Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

6-hydroxybenzothiazole-2-carboxamide is a novel, potent, and specific monoamine oxidase B inhibitor that can be used to study the structure of molecules and come up with new ways to protect neurons.

Objective

The objective of this work was to create an effective model using derivatives of 6-hydroxybenzothiazole-2-carboxamide and establish a dependable predictive foundation for the development of neuroprotective monoamine oxidase B inhibitors for the treatment of neurodegenerative diseases.

Methods

The construction and optimization of all compounds were carried out sequentially using ChemDraw software and Sybyl-X software. The optimized compounds were further analyzed using the COMSIA approach and the Sybyl-X software tool for QSAR modeling. A set of novel compounds of 6-hydroxybenzothiazole-2-carboxamide were created and their IC50 values were forecasted using QSAR modeling. Ultimately, the recently developed compounds underwent a screening process using their IC50 values, and molecular docking tests were conducted on the ten most promising compounds with the highest IC50 values.

Results

The 3D-QSAR model exhibited favorable outcomes. The value of q2 in the COMSIA model was 0.569. The model demonstrated a superior r2 value of 0.915, a lower SEE of 0.109, and a higher F-value of 52.714. The statistical findings and validation of the model were deemed adequate. Furthermore, analyzing the contour plots might assist in identifying the necessary structural specifications.

Conclusion

This work has the potential to provide an insight into the development of active medicines that protect the nervous system against neurodegenerative disorders.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266354743241216065502
2025-01-10
2025-11-02
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/25/10/CTMC-25-10-1266.html?itemId=/content/journals/ctmc/10.2174/0115680266354743241216065502&mimeType=html&fmt=ahah

References

  1. WilsonD.M.III CooksonM.R. Van Den BoschL. ZetterbergH. HoltzmanD.M. DewachterI. Hallmarks of neurodegenerative diseases.Cell2023186469371410.1016/j.cell.2022.12.03236803602
    [Google Scholar]
  2. Santos GarcíaD. de Deus FonticobaT. Suárez CastroE. BorruéC. MataM. Solano VilaB. Cots ForasterA. Álvarez SaucoM. Rodríguez PérezA.B. VelaL. MacíasY. EscalanteS. EsteveP. Reverté VillarroyaS. CuboE. CasasE. ArnaizS. Carrillo PadillaF. Pueyo MorlansM. MirP. Martinez-MartinP. AdarmesA.D. AlmeriaM. Alonso LosadaG. Alonso CánovasA. Alonso-FrechF. ArribasS. Ascunde VidondoA. AquilarM. ÁvilaM.A. Bernardo LambrichN. Bejr-KasemH. Blázquez EstradaM. BotíM. Cabello GonzálezC. Cabo LópezI. CaballolN. Cámara LorenzoA. CarrilloF. CatalánM.J. ClaveroP. Cortina FernándezA. Crespo CuevasA. de Fábregues-BoixarO. Díez-FairenM. ErroE. Estelrich PeyretE. Fernández GuillánN. GámezP. GallegoM. García CaldenteyJ. García CamposC. García MorenoJ.M. GastónI. Gómez GarreM.P. González AloyJ. González-AramburuI. González ArduraJ. González GarcíaB. González PalmásM.J. González ToledoG.R. Golpe DíazA. Grau SoláM. GuardiaG. Hernández-VaraJ. Horta BarbaA. InfanteJ. JesúsS. KulisevskyJ. KurtisM. LabandeiraC. LabradorM.A. LacruzF. Lage CastroM. LegardaI. López ArizteguiN. López DíazL.M. López ManzanaresL. López SeoaneB. Martí AndresG. MartíM.J. Martínez-CastrilloJ.C. McAfeeD. MeitínM.T. Menéndez GonzálezM. Méndez del BarrioC. Miranda SantiagoJ. Morales CasadoM.I. Moreno DiéguezA. NogueiraV. Novo AmadoA. Novo PonteS. OrdásC. PagonabarragaJ. PareésI. Pascual-SedanoB. PastorP. Pérez FuertesA. Pérez NogueraR. PlanellasL. Pol FusterJ. PratsM.A. Prieto JurczynskaC. PuenteV. Redondo RafalesN. Rodríguez MéndezL. RoldánF. Ruíz De ArcosM. Ruíz MartínezJ. Sánchez AlonsoP. Sánchez-CarpinteroM. Sánchez DíezG. Sánchez RodríguezA. SantacruzP. Segundo RodríguezJ.C. SeijoM. SerarolsA. Sierra PeñaM. TartariJ.P. VargasL. Vázquez GómezR. VillanuevaC. VivesB. VillarM.D. Non-motor symptoms burden, mood, and gait problems are the most significant factors contributing to a poor quality of life in non-demented parkinson’s disease patients: Results from the COPPADIS study cohort.Parkinsonism Relat. Disord.20196615115710.1016/j.parkreldis.2019.07.03131409572
    [Google Scholar]
  3. TeoK.C. HoS.L. Monoamine oxidase-B (MAO-B) inhibitors: Implications for disease-modification in parkinson’s disease.Transl. Neurodegener.2013211910.1186/2047‑9158‑2‑1924011391
    [Google Scholar]
  4. HoyS.M. KeatingG.M. Rasagiline.Drugs201272564366910.2165/11207560‑000000000‑0000022439669
    [Google Scholar]
  5. KonradiC. RiedererP. JellingerK. DenneyR. Cellular action of MAO inhibitors.J. Neural Transm. Suppl.19872515253480938
    [Google Scholar]
  6. LemkeC. ChristmannJ. YinJ. AlonsoJ.M. SerranoE. ChiouaM. IsmailiL. Martínez-GrauM.A. BeadleC.D. VetmanT. DatoF.M. BartzU. ElsinghorstP.W. PietschM. MüllerC.E. IriepaI. WilleT. Marco-ContellesJ. GütschowM. Chromenones as multineurotargeting inhibitors of human enzymes.ACS Omega2019426221612216810.1021/acsomega.9b0340931891098
    [Google Scholar]
  7. MarottaN.P. AraJ. UemuraN. LougeeM.G. MeymandE.S. ZhangB. PeterssonE.J. TrojanowskiJ.Q. LeeV.M.Y. Alpha-synuclein from patient Lewy bodies exhibits distinct pathological activity that can be propagated in vitro.Acta Neuropathol. Commun.20219118810.1186/s40478‑021‑01288‑234819159
    [Google Scholar]
  8. TiptonK.F. BoyceS. O’SullivanJ. DaveyG.P. HealyJ. Monoamine oxidases: Certainties and uncertainties.Curr. Med. Chem.200411151965198210.2174/092986704336481015279561
    [Google Scholar]
  9. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  10. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X33848468
    [Google Scholar]
  11. TongJ. RathitharanG. MeyerJ.H. FurukawaY. AngL.C. BoileauI. GuttmanM. HornykiewiczO. KishS.J. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders.Brain201714092460247410.1093/brain/awx17229050386
    [Google Scholar]
  12. KalimonO.J. VekariaH.J. GerhardtG.A. SullivanP.G. Inhibition of monoamine oxidase-a increases respiration in isolated mouse cortical mitochondria.Exp. Neurol.202336311435610.1016/j.expneurol.2023.11435636841465
    [Google Scholar]
  13. ZoltowskaK.M. DasU. LismontS. EnzleinT. MaesakoM. HouserM.C.Q. FrancoM.L. ÖzcanB. Gomes MoreiraD. KarachentsevD. BeckerA. HopfC. VilarM. BerezovskaO. MobleyW. Chávez-GutiérrezL. Alzheimer’s disease linked Aβ42 exerts product feedback inhibition on γ-secretase impairing downstream cell signaling.eLife202412RP9069010.7554/eLife.9069039027984
    [Google Scholar]
  14. BhawnaK.A. KumarA. BhatiaM. KapoorA. KumarP. KumarS. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies.Eur. J. Med. Chem.202224211465510.1016/j.ejmech.2022.11465536037788
    [Google Scholar]
  15. RinaldiD. AlborghettiM. BianchiniE. SforzaM. GalliS. PontieriF.E. Monoamine-oxidase type B inhibitors and cognitive functions in parkinson’s disease: Beyond the primary mechanism of action.Curr. Neuropharmacol.20232151214122310.2174/1570159X2066622090510214436065929
    [Google Scholar]
  16. JianC. YanJ. ZhangH. ZhuJ. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase-A and monoamine oxidase-B in vitro and in vivo.Mol. Cell. Probes20215510168610.1016/j.mcp.2020.10168633279529
    [Google Scholar]
  17. CrisanL. IstrateD. BoraA. PacureanuL. Virtual screening and drug repurposing experiments to identify potential novel selective MAO-B inhibitors for parkinson’s disease treatment.Mol. Divers.20212531775179410.1007/s11030‑020‑10155‑633237524
    [Google Scholar]
  18. SrivastavaP. SudevanS.T. ThennavanA. MathewB. KanthlalS.K. Inhibiting monoamine oxidase in CNS and CVS would be a promising approach to mitigating cardiovascular complications in neurodegenerative disorders.CNS Neurol. Disord. Drug Targets202423333134110.2174/187152732266623030311523636872357
    [Google Scholar]
  19. NaoiM. MaruyamaW. Shamoto-NagaiM. RiedererP. Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of parkinson’s disease.J. Neural Transm.2024131663966110.1007/s00702‑023‑02730‑638196001
    [Google Scholar]
  20. AgrawalN. BhardwajA. SinghS. GoyalA. GauravA. Natural products as monoamine oxidase inhibitors: Potential agents for neurological disorders.Comb. Chem. High Throughput Screen.202427570171410.2174/138620732666623051014100837165491
    [Google Scholar]
  21. SeitzA. KojimaH. OiwaK. MandelkowE.M. SongY.H. MandelkowE. Single-molecule investigation of the interference between kinesin, tau and MAP2c.EMBO J.200221184896490510.1093/emboj/cdf50312234929
    [Google Scholar]
  22. ClevelandD.W. HwoS.Y. KirschnerM.W. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin.J. Mol. Biol.1977116220722510.1016/0022‑2836(77)90213‑3599557
    [Google Scholar]
  23. BehlT. KaurD. SehgalA. SinghS. SharmaN. ZenginG. Andronie-CioaraF.L. TomaM.M. BungauS. BumbuA.G. Role of monoamine oxidase activity in alzheimer’s disease: An insight into the therapeutic potential of inhibitors.Molecules20212612372410.3390/molecules2612372434207264
    [Google Scholar]
  24. ZbindenA. Pérez-BerlangaM. De RossiP. PolymenidouM. Phase separation and neurodegenerative diseases: A disturbance in the force.Dev. Cell2020551456810.1016/j.devcel.2020.09.01433049211
    [Google Scholar]
  25. LuC. GuoY. YanJ. LuoZ. LuoH.B. YanM. HuangL. LiX. Design, synthesis, and evaluation of multitarget-directed resveratrol derivatives for the treatment of alzheimer’s disease.J. Med. Chem.201356145843585910.1021/jm400567s23799643
    [Google Scholar]
  26. LiuH.C. TangS.Z. LuS. RanT. WangJ. ZhangY.M. XuA.Y. LuT. ChenY.D. Studies on [5,6]-fused bicyclic scaffolds derivatives as potent dual B-RafV600E/KDR inhibitors using docking and 3D-QSAR approaches.Int. J. Mol. Sci.20151610244512447410.3390/ijms16102445126501259
    [Google Scholar]
  27. deSouzaR.M. SchapiraA. Safinamide for the treatment of parkinson’s disease.Expert Opin. Pharmacother.201718993794310.1080/14656566.2017.132981928504022
    [Google Scholar]
  28. JiangD.Q. LiM.X. JiangL.L. ChenX.B. ZhouX.W. Comparison of selegiline and levodopa combination therapy versus levodopa monotherapy in the treatment of parkinson’s disease: A meta-analysis.Aging Clin. Exp. Res.202032576977910.1007/s40520‑019‑01232‑431175606
    [Google Scholar]
  29. BetteS. ShpinerD.S. SingerC. MooreH. Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: A review of the current clinical evidence.Ther. Clin. Risk Manag.2018141737174510.2147/TCRM.S13954530271159
    [Google Scholar]
  30. CherkasovA. MuratovE.N. FourchesD. VarnekA. BaskinI.I. CroninM. DeardenJ. GramaticaP. MartinY.C. TodeschiniR. ConsonniV. Kuz’minV.E. CramerR. BenigniR. YangC. RathmanJ. TerflothL. GasteigerJ. RichardA. TropshaA. QSAR modeling: Where have you been? Where are you going to?J. Med. Chem.201457124977501010.1021/jm400428524351051
    [Google Scholar]
  31. Santos-FilhoO.A. HopfingerA.J. A search for sources of drug resistance by the 4D-QSAR analysis of a set of antimalarial dihydrofolate reductase inhibitors.J. Comput. Aided Mol. Des.200115111210.1023/A:101115281834011217916
    [Google Scholar]
  32. DuchW. SwaminathanK. MellerJ. Artificial intelligence approaches for rational drug design and discovery.Curr. Pharm. Des.200713141497150810.2174/13816120778076595417504169
    [Google Scholar]
  33. ZhengM. LiuX. XuY. LiH. LuoC. JiangH. Computational methods for drug design and discovery: Focus on China.Trends Pharmacol. Sci.2013341054955910.1016/j.tips.2013.08.00424035675
    [Google Scholar]
  34. WangY.L. WangF. ShiX.X. JiaC.Y. WuF.X. HaoG.F. YangG.F. Cloud 3D-QSAR: A web tool for the development of quantitative structure–activity relationship models in drug discovery.Brief. Bioinform.2021224bbaa27610.1093/bib/bbaa27633140820
    [Google Scholar]
  35. Al-SaadO.M. GabrM. DarwishS.S. RulloM. PisaniL. MinieroD.V. LiuzziG.M. KanyA.M. HirschA.K.H. AbadiA.H. EngelM. CattoM. Abdel-HalimM. Novel 6-hydroxybenzothiazol-2-carboxamides as potent and selective monoamine oxidase B inhibitors endowed with neuroprotective activity.Eur. J. Med. Chem.202426911626610.1016/j.ejmech.2024.11626638490063
    [Google Scholar]
  36. YuZ. LiX. GeC. SiH. CuiL. GaoH. DuanY. ZhaiH. 3D-QSAR modeling and molecular docking study on Mer kinase inhibitors of pyridine-substituted pyrimidines.Mol. Divers.201519113514710.1007/s11030‑014‑9556‑025355276
    [Google Scholar]
  37. PatelP.D. PatelM.R. Kaushik-BasuN. TaleleT.T. 3D QSAR and molecular docking studies of benzimidazole derivatives as hepatitis C virus NS5B polymerase inhibitors.J. Chem. Inf. Model.2008481425510.1021/ci700266z18076152
    [Google Scholar]
  38. MouchlisV.D. MelagrakiG. MavromoustakosT. KolliasG. AfantitisA. Molecular modeling on pyrimidine-urea inhibitors of TNF-α production: An integrated approach using a combination of molecular docking, classification techniques, and 3D-QSAR CoMSIA.J. Chem. Inf. Model.201252371172310.1021/ci200579f22360289
    [Google Scholar]
  39. XiaoH. MeiN. ChiQ. WangX. Comprehensive binding analysis of polybrominated diphenyl ethers and aryl hydrocarbon receptor via an integrated molecular modeling approach.Chemosphere202126212835610.1016/j.chemosphere.2020.12835633182092
    [Google Scholar]
  40. LiuG. WangW. WanY. JuX. GuS. Application of 3D-QSAR, pharmacophore, and molecular docking in the molecular design of diarylpyrimidine derivatives as HIV-1 nonnucleoside reverse transcriptase inhibitors.Int. J. Mol. Sci.2018195143610.3390/ijms1905143629751616
    [Google Scholar]
  41. PaggiJ.M. PanditA. DrorR.O. The art and science of molecular docking.Annu. Rev. Biochem.202493138941010.1146/annurev‑biochem‑030222‑12000038594926
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266354743241216065502
Loading
/content/journals/ctmc/10.2174/0115680266354743241216065502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test