. TaleghaniA. New bioactive compounds characterized by liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry in hydro‐methanol and petroleum ether extracts of Prosopis farcta (Banks & Sol.) J. F. Macbr weed.J. Mass Spectrom.2022579e488410.1002/jms.488436128672
    [Google Scholar]
  25. PluskalT. CastilloS. Villar-BrionesA. OrešičM. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data.BMC Bioinformatics201011139510.1186/1471‑2105‑11‑39520650010
    [Google Scholar]
  26. AdamsR.P. Identification of essential oil components by gas chromatography/mass spectrometry.5 online ed.Gruver, TX USATexensis Publishing2017
    [Google Scholar]
  27. DaviesN. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases.J. Chromatogr. A199050312410.1016/S0021‑9673(01)81487‑4
    [Google Scholar]
  28. MasadaY. Analysis of essential oils by gas chromatography and mass spectrometry.1976Available from: https://api.semanticscholar.org/CorpusID:92357892
  29. MahmoodiS. TaleghaniA. AkbariR. Mokaber-EsfahaniM. Rhamnus pallasii subsp. sintenisii fruit, leaf, bark and root: Phytochemical profiles and biological activities.Arab. J. Chem.202215710392410.1016/j.arabjc.2022.103924
    [Google Scholar]
  30. TaleghaniA. EghbaliS. MoghimiR. Mokaber-EsfahaniM. Crataegus pentagyna willd. Fruits, leaves and roots: phytochemicals, antioxidant and antimicrobial potentials.BMC complement. med. ther.202424126
    [Google Scholar]
  31. TaghaviT. PatelH. AkandeO.E. GalamD.C.A. Total anthocyanin content of strawberry and the profile changes by extraction methods and sample processing.Foods2022118107210.3390/foods1108107235454660
    [Google Scholar]
  32. WiegandI. HilpertK. HancockR.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.Nat. Protoc.20083216317510.1038/nprot.2007.52118274517
    [Google Scholar]
  33. AlaraO.R. AbdurahmanN.H. UkaegbuC.I. Extraction of phenolic compounds: A review.Current Research in Food Science2021420021410.1016/j.crfs.2021.03.01133899007
    [Google Scholar]
  34. van VuurenS.F. Antimicrobial activity of South African medicinal plants.J. Ethnopharmacol.2008119346247210.1016/j.jep.2008.05.03818582553
    [Google Scholar]
  35. ElagailyM. SenussiN.A. Assessment of the antimicrobial activity of three Silene species (Caryophyllaceae) against some microorganisms.Sci. J. Fac. Sci. Menoufia Univ20233115121
    [Google Scholar]
  36. GikaH.G. WilsonI.D. TheodoridisG.A. LC–MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20149661610.1016/j.jchromb.2014.01.05424618029
    [Google Scholar]
  37. FialkovA.B. SteinerU. LehotayS.J. AmiravA. Sensitivity and noise in GC–MS: Achieving low limits of detection for difficult analytes.Int. J. Mass Spectrom.20072601314810.1016/j.ijms.2006.07.002
    [Google Scholar]
  38. ZenginG. RodriguesM.J. AbdallahH.H. CustodioL. StefanucciA. AumeeruddyM.Z. MollicaA. RengasamyK.R.R. MahomoodallyM.F. Combination of phenolic profiles, pharmacological properties and in silico studies to provide new insights on Silene salsuginea from Turkey.Comput. Biol. Chem.20187717818610.1016/j.compbiolchem.2018.10.00530336375
    [Google Scholar]
  39. MohtiH. TavianoM.F. CacciolaF. DugoP. MondelloL. ZaidA. CavòE. MiceliN. Silene vulgaris subsp. macrocarpa leaves and roots from Morocco: assessment of the efficiency of different extraction techniques and solvents on their antioxidant capacity, brine shrimp toxicity and phenolic characterization.Plant Biosyst.2020154569269910.1080/11263504.2019.1674404
    [Google Scholar]
  40. MahmoudS. HassanA. El WafaAbu MohamedS.A. UPLC-MS/MS profiling and antitumor activity of Silene succulenta Forssk. growing in Egypt.J. Pharm. Sci.202115862
    [Google Scholar]
  41. HusseinI.A. SrivedavyasasriR. El-HelaA.A. MohammadA.E.I. RossS.A. Chemical constituents from Silene schimperiana Boiss. belonging to caryophyllaceae and their chemotaxonomic significance.Biochem. Syst. Ecol.20209210411310.1016/j.bse.2020.104113
    [Google Scholar]
  42. TokK.C. HurkulM.M. BozkurtN.N. AysalA.İ. YaylaŞ. Investigation of Phytochemicals in Methanolic Herba Extract of Silene Ruscifolia by LC-QTOF/MS and GC/MS.J. Fac. Pharm. Ankara.202246827838
    [Google Scholar]
  43. BoğaM. Chemical constituents, cytotoxic, antioxidant and cholinesterases inhibitory activities of Silene compacta (Fischer) extracts.Marmara Pharm. J.201721344545410.12991/marupj.306789
    [Google Scholar]
  44. ChopinM.J. BouillantM.L. WagnerH. GalleK. Endgültige struktur von schaftosid aus Silene schafta.Phytochemistry197413112583258610.1016/S0031‑9422(00)86940‑X
    [Google Scholar]
  45. HeinsbroekR. Van BrederodeJ. Van NigtevechtG. MaasJ. KamsteegJ. BessonE. ChopinJ. The 2″-O-glucosylation of vitexin and isovitexin in petals of Silene alba is catalysed by two different enzymes.Phytochemistry19801991935193710.1016/0031‑9422(80)83007‑X
    [Google Scholar]
  46. DarmograiV.N. Flavonoids of plants of the generaSilene andOtites adans, family Caryophyllaceae.Chem. Nat. Compd.197713110210310.1007/BF00566187
    [Google Scholar]
  47. KashchenkoN.I. OlennikovD.N. ChirikovaN.K. Phytohormones and elicitors enhanced the ecdysteroid and glycosylflavone content and antioxidant activity of Silene repens.Appl. Sci.202111231109910.3390/app112311099
    [Google Scholar]
  48. OlennikovD.N. Ecdysteroids, flavonoids, and phenylpropanoids from Silene nutans.Chem. Nat. Compd.201955112713010.1007/s10600‑019‑02632‑8
    [Google Scholar]
  49. AliZ. AhmadV.U. AliM.S. IqbalF. ZahidM. AlamN. Two new C-glycosylflavones from Silene conoidea.Nat. Prod. Lett.199913212112910.1080/10575639908048832
    [Google Scholar]
  50. IwashinaT. Characterization of Cglycosylflavones and anthocyanins in several species of Caryophyllaceae.Ann. Tsukuba Bot. Gard198761930
    [Google Scholar]
  51. RichardsonM. Flavonols and C-Glycosylflavonoids of the caryophyllales.Biochem. Syst. Ecol.19786428328610.1016/0305‑1978(78)90046‑7
    [Google Scholar]
  52. GoleaL. BenkhaledM. LavaudC. LongC. HabaH. Phytochemical components and biological activities of Silene arenarioides Desf.Nat. Prod. Res.201731232801280510.1080/14786419.2017.129417428278644
    [Google Scholar]
  53. ZemtsovaG.N. GlyzinV.Y. DzhumyrkoS.F. Flavones and their C-glycosides from Silene saxatilis.Chem. Nat. Compd.197511453810.1007/BF00566811
    [Google Scholar]
  54. SadikovZ.T. SaatovZ. GiraultJ.P. LafontR. Sileneoside H, a new phytoecdysteroid from Silene brahuica.J. Nat. Prod.200063798798810.1021/np990609h10924181
    [Google Scholar]
  55. SadykovZ.T. SaatovZ. Phytoecdysteroids of plants of theSilene genus. XIX. The structure of sileneoside G.Chem. Nat. Compd.199834560260410.1007/BF02319284
    [Google Scholar]
  56. ZibarevaL.N. Phytoecdysteroids of Caryophyllaceae Juss.Contemp. Probl. Ecol.20092547648810.1134/S1995425509050154
    [Google Scholar]
  57. GiraultJ.P. BathoriM. VargaE. SzendreiK. LaFontR. Isolation and identification of new ecdysteroids from the Caryophyllaceae.J. Nat. Prod.199053227929310.1021/np50068a002
    [Google Scholar]
  58. RamazanovN.S. SultanovS.A. SaatovZ. NigmatullaevA.M. Phytoecdysteroids of plants of theSilene genus and the dynamics of their accumulation.Chem. Nat. Compd.199733555856210.1007/BF02254804
    [Google Scholar]
  59. DzhukharovaM.K. SaatovZ. AbdullaevN.D. AbubakirovN.K. Phytoecdysteroids of the plants of the genusSilene XV. Silenoside F — Brahuisterone 3-O-β-D-glucopyranoside fromSilene brahuica.Chem. Nat. Compd.199430668068310.1007/BF00630602
    [Google Scholar]
  60. DzhukarovaM.K. SaatovZ. AbdullaevN.D. Phytoecdysteroids of plants of the genusSilene XVI. 5?-sileneoside E FromSilene brahuica.Chem. Nat. Compd.199531220721010.1007/BF01170207
    [Google Scholar]
  61. Saatov AbdullaevN.D. GorovitsM.B. AbubakirovN.K. Phytoecdysteroids of plants of the genusSilene X. Sileneoside E? 2-Deoxy-?-ecdysone 3-O-?-D-glucopyranoside? FromSilene brahuica.Chem. Nat. Compd.198622329730010.1007/BF00598300
    [Google Scholar]
  62. MamadalievaN.Z. ZibarevaL.N. SaatovZ. LafontR. Phytoecdysteroids of Silene viridiflora.Chem. Nat. Compd.200339219920310.1023/A:1024822116031
    [Google Scholar]
  63. SaatovZ. AbdullaevN.D. GorovitsM.B. AbubakirovN.K. Phytoecdysteroids of plants of the genusSilene. VII. Sileneoside D — ecdysterone 3-O-α-D-galactopyranoside fromSilene brahuica.Chem. Nat. Compd.198420670070310.1007/BF00580027
    [Google Scholar]
  64. MamadalievaN.Z. ZibarevaL.N. LafontR. DainanL. SaatovZ. Phytoecdysteroids from the Silene genus.Chem. Nat. Compd.200440657457810.1007/s10600‑005‑0040‑z
    [Google Scholar]
  65. RamazonovN.S. MamadalievaN.Z. BobaevI.D. Phytoecdysteroids from five species of the genus Silene.Chem. Nat. Compd.200743111711810.1007/s10600‑007‑0049‑6
    [Google Scholar]
  66. MengY. WhitingP. ZibarevaL. BerthoG. GiraultJ.P. LafontR. DinanL. Identification and quantitative analysis of the phytoecdysteroids in Silene species (Caryophyllaceae) by high-performance liquid chromatography.J. Chromatogr. A20019351-230931910.1016/S0021‑9673(01)00893‑711762783
    [Google Scholar]
  67. MamadalievaN.Z. JanibekovA.A. GiraultJ.P. LafontR. Two minor phytoecdysteroids of the plant Silene viridiflora.Nat. Prod. Commun.20105101934578X100050101310.1177/1934578X100050101321121252
    [Google Scholar]
  68. MamadalievaN.Z. ZibarevaL.N. SaatovZ. Phytoecdysteroids of Silene linicola.Chem. Nat. Compd.200238326827110.1023/A:1020436128797
    [Google Scholar]
  69. ZibarevaL. Distribution and levels of phytoecdysteroids in plants of the genusSilene during development.Arch. Insect Biochem. Physiol.20004311810.1002/(SICI)1520‑6327(200001)43:1<1::AID‑ARCH1>3.0.CO;2‑D10613957
    [Google Scholar]
  70. LoudenD. HandleyA. LafontR. TaylorS. SinclairI. LenzE. OrtonT. WilsonI.D. HPLC analysis of ecdysteroids in plant extracts using superheated deuterium oxide with multiple on-line spectroscopic analysis (UV, IR, 1H NMR, and MS).Anal. Chem.200274128829410.1021/ac010739711795808
    [Google Scholar]
  71. GlenskM. WrayV. NimtzM. SchöpkeT. SilenosidesA. Silenosides A-C, triterpenoid saponins from Silene vulgaris.J. Nat. Prod.199962571772110.1021/np980505r10346953
    [Google Scholar]
  72. Bouguet-BonnetS. RochdM. MutzenhardtP. HenryM. Total assignment of 1 H and 13 C NMR spectra of three triterpene saponins from roots of Silene vulgaris (Moench) Garcke.Magn. Reson. Chem.200240961862110.1002/mrc.1069
    [Google Scholar]
  73. XuW. WuJ.M. ZhuZ. ShaY. FangJ. LiY.S. Pentacyclic triterpenoid saponins from Silene viscidula.Helv. Chim. Acta201093102007201410.1002/hlca.201000016
    [Google Scholar]
  74. FuH. KoikeK. LiW. NikaidoT. LinW. GuoD. SilenorubicosidesA. Silenorubicosides A−D, Triterpenoid Saponins from Silene r ubicunda.J. Nat. Prod.200568575475810.1021/np049586j15921423
    [Google Scholar]
  75. ChagasM.S.S. BehrensM.D. Moragas-TellisC.J. PenedoG.X.M. SilvaA.R. Gonçalves-de-AlbuquerqueC.F. Flavonols and flavones as potential anti‐inflammatory, antioxidant, and antibacterial compounds.Oxid. Med. Cell. Longev.2022202212110.1155/2022/996675036111166
    [Google Scholar]
  76. DembitskyV. GloriozovaT. PoroikovV. Pharmacological activities of epithio steroids.J. Pharm. Res. Int.201718119
    [Google Scholar]
  77. MamadalievaN.Z. Phytoecdysteroids from Silene plants: distribution, diversity and biological (antitumour, antibacterial and antioxidant) activities.Bol. latinoam. Caribe plantas med.20121147497
    [Google Scholar]
  78. ManzoorM.F. AhmadN. AhmedZ. SiddiqueR. ZengX.A. RahamanA. Muhammad AadilR. WahabA. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives.J. Food Biochem.2019439e1297410.1111/jfbc.1297431489656
    [Google Scholar]
  79. Al-DhabiN.A. ArasuM.V. ParkC.H. ParkS.U. An up-to-date review of rutin and its biological and pharmacological activities.EXCLI J.201514596326535031
    [Google Scholar]
  80. ParhizH. RoohbakhshA. SoltaniF. RezaeeR. IranshahiM. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models.Phytother. Res.201529332333110.1002/ptr.525625394264
    [Google Scholar]
  81. LamK.Y. LingA.P.K. KohR.Y. WongY.P. SayY.H. A review on medicinal properties of orientin.Adv. Pharmacol. Sci.201620161910.1155/2016/410459527298620
    [Google Scholar]
  82. ZhengY. ZhangR. ShiW. LiL. LiuH. ChenZ. WuL. Metabolism and pharmacological activities of the natural health-benefiting compound diosmin.Food Funct.202011108472849210.1039/D0FO01598A32966476
    [Google Scholar]
  83. MamadalievaN.Z. EgamberdievaD. ZhanibekovA.A. TriggianiD. TiezziA. Chemical components of Silene viridiflora and their biological properties.Chem. Nat. Compd.200945458959110.1007/s10600‑009‑9376‑0
    [Google Scholar]
  84. SeoC. ShinH.S. LeeJ.E. JungY.W. KimJ.K. KwonJ.G. JeongW. ChoiC.W. OhJ.S. HongS.S. Isolation and structure elucidation of siliendines A‒D, new β-carboline alkaloids from Silene seoulensis.Phytochem. Lett.202036586210.1016/j.phytol.2020.01.010
    [Google Scholar]
  85. SeoK.H. ParkM.J. RaJ.E. HanS.I. NamM.H. KimJ.H. LeeJ.H. SeoW.D. Saponarin from barley sprouts inhibits NF-κB and MAPK on LPS-induced RAW 264.7 cells.Food Funct.20145113005301310.1039/C4FO00612G25238253
    [Google Scholar]
  86. RamanB.V. SamuelL. SaradhiM.P. RaoB.N. KrishnaN. SudhakarM. Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum.Asian J. Pharm. Clin. Res.2012599106
    [Google Scholar]
  87. KusumahD. WakuiM. MurakamiM. XieX. YukihitoK. MaedaI. Linoleic acid, α-linolenic acid, and monolinolenins as antibacterial substances in the heat-processed soybean fermented with Rhizopus oligosporus.Biosci. Biotechnol. Biochem.20208461285129010.1080/09168451.2020.173129932089087
    [Google Scholar]
  88. HuW. FitzgeraldM. ToppB. AlamM. O’HareT.J. A review of biological functions, health benefits, and possible de novo biosynthetic pathway of palmitoleic acid in macadamia nuts.J. Funct. Foods20196210352010.1016/j.jff.2019.103520
    [Google Scholar]
  89. YangW. ChenX. LiY. GuoS. WangZ. YuX. Advances in pharmacological activities of terpenoids.Nat. Prod. Commun.20201531934578X2090355510.1177/1934578X20903555
    [Google Scholar]
  90. JóźwiakM. FilipowskaA. FiorinoF. StrugaM. Anticancer activities of fatty acids and their heterocyclic derivatives.Eur. J. Pharmacol.202087117293710.1016/j.ejphar.2020.17293731958454
    [Google Scholar]
  91. Casillas-VargasG. Ocasio-MalavéC. MedinaS. Morales-GuzmánC. Del ValleR.G. CarballeiraN.M. Sanabria-RíosD.J. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents.Prog. Lipid Res.20218210109310.1016/j.plipres.2021.10109333577909
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266324758241223063534
Loading
/content/journals/ctmc/10.2174/0115680266324758241223063534
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Biological activities; GC-MS; Heatmap analysis; LC-ESI-MS; Phytochemicals; Silene conoidea
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test