Skip to content
2000
image of Conformation Study and Design of Novel 6-Hydroxybenzothiazole-2-Carboxamides as Potentially Potent and Selective Monoamine Oxidase B Inhibitors for Neuroprotection

Abstract

Background

6-hydroxybenzothiazole-2-carboxamide is a novel, potent, and specific monoamine oxidase B inhibitor that can be used to study the structure of molecules and come up with new ways to protect neurons.

Objective

The objective of this work was to create an effective model using derivatives of 6-hydroxybenzothiazole-2-carboxamide and establish a dependable predictive foundation for the development of neuroprotective monoamine oxidase B inhibitors for the treatment of neurodegenerative diseases.

Methods

The construction and optimization of all compounds were carried out sequentially using ChemDraw software and Sybyl-X software. The optimized compounds were further analyzed using the COMSIA approach and the Sybyl-X software tool for QSAR modeling. A set of novel compounds of 6-hydroxybenzothiazole-2-carboxamide were created and their IC50 values were forecasted using QSAR modeling. Ultimately, the recently developed compounds underwent a screening process using their IC50 values, and molecular docking tests were conducted on the ten most promising compounds with the highest IC50 values.

Results

The 3D-QSAR model exhibited favorable outcomes. The value of q2 in the COMSIA model was 0.569. The model demonstrated a superior r2 value of 0.915, a lower SEE of 0.109, and a higher F-value of 52.714. The statistical findings and validation of the model were deemed adequate. Furthermore, analyzing the contour plots might assist in identifying the necessary structural specifications.

Conclusion

This work has the potential to provide an insight into the development of active medicines that protect the nervous system against neurodegenerative disorders.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266354743241216065502
2025-01-10
2025-09-13
Loading full text...

Full text loading...

References

  1. Wilson D.M. III Cookson M.R. Van Den Bosch L. Zetterberg H. Holtzman D.M. Dewachter I. Hallmarks of neurodegenerative diseases. Cell 2023 186 4 693 714 10.1016/j.cell.2022.12.032 36803602
    [Google Scholar]
  2. Santos García, D.; de Deus Fonticoba, T.; Suárez Castro, E.; Borrué, C.; Mata, M.; Solano Vila, B.; Cots Foraster, A.; Álvarez Sauco, M.; Rodríguez Pérez, A.B.; Vela, L.; Macías, Y.; Escalante, S.; Esteve, P.; Reverté Villarroya, S.; Cubo, E.; Casas, E.; Arnaiz, S.; Carrillo Padilla, F.; Pueyo Morlans, M.; Mir, P.; Martinez- Martin, P.; Adarmes, A.D.; Almeria, M.; Alonso Losada, G.; Alonso Cánovas, A.; Alonso-Frech, F.; Arribas, S.; Ascunde Vidondo, A.; Aquilar, M.; Ávila, M.A.; Bernardo Lambrich, N.; Bejr-Kasem, H.; Blázquez Estrada, M.; Botí, M.; Cabello González, C.; Cabo López, I.; Caballol, N.; Cámara Lorenzo, A.; Carrillo, F.; Catalán, M.J.; Clavero, P.; Cortina Fernández, A.; Crespo Cuevas, A.; de Fábregues-Boixar, O.; Díez-Fairen, M.; Erro, E.; Estelrich Peyret, E.; Fernández Guillán, N.; Gámez, P.; Gallego, M.; García Caldentey, J.; García Campos, C.; García Moreno, J.M.; Gastón, I.; Gómez Garre, M.P.; González Aloy, J.; González- Aramburu, I.; González Ardura, J.; González García, B.; González Palmás, M.J.; González Toledo, G.R.; Golpe Díaz, A.; Grau Solá, M.; Guardia, G.; Hernández-Vara, J.; Horta Barba, A.; Infante, J.; Jesús, S.; Kulisevsky, J.; Kurtis, M.; Labandeira, C.; Labrador, M.A.; Lacruz, F.; Lage Castro, M.; Legarda, I.; López Ariztegui, N.; López Díaz, L.M.; López Manzanares, L.; López Seoane, B.; Martí Andres, G.; Martí, M.J.; Martínez-Castrillo, J.C.; McAfee, D.; Meitín, M.T.; Menéndez González, M.; Méndez del Barrio, C.; Miranda Santiago, J.; Morales Casado, M.I.; Moreno Diéguez, A.; Nogueira, V.; Novo Amado, A.; Novo Ponte, S.; Ordás, C.; Pagonabarraga, J.; Pareés, I.; Pascual-Sedano, B.; Pastor, P.; Pérez Fuertes, A.; Pérez Noguera, R.; Planellas, L.; Pol Fuster, J.; Prats, M.A.; Prieto Jurczynska, C.; Puente, V.; Redondo Rafales, N.; Rodríguez Méndez, L.; Roldán, F.; Ruíz De Arcos, M.; Ruíz Martínez, J.; Sánchez Alonso, P.; Sánchez-Carpintero, M.; Sánchez Díez, G.; Sánchez Rodríguez, A.; Santacruz, P.; Segundo Rodríguez, J.C.; Seijo, M.; Serarols, A.; Sierra Peña, M.; Tartari, J.P.; Vargas, L.; Vázquez Gómez, R.; Villanueva, C.; Vives, B.; Villar, M.D. Non-motor symptoms burden, mood, and gait problems are the most significant factors contributing to a poor quality of life in non-demented parkinson’s disease patients: Results from the COPPADIS study cohort. Parkinsonism Relat. Disord. 2023 66 151 157 10.1016/j.parkreldis.2019.07.031 31409572
    [Google Scholar]
  3. Teo K.C. Ho S.L. Monoamine oxidase-B (MAO-B) inhibitors: Implications for disease-modification in parkinson’s disease. Transl. Neurodegener. 2013 2 1 19 10.1186/2047‑9158‑2‑19 24011391
    [Google Scholar]
  4. Hoy S.M. Keating G.M. Rasagiline. Drugs 2012 72 5 643 669 10.2165/11207560‑000000000‑00000 22439669
    [Google Scholar]
  5. Konradi C. Riederer P. Jellinger K. Denney R. Cellular action of MAO inhibitors. J. Neural Transm. Suppl. 1987 25 15 25 3480938
    [Google Scholar]
  6. Lemke C. Christmann J. Yin J. Alonso J.M. Serrano E. Chioua M. Ismaili L. Martínez-Grau M.A. Beadle C.D. Vetman T. Dato F.M. Bartz U. Elsinghorst P.W. Pietsch M. Müller C.E. Iriepa I. Wille T. Marco-Contelles J. Gütschow M. Chromenones as multineurotargeting inhibitors of human enzymes. ACS Omega 2019 4 26 22161 22168 10.1021/acsomega.9b03409 31891098
    [Google Scholar]
  7. Marotta N.P. Ara J. Uemura N. Lougee M.G. Meymand E.S. Zhang B. Petersson E.J. Trojanowski J.Q. Lee V.M.Y. Alpha-synuclein from patient Lewy bodies exhibits distinct pathological activity that can be propagated in vitro. Acta Neuropathol. Commun. 2021 9 1 188 10.1186/s40478‑021‑01288‑2 34819159
    [Google Scholar]
  8. Tipton K.F. Boyce S. O’Sullivan J. Davey G.P. Healy J. Monoamine oxidases: Certainties and uncertainties. Curr. Med. Chem. 2004 11 15 1965 1982 10.2174/0929867043364810 15279561
    [Google Scholar]
  9. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  10. Bloem B.R. Okun M.S. Klein C. Parkinson’s disease. Lancet 2021 397 10291 2284 2303 10.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  11. Tong J. Rathitharan G. Meyer J.H. Furukawa Y. Ang L.C. Boileau I. Guttman M. Hornykiewicz O. Kish S.J. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders. Brain 2017 140 9 2460 2474 10.1093/brain/awx172 29050386
    [Google Scholar]
  12. Kalimon O.J. Vekaria H.J. Gerhardt G.A. Sullivan P.G. Inhibition of monoamine oxidase-a increases respiration in isolated mouse cortical mitochondria. Exp. Neurol. 2023 363 114356 10.1016/j.expneurol.2023.114356 36841465
    [Google Scholar]
  13. Zoltowska K.M. Das U. Lismont S. Enzlein T. Maesako M. Houser M.C.Q. Franco M.L. Özcan B. Gomes Moreira D. Karachentsev D. Becker A. Hopf C. Vilar M. Berezovska O. Mobley W. Chávez-Gutiérrez L. Alzheimer’s disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling. eLife 2024 12 RP90690 10.7554/eLife.90690 39027984
    [Google Scholar]
  14. Bhawna K.A. Kumar A. Bhatia M. Kapoor A. Kumar P. Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur. J. Med. Chem. 2022 242 114655 10.1016/j.ejmech.2022.114655 36037788
    [Google Scholar]
  15. Rinaldi D. Alborghetti M. Bianchini E. Sforza M. Galli S. Pontieri F.E. Monoamine-oxidase type B inhibitors and cognitive func-tions in parkinson’s disease: Beyond the primary mechanism of action. Curr. Neuropharmacol. 2023 21 5 1214 1223 10.2174/1570159X20666220905102144 36065929
    [Google Scholar]
  16. Jian C. Yan J. Zhang H. Zhu J. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase-A and monoamine oxidase-B in vitro and in vivo. Mol. Cell. Probes 2021 55 101686 10.1016/j.mcp.2020.101686 33279529
    [Google Scholar]
  17. Crisan L. Istrate D. Bora A. Pacureanu L. Virtual screening and drug repurposing experiments to identify potential novel selective MAO-B inhibitors for parkinson’s disease treatment. Mol. Divers. 2021 25 3 1775 1794 10.1007/s11030‑020‑10155‑6 33237524
    [Google Scholar]
  18. Srivastava P. Sudevan S.T. Thennavan A. Mathew B. Kanthlal S.K. Inhibiting monoamine oxidase in CNS and CVS would be a promising approach to mitigating cardiovascular complications in neurodegenerative disorders. CNS Neurol. Disord. Drug Targets 2024 23 3 331 341 10.2174/1871527322666230303115236 36872357
    [Google Scholar]
  19. Naoi M. Maruyama W. Shamoto-Nagai M. Riederer P. Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of parkinson’s disease. J. Neural Transm. 2024 131 6 639 661 10.1007/s00702‑023‑02730‑6 38196001
    [Google Scholar]
  20. Agrawal N. Bhardwaj A. Singh S. Goyal A. Gaurav A. Natural products as monoamine oxidase inhibitors: Potential agents for neu-rological disorders. Comb. Chem. High Throughput Screen. 2024 27 5 701 714 10.2174/1386207326666230510141008 37165491
    [Google Scholar]
  21. Seitz A. Kojima H. Oiwa K. Mandelkow E.M. Song Y.H. Mandelkow E. Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J. 2002 21 18 4896 4905 10.1093/emboj/cdf503 12234929
    [Google Scholar]
  22. Cleveland D.W. Hwo S.Y. Kirschner M.W. Purification of tau, a microtubule-associated protein that induces assembly of microtu-bules from purified tubulin. J. Mol. Biol. 1977 116 2 207 225 10.1016/0022‑2836(77)90213‑3 599557
    [Google Scholar]
  23. Behl T. Kaur D. Sehgal A. Singh S. Sharma N. Zengin G. Andronie-Cioara F.L. Toma M.M. Bungau S. Bumbu A.G. Role of monoamine oxidase activity in alzheimer’s disease: An insight into the therapeutic potential of inhibitors. Molecules 2021 26 12 3724 10.3390/molecules26123724 34207264
    [Google Scholar]
  24. Zbinden A. Pérez-Berlanga M. De Rossi P. Polymenidou M. Phase separation and neurodegenerative diseases: A disturbance in the force. Dev. Cell 2020 55 1 45 68 10.1016/j.devcel.2020.09.014 33049211
    [Google Scholar]
  25. Lu C. Guo Y. Yan J. Luo Z. Luo H.B. Yan M. Huang L. Li X. Design, synthesis, and evaluation of multitarget-directed resvera-trol derivatives for the treatment of alzheimer’s disease. J. Med. Chem. 2013 56 14 5843 5859 10.1021/jm400567s 23799643
    [Google Scholar]
  26. Liu H.C. Tang S.Z. Lu S. Ran T. Wang J. Zhang Y.M. Xu A.Y. Lu T. Chen Y.D. Studies on [5,6]-fused bicyclic scaffolds derivatives as potent dual B-RafV600E/KDR inhibitors using docking and 3D-QSAR approaches. Int. J. Mol. Sci. 2015 16 10 24451 24474 10.3390/ijms161024451 26501259
    [Google Scholar]
  27. deSouza R.M. Schapira A. Safinamide for the treatment of parkinson’s disease. Expert Opin. Pharmacother. 2017 18 9 937 943 10.1080/14656566.2017.1329819 28504022
    [Google Scholar]
  28. Jiang D.Q. Li M.X. Jiang L.L. Chen X.B. Zhou X.W. Comparison of selegiline and levodopa combination therapy versus levodopa monotherapy in the treatment of parkinson’s disease: A meta-analysis. Aging Clin. Exp. Res. 2020 32 5 769 779 10.1007/s40520‑019‑01232‑4 31175606
    [Google Scholar]
  29. Bette S. Shpiner D.S. Singer C. Moore H. Safinamide in the management of patients with Parkinson’s disease not stabilized on levo-dopa: A review of the current clinical evidence. Ther. Clin. Risk Manag. 2018 14 1737 1745 10.2147/TCRM.S139545 30271159
    [Google Scholar]
  30. Cherkasov A. Muratov E.N. Fourches D. Varnek A. Baskin I.I. Cronin M. Dearden J. Gramatica P. Martin Y.C. Todeschini R. Consonni V. Kuz’min V.E. Cramer R. Benigni R. Yang C. Rathman J. Terfloth L. Gasteiger J. Richard A. Tropsha A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014 57 12 4977 5010 10.1021/jm4004285 24351051
    [Google Scholar]
  31. Santos-Filho O.A. Hopfinger A.J. A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydro-folate reductase inhibitors. J. Comput. Aided Mol. Des. 2001 15 1 1 12 10.1023/A:1011152818340 11217916
    [Google Scholar]
  32. Duch W. Swaminathan K. Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr. Pharm. Des. 2007 13 14 1497 1508 10.2174/138161207780765954 17504169
    [Google Scholar]
  33. Zheng M. Liu X. Xu Y. Li H. Luo C. Jiang H. Computational methods for drug design and discovery: Focus on China. Trends Pharmacol. Sci. 2013 34 10 549 559 10.1016/j.tips.2013.08.004 24035675
    [Google Scholar]
  34. Wang Y.L. Wang F. Shi X.X. Jia C.Y. Wu F.X. Hao G.F. Yang G.F. Cloud 3D-QSAR: A web tool for the development of quanti-tative structure–activity relationship models in drug discovery. Brief. Bioinform. 2021 22 4 bbaa276 10.1093/bib/bbaa276 33140820
    [Google Scholar]
  35. Al-Saad O.M. Gabr M. Darwish S.S. Rullo M. Pisani L. Miniero D.V. Liuzzi G.M. Kany A.M. Hirsch A.K.H. Abadi A.H. Engel M. Catto M. Abdel-Halim M. Novel 6-hydroxybenzothiazol-2-carboxamides as potent and selective monoamine oxidase B in-hibitors endowed with neuroprotective activity. Eur. J. Med. Chem. 2024 269 116266 10.1016/j.ejmech.2024.116266 38490063
    [Google Scholar]
  36. Yu Z. Li X. Ge C. Si H. Cui L. Gao H. Duan Y. Zhai H. 3D-QSAR modeling and molecular docking study on Mer kinase in-hibitors of pyridine-substituted pyrimidines. Mol. Divers. 2015 19 1 135 147 10.1007/s11030‑014‑9556‑0 25355276
    [Google Scholar]
  37. Patel P.D. Patel M.R. Kaushik-Basu N. Talele T.T. 3D QSAR and molecular docking studies of benzimidazole derivatives as hepati-tis C virus NS5B polymerase inhibitors. J. Chem. Inf. Model. 2008 48 1 42 55 10.1021/ci700266z 18076152
    [Google Scholar]
  38. Mouchlis V.D. Melagraki G. Mavromoustakos T. Kollias G. Afantitis A. Molecular modeling on pyrimidine-urea inhibitors of TNF-α production: An integrated approach using a combination of molecular docking, classification techniques, and 3D-QSAR CoMSIA. J. Chem. Inf. Model. 2012 52 3 711 723 10.1021/ci200579f 22360289
    [Google Scholar]
  39. Xiao H. Mei N. Chi Q. Wang X. Comprehensive binding analysis of polybrominated diphenyl ethers and aryl hydrocarbon receptor via an integrated molecular modeling approach. Chemosphere 2021 262 128356 10.1016/j.chemosphere.2020.128356 33182092
    [Google Scholar]
  40. Liu G. Wang W. Wan Y. Ju X. Gu S. Application of 3D-QSAR, pharmacophore, and molecular docking in the molecular design of diarylpyrimidine derivatives as HIV-1 nonnucleoside reverse transcriptase inhibitors. Int. J. Mol. Sci. 2018 19 5 1436 10.3390/ijms19051436 29751616
    [Google Scholar]
  41. Paggi J.M. Pandit A. Dror R.O. The art and science of molecular docking. Annu. Rev. Biochem. 2024 93 1 389 410 10.1146/annurev‑biochem‑030222‑120000 38594926
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266354743241216065502
Loading
/content/journals/ctmc/10.2174/0115680266354743241216065502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test