Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cancer stem cells (CSCs) have become a key player in the growth of tumors, the spread of cancer, and the resistance to therapeutic interventions. Targeting these elusive cell populations has the potential to fundamentally alter cancer treatment plans. CSCs, also known as tumor-initiating cells (TICs), are thought to play a role in both medication resistance and cancer recurrence. This is explained by their capacity to regenerate themselves and change into different kinds of cancer cells. Due to their higher expression of ATP-binding cassette (ABC) membrane transporters, enhanced epithelial to mesenchymal (EMT) characteristics, improved immune evasion, activation of survival signaling pathways, and improved DNA repair mechanisms, CSCs exhibit extraordinary resistance to therapies. This comprehensive analysis delves into advancements in the domain of Targeted Cancer Stem Cell Therapeutics, concentrating on unraveling the distinctive traits of CSCs and the therapeutic methods devised to eliminate them.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266275014240110071351
2025-01-26
2025-10-20
Loading full text...

Full text loading...

References

  1. RossiF. NorenH. JoveR. BeljanskiV. GrinnemoK.H. Differences and similarities between cancer and somatic stem cells: Therapeutic implications.Stem Cell Res. Ther.202011148910.1186/s13287‑020‑02018‑633208173
    [Google Scholar]
  2. PhiL.T.H. SariI.N. YangY.G. LeeS.H. JunN. KimK.S. LeeY.K. KwonH.Y. Cancer Stem Cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment.Stem Cells Int.2018201811610.1155/2018/541692329681949
    [Google Scholar]
  3. NassarD. BlanpainC. Cancer stem cells: Basic concepts and therapeutic implications.Annu. Rev. Pathol.2016111477610.1146/annurev‑pathol‑012615‑04443827193450
    [Google Scholar]
  4. BlanpainC. Tracing the cellular origin of cancer.Nat. Cell Biol.201315212613410.1038/ncb265723334500
    [Google Scholar]
  5. KlonischT. WiechecE. Hombach-KlonischS. AndeS.R. WesselborgS. Schulze-OsthoffK. LosM. Cancer stem cell markers in common cancers - therapeutic implications.Trends Mol. Med.2008141045046010.1016/j.molmed.2008.08.00318775674
    [Google Scholar]
  6. MardanpourP. GuanK. NolteJ. LeeJ.H. HasenfussG. EngelW. NayerniaK. Potency of germ cells and its relevance for regenerative medicine.J. Anat.20082131262910.1111/j.1469‑7580.2008.00930.x18565110
    [Google Scholar]
  7. Al-HajjM. BeckerM.W. WichaM. WeissmanI. ClarkeM.F. Therapeutic implications of cancer stem cells.Curr. Opin. Genet. Dev.2004141434710.1016/j.gde.2003.11.00715108804
    [Google Scholar]
  8. DalerbaP. ChoR.W. ClarkeM.F. Cancer stem cells: Models and concepts.Annu. Rev. Med.200758126728410.1146/annurev.med.58.062105.20485417002552
    [Google Scholar]
  9. ScaddenD.T. The stem-cell niche as an entity of action.Nature200644170971075107910.1038/nature0495716810242
    [Google Scholar]
  10. Al-HajjM. Cancer stem cells and oncology therapeutics.Curr. Opin. Oncol.2007191616410.1097/CCO.0b013e328011a8d617133114
    [Google Scholar]
  11. RossiD.J. WeissmanI.L. Pten, tumorigenesis, and stem cell self-renewal.Cell2006125222923110.1016/j.cell.2006.04.00616630811
    [Google Scholar]
  12. KorkayaH. WichaM.S. Selective targeting of cancer stem cells: A new concept in cancer therapeutics.BioDrugs200721529931010.2165/00063030‑200721050‑0000217896836
    [Google Scholar]
  13. FrankN.Y. SchattonT. FrankM.H. The therapeutic promise of the cancer stem cell concept.J. Clin. Invest.20101201415010.1172/JCI4100420051635
    [Google Scholar]
  14. ClarkeM.F. Clinical and therapeutic implications of cancer stem cells.N. Engl. J. Med.2019380232237224510.1056/NEJMra180428031167052
    [Google Scholar]
  15. HaqS. SureshB. RamakrishnaS. Deubiquitylating enzymes as cancer stem cell therapeutics.Biochim. Biophys. Acta Rev. Cancer20181869111010.1016/j.bbcan.2017.10.00429054474
    [Google Scholar]
  16. LealJ.A. LleonartM.E. MicroRNAs and cancer stem cells: Therapeutic approaches and future perspectives.Cancer Lett.2013338117418310.1016/j.canlet.2012.04.02022554710
    [Google Scholar]
  17. NairuzT. MahmudZ. ManikR.K. KabirY. Cancer stem cells: An insight into the development of metastatic tumors and therapy resistance.Stem Cell Rev. Rep.20231961577159510.1007/s12015‑023‑10529‑x37129728
    [Google Scholar]
  18. AtashzarM.R. BaharlouR. KaramiJ. AbdollahiH. RezaeiR. PourramezanF. Zoljalali MoghaddamS.H. Cancer stem cells: A review from origin to therapeutic implications.J. Cell. Physiol.2020235279080310.1002/jcp.2904431286518
    [Google Scholar]
  19. WichaMS LiuS DontuG Cancer stem cells: An old idea-a paradigm shift.AACR Educ. book2008138339610.1158/AACR.EDB‑CAN‑05‑3153
    [Google Scholar]
  20. JayachandranA. DhungelB. SteelJ.C. Epithelial-to-mesenchymal plasticity of cancer stem cells: Therapeutic targets in hepatocellular carcinoma.J. Hematol. Oncol.2016917410.1186/s13045‑016‑0307‑927578206
    [Google Scholar]
  21. NguyenL.V. VannerR. DirksP. EavesC.J. Cancer stem cells: An evolving concept.Nat. Rev. Cancer201212213314310.1038/nrc318422237392
    [Google Scholar]
  22. DraguD.L. NeculaL.G. BleotuC. DiaconuC.C. Chivu-EconomescuM. Therapies targeting cancer stem cells: Current trends and future challenges.World J. Stem Cells2015791185120110.4252/wjsc.v7.i9.118526516409
    [Google Scholar]
  23. ChenK. HuangY. ChenJ. Understanding and targeting cancer stem cells: Therapeutic implications and challenges.Acta Pharmacol. Sin.201334673274010.1038/aps.2013.2723685952
    [Google Scholar]
  24. HanL. ShiS. GongT. ZhangZ. SunX. Cancer stem cells: Therapeutic implications and perspectives in cancer therapy.Acta Pharm. Sin. B201332657510.1016/j.apsb.2013.02.006
    [Google Scholar]
  25. LiL. NeavesW.B. Normal stem cells and cancer stem cells: The niche matters.Cancer Res.20066694553455710.1158/0008‑5472.CAN‑05‑398616651403
    [Google Scholar]
  26. ZhaoY. DongQ. LiJ. ZhangK. QinJ. ZhaoJ. SunQ. WangZ. WartmannT. JauchK.W. NelsonP.J. QinL. BrunsC. Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies.Semin. Cancer Biol.20185313915510.1016/j.semcancer.2018.08.00230081228
    [Google Scholar]
  27. AponteP.M. CaicedoA. Stemness in cancer: Stem cells, cancer stem cells, and their microenvironment.Stem Cells Int.2017201711710.1155/2017/561947228473858
    [Google Scholar]
  28. CarneroA. LleonartM. The hypoxic microenvironment: A determinant of cancer stem cell evolution.BioEssays201638S1S65S7410.1002/bies.20167091127417124
    [Google Scholar]
  29. LinQ. YunZ. Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics.Cancer Biol. Ther.201091294995610.4161/cbt.9.12.1234720581454
    [Google Scholar]
  30. YuanJ. NarayananL. RockwellS. GlazerP.M. Diminished dna repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low PH 1.Cancer Res.20006043724376
    [Google Scholar]
  31. WartenbergM. LingF.C. MüschenM. KleinF. AckerH. GassmannM. PetratK. PützV. HeschelerJ. SauerH. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor-1 and reactive oxygen species.FASEB J.200317312210.1096/fj.02‑0358fje12514119
    [Google Scholar]
  32. SemenzaG.L. Targeting HIF-1 for cancer therapy.Nat. Rev. Cancer200331072173210.1038/nrc118713130303
    [Google Scholar]
  33. BennewithK.L. DurandR.E. Quantifying transient hypoxia in human tumor xenografts by flow cytometry.Cancer Res.2004641761836189
    [Google Scholar]
  34. AzumaT. YaoS. ZhuG. FliesA.S. FliesS.J. ChenL. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells.Blood200811173635364310.1182/blood‑2007‑11‑12314118223165
    [Google Scholar]
  35. KoshijiM. KageyamaY. PeteE.A. HorikawaI. BarrettJ.C. HuangL.E. HIF-1α induces cell cycle arrest by functionally counteracting Myc.EMBO J.20042391949195610.1038/sj.emboj.760019615071503
    [Google Scholar]
  36. TurleyH. Hypoxia-inducible Factors HIF-1?? and HIF-2?? in Head and Neck Cancer Relationship to Tumor Biology and Treatment Outcome in Surgically Resected Patients.Cancer Res.200262924932497
    [Google Scholar]
  37. GustafssonM.V. ZhengX. PereiraT. GradinK. JinS. LundkvistJ. RuasJ.L. PoellingerL. LendahlU. BondessonM. Hypoxia requires notch signaling to maintain the undifferentiated cell state.Dev. Cell20059561762810.1016/j.devcel.2005.09.01016256737
    [Google Scholar]
  38. HeddlestonJ.M. LiZ. McLendonR.E. HjelmelandA.B. RichJ.N. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype.Cell Cycle20098203274328410.4161/cc.8.20.970119770585
    [Google Scholar]
  39. JunttilaM.R. de SauvageF.J. Influence of tumour micro-environment heterogeneity on therapeutic response.Nature2013501746734635410.1038/nature1262624048067
    [Google Scholar]
  40. López de AndrésJ. Griñán-LisónC. JiménezG. MarchalJ.A. Cancer stem cell secretome in the tumor microenvironment: A key point for an effective personalized cancer treatment.J. Hematol. Oncol.202013113610.1186/s13045‑020‑00966‑333059744
    [Google Scholar]
  41. PlaksV. KongN. WerbZ. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells?Cell Stem Cell201516322523810.1016/j.stem.2015.02.01525748930
    [Google Scholar]
  42. CabarcasS.M. MathewsL.A. FarrarW.L. The cancer stem cell niche-there goes the neighborhood?Int. J. Cancer2011129102315232710.1002/ijc.2631221792897
    [Google Scholar]
  43. ChanmeeT. OntongP. KonnoK. ItanoN. Tumor-associated macrophages as major players in the tumor microenvironment.Cancers2014631670169010.3390/cancers603167025125485
    [Google Scholar]
  44. JainS. AnnettS.L. MorganM.P. RobsonT. The cancer stem cell niche in ovarian cancer and its impact on immune surveillance.Int. J. Mol. Sci.2021228409110.3390/ijms2208409133920983
    [Google Scholar]
  45. YeJ. WuD. WuP. ChenZ. HuangJ. The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment.Tumour Biol.20143553945395110.1007/s13277‑013‑1561‑x24420150
    [Google Scholar]
  46. ZamarronB.F. ChenW. Dual roles of immune cells and their factors in cancer development and progression.Int. J. Biol. Sci.20117565165810.7150/ijbs.7.651
    [Google Scholar]
  47. SigurdssonV. HilmarsdottirB. SigmundsdottirH. FridriksdottirA.J.R. RingnérM. VilladsenR. BorgA. AgnarssonB.A. PetersenO.W. MagnussonM.K. GudjonssonT. Endothelial induced EMT in breast epithelial cells with stem cell properties.PLoS One201169e2383310.1371/journal.pone.002383321915264
    [Google Scholar]
  48. WuA. WeiJ. KongL.Y. WangY. PriebeW. QiaoW. SawayaR. HeimbergerA.B. Glioma cancer stem cells induce immunosuppressive macrophages/microglia.Neuro-oncol.201012111113112510.1093/neuonc/noq08220667896
    [Google Scholar]
  49. ThieryJ.P. AcloqueH. HuangR.Y.J. NietoM.A. Epithelial-mesenchymal transitions in development and disease.Cell2009139587189010.1016/j.cell.2009.11.00719945376
    [Google Scholar]
  50. López-NovoaJ.M. NietoM.A. Inflammation and EMT: An alliance towards organ fibrosis and cancer progression.EMBO Mol. Med.200916-730331410.1002/emmm.20090004320049734
    [Google Scholar]
  51. EcclesSA WelchDR Metastasis: Recent discoveries and novel treatment strategies.Lancet200736995741742175710.1016/S0140‑6736(07)60781‑8
    [Google Scholar]
  52. KangY. MassaguéJ. Cancer Biology and Genetics Program and Howard Hughes Medical Institute Sarcoma Appearance;Thiery2004118
    [Google Scholar]
  53. CrokerA.K. AllanA.L. Cancer stem cells: Implications for the progression and treatment of metastatic disease.J. Cell. Mol. Med.200812237439010.1111/j.1582‑4934.2007.00211.x18182063
    [Google Scholar]
  54. YiS.Y. HaoY.B. NanK.J. FanT.L. Cancer stem cells niche: A target for novel cancer therapeutics.Cancer Treat. Rev.201339329029610.1016/j.ctrv.2012.10.00423219150
    [Google Scholar]
  55. LaBargeM.A. The difficulty of targeting cancer stem cell niches.Clin. Cancer Res.201016123121312910.1158/1078‑0432.CCR‑09‑293320530700
    [Google Scholar]
  56. HollierB.G. EvansK. ManiS.A. The epithelial-to-mesenchymal transition and cancer stem cells: A coalition against cancer therapies.J. Mammary Gland Biol. Neoplasia2009141294310.1007/s10911‑009‑9110‑319242781
    [Google Scholar]
  57. LeeG. R HallR. AhmedA.U. Cancer stem cells: Cellular plasticity, niche, and its clinical relevance.J. Stem Cell Res. Ther.201661036310.4172/2157‑7633.100036327891292
    [Google Scholar]
  58. GuJ.W. RizzoP. PannutiA. GoldeT. OsborneB. MieleL. Notch signals in the endothelium and cancer “stem-like” cells: Opportunities for cancer therapy.Vasc. Cell201241710.1186/2045‑824X‑4‑722487493
    [Google Scholar]
  59. HjelmelandA.B. WuQ. HeddlestonJ.M. ChoudharyG.S. MacSwordsJ. LathiaJ.D. McLendonR. LindnerD. SloanA. RichJ.N. Acidic stress promotes a glioma stem cell phenotype.Cell Death Differ.201118582984010.1038/cdd.2010.15021127501
    [Google Scholar]
  60. GerweckL.E. Cellular PH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer.Cancer Res.199656611941198
    [Google Scholar]
  61. ChicheJ. Brahimi-HornM.C. PouysségurJ. Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer.J. Cell. Mol. Med.201014477179410.1111/j.1582‑4934.2009.00994.x20015196
    [Google Scholar]
  62. FletcherJ.I. HaberM. HendersonM.J. NorrisM.D. ABC transporters in cancer: More than just drug efflux pumps.Nat. Rev. Cancer201010214715610.1038/nrc278920075923
    [Google Scholar]
  63. BugdeP. BiswasR. MerienF. LuJ. LiuD.X. ChenM. ZhouS. LiY. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance.Expert Opin. Ther. Targets201721551153010.1080/14728222.2017.131084128335655
    [Google Scholar]
  64. VincentA. Kwan NgY. Side population in human lung cancer cell lines and tumors is enriched with stem-like.Cancer Cells2007
    [Google Scholar]
  65. WangJ.Q. WuZ.X. YangY. TengQ.X. LiY.D. LeiZ.N. JaniK.A. KaushalN. ChenZ.S. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates.J. Evid. Based Med.202114323225610.1111/jebm.1243434388310
    [Google Scholar]
  66. FletcherJ.I. WilliamsR.T. HendersonM.J. NorrisM.D. HaberM. ABC transporters as mediators of drug resistance and contributors to cancer cell biology.Drug Resist. Updat.2016261910.1016/j.drup.2016.03.00127180306
    [Google Scholar]
  67. FalascaM. LintonK.J. Investigational ABC transporter inhibitors.Expert Opin. Investig. Drugs201221565766610.1517/13543784.2012.67933922493979
    [Google Scholar]
  68. NobiliS. LapucciA. LandiniI. CoronnelloM. RovielloG. MiniE. Role of ATP-binding cassette transporters in cancer initiation and progression.Semin. Cancer Biol.202060729510.1016/j.semcancer.2019.08.00631412294
    [Google Scholar]
  69. CrawfordR.R. PotukuchiP.K. SchuetzE.G. SchuetzJ.D. Beyond competitive inhibition: Regulation of ABC transporters by kinases and protein-protein interactions as potential mechanisms of drug-drug interactions.Drug Metab. Dispos.201846556758010.1124/dmd.118.08066329514827
    [Google Scholar]
  70. BegicevicR.R. FalascaM. ABC transporters in cancer stem cells: Beyond chemoresistance.Int. J. Mol. Sci.20171811236210.3390/ijms1811236229117122
    [Google Scholar]
  71. Li SunY PatelA KumarP Sheng ChenZ. Role of ABC transporters in cancer chemotherapy.CACA.201231218
    [Google Scholar]
  72. MuriithiW. Wanjiku MachariaL. Pilotto HemingC. Lima EchevarriaJ. NyachieoA. Niemeyer FilhoP. Moura NetoV. ABC transporters and the hallmarks of cancer: Roles in cancer aggressiveness beyond multidrug resistance.Cancer Biol. Med.202017225326910.20892/j.issn.2095‑3941.2019.028432587767
    [Google Scholar]
  73. MunozM. HendersonM. HaberM. NorrisM. Role of the MRP1/ABCC1 multidrug transporter protein in cancer.IUBMB Life2007591275275710.1080/1521654070173628518085475
    [Google Scholar]
  74. SzakácsG. PatersonJ.K. LudwigJ.A. Booth-GentheC. GottesmanM.M. Targeting multidrug resistance in cancer.Nat. Rev. Drug Discov.20065321923410.1038/nrd198416518375
    [Google Scholar]
  75. BuntingK.D. ABC transporters as phenotypic markers and functional regulators of stem cells.Stem Cells2002201112010.1002/stem.20001111796918
    [Google Scholar]
  76. LouH. DeanM. Targeted therapy for cancer stem cells: The patched pathway and ABC transporters.Oncogene20072691357136010.1038/sj.onc.121020017322922
    [Google Scholar]
  77. LiC. FengY. CoukosG. ZhangL. Therapeutic microRNA strategies in human cancer.AAPS J.200911474775710.1208/s12248‑009‑9145‑919876744
    [Google Scholar]
  78. KaragonlarZ.F. KorhanP. AtabeyN. Targeting c- M et in Cancer by Micro RNA s: Potential therapeutic applications in hepatocellular carcinoma.Drug Dev. Res.201576735736710.1002/ddr.2127426363180
    [Google Scholar]
  79. CiafrèS.A. GalardiS. MangiolaA. FerracinM. LiuC.G. SabatinoG. NegriniM. MairaG. CroceC.M. FaraceM.G. Extensive modulation of a set of microRNAs in primary glioblastoma.Biochem. Biophys. Res. Commun.200533441351135810.1016/j.bbrc.2005.07.03016039986
    [Google Scholar]
  80. BloomstonM. FrankelW.L. PetroccaF. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis.JAMA2007297171901190810.1001/jama.297.17.1901
    [Google Scholar]
  81. IorioM.V. FerracinM. LiuC.G. VeroneseA. SpizzoR. SabbioniS. MagriE. PedrialiM. FabbriM. CampiglioM. MénardS. PalazzoJ.P. RosenbergA. MusianiP. VoliniaS. NenciI. CalinG.A. QuerzoliP. NegriniM. CroceC.M. MicroRNA gene expression deregulation in human breast cancer.Cancer Res.200565167065707010.1158/0008‑5472.CAN‑05‑178316103053
    [Google Scholar]
  82. SchetterA.J. SuetM. LeungY. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma.JAMA2008299442543610.1001/jama.299.4.425
    [Google Scholar]
  83. FrankelL.B. ChristoffersenN.R. JacobsenA. LindowM. KroghA. LundA.H. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells.J. Biol. Chem.200828321026103310.1074/jbc.M70722420017991735
    [Google Scholar]
  84. KumarM.S. LuJ. MercerK.L. GolubT.R. JacksT. Impaired microRNA processing enhances cellular transformation and tumorigenesis.Nat. Genet.200739567367710.1038/ng200317401365
    [Google Scholar]
  85. JiW. SunB. SuC. Targeting microRNAs in cancer gene therapy.Genes2017812110.3390/genes801002128075356
    [Google Scholar]
  86. GandelliniP. ProfumoV. FoliniM. ZaffaroniN. MicroRNAs as new therapeutic targets and tools in cancer.Expert Opin. Ther. Targets201115326527910.1517/14728222.2011.55087821208133
    [Google Scholar]
  87. KotaJ. ChivukulaR.R. O’DonnellK.A. WentzelE.A. MontgomeryC.L. HwangH.W. ChangT.C. VivekanandanP. TorbensonM. ClarkK.R. MendellJ.R. MendellJ.T. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model.Cell200913761005101710.1016/j.cell.2009.04.02119524505
    [Google Scholar]
  88. CalinG.A. CroceC.M. MicroRNA signatures in human cancers.Nat. Rev. Cancer200661185786610.1038/nrc199717060945
    [Google Scholar]
  89. SpizzoR. NicolosoM.S. CroceC.M. CalinG.A. SnapShot: MicroRNAs in cancer.Cell20091373586586.e110.1016/j.cell.2009.04.04019410551
    [Google Scholar]
  90. SunX. JiaoX. PestellT.G. FanC. QinS. MirabelliE. RenH. PestellR.G. MicroRNAs and cancer stem cells: The sword and the shield.Oncogene201433424967497710.1038/onc.2013.49224240682
    [Google Scholar]
  91. WeilerJ. HunzikerJ. HallJ. Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease?Gene Ther.200613649650210.1038/sj.gt.330265416195701
    [Google Scholar]
  92. HeneghanH.M. MillerN. KerinM.J. MiRNAs as biomarkers and therapeutic targets in cancer.Curr. Opin. Pharmacol.201010554355010.1016/j.coph.2010.05.01020541466
    [Google Scholar]
  93. SiM-L. ZhuS. WuH. LuZ. WuF. MoY-Y. miR-21-mediated tumor growth.Oncogene200726192799280310.1038/sj.onc.121008317072344
    [Google Scholar]
  94. EbertM.S. NeilsonJ.R. SharpP.A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells.Nat. Methods20074972172610.1038/nmeth107917694064
    [Google Scholar]
  95. XiaoJ. YangB. LinH. LuY. LuoX. WangZ. Retracted: Novel approaches for gene-specific interference via manipulating actions of microRNAs: Examination on the pacemaker channel genes HCN2 and HCN4.J. Cell. Physiol.2007212228529210.1002/jcp.2106217516552
    [Google Scholar]
  96. GumireddyK. YoungD.D. XiongX. HogeneschJ.B. HuangQ. DeitersA. Small-molecule inhibitors of microrna miR-21 function.Angew. Chem. Int. Ed.200847397482748410.1002/anie.20080155518712719
    [Google Scholar]
  97. ArlottaP. MacklisJ.D. Archeo-cell biology: Carbon dating is not just for pots and dinosaurs.Cell200512214610.1016/j.cell.2005.06.03716009125
    [Google Scholar]
  98. FilipowiczW. RNAi: The nuts and bolts of the RISC machine.Cell20051221172010.1016/j.cell.2005.06.02316009129
    [Google Scholar]
  99. DeSanoJ.T. XuL. MicroRNA regulation of cancer stem cells and therapeutic implications.AAPS J.200911468269210.1208/s12248‑009‑9147‑719842044
    [Google Scholar]
  100. ShiY. LiuZ. LinQ. LuoQ. CenY. LiJ. FangX. GongC. Mirnas and cancer: Key link in diagnosis and therapy.Genes2021128128910.3390/genes1208128934440464
    [Google Scholar]
  101. DasP.K. SiddikaM.A. AshaS.Y. AktarS. RakibM.A. KhanamJ.A. PillaiS. IslamF. MicroRNAs, a promising target for breast cancer stem cells.Mol. Diagn. Ther.2020241698310.1007/s40291‑019‑00439‑531758333
    [Google Scholar]
  102. ReddyS.D.N. GajulaR.P. PakalaS.B. KumarR. MicroRNAs and cancer therapy: The next wave or here to stay?Cancer Biol. Ther.20109747948210.4161/cbt.9.7.1140220190563
    [Google Scholar]
  103. IshidaM. SelaruF.M. miRNA-Based therapeutic strategies.Curr. Pathobiol. Rep.201311637010.1007/s40139‑012‑0004‑523524956
    [Google Scholar]
  104. SignoreM. Ricci-VitianiL. De MariaR. Targeting apoptosis pathways in cancer stem cells.Cancer Lett.2013332237438210.1016/j.canlet.2011.01.01321315505
    [Google Scholar]
  105. FuldaS. Regulation of apoptosis pathways in cancer stem cells.Cancer Lett.2013338116817310.1016/j.canlet.2012.03.01422429999
    [Google Scholar]
  106. SchmittC.A. Senescence, apoptosis and therapy - cutting the lifelines of cancer.Nat. Rev. Cancer20033428629510.1038/nrc104412671667
    [Google Scholar]
  107. TaylorR.C. CullenS.P. MartinS.J. Apoptosis: Controlled demolition at the cellular level.Nat. Rev. Mol. Cell Biol.20089323124110.1038/nrm231218073771
    [Google Scholar]
  108. HanahanD. WeinbergR.A. The hallmarks of cancer.Cell200010015770
    [Google Scholar]
  109. AshkenaziA. Targeting the extrinsic apoptosis pathway in cancer.Cytokine Growth Factor Rev.2008193-432533110.1016/j.cytogfr.2008.04.00118495520
    [Google Scholar]
  110. SafaA.R. Resistance to cell death and its modulation in cancer stem cells.Crit. Rev. Oncog.2016213-420321910.1615/CritRevOncog.201601697627915972
    [Google Scholar]
  111. LavrikI. GolksA. KrammerP.H. Death receptor signaling.J. Cell Sci.2005118226526710.1242/jcs.0161015654015
    [Google Scholar]
  112. SongX. KimS.Y. LeeY.J. Evidence for two modes of synergistic induction of apoptosis by mapatumumab and oxaliplatin in combination with hyperthermia in human colon cancer cells.PLoS One201388e7365410.1371/journal.pone.007365424013390
    [Google Scholar]
  113. EckelmanB.P. SalvesenG.S. ScottF.L. Human inhibitor of apoptosis proteins: Why XIAP is the black sheep of the family.EMBO Rep.200671098899410.1038/sj.embor.740079517016456
    [Google Scholar]
  114. FuldaS. PervaizS. Apoptosis signaling in cancer stem cells.Int. J. Biochem. Cell Biol.2010421313810.1016/j.biocel.2009.06.01019577660
    [Google Scholar]
  115. LaCasseE.C. MahoneyD.J. CheungH.H. PlenchetteS. BairdS. KornelukR.G. IAP-targeted therapies for cancer.Oncogene200827486252627510.1038/onc.2008.30218931692
    [Google Scholar]
  116. FuldaS. VucicD. Targeting IAP proteins for therapeutic intervention in cancer.Nat. Rev. Drug Discov.201211210912410.1038/nrd362722293567
    [Google Scholar]
  117. ElhasidR. LarischS. ARTS-based anticancer therapy: Taking aim at cancer stem cells.Future Oncol.20117101185119410.2217/fon.11.9621992730
    [Google Scholar]
  118. KellyPN DakicA AdamsJM NuttSL StrasserA Tumor growth need not be driven by rare cancer stem cells.Science2007317583633710.1126/science.1142596
    [Google Scholar]
  119. HaydenM.S. GhoshS. Shared principles in NF-kappaB signaling.Cell2008132334436210.1016/j.cell.2008.01.02018267068
    [Google Scholar]
  120. PerkinsN.D. Integrating cell-signalling pathways with NF-κB and IKK function.Nat. Rev. Mol. Cell Biol.200781496210.1038/nrm208317183360
    [Google Scholar]
  121. GuzmanM.L. RossiR.M. NeelakantanS. LiX. CorbettC.A. HassaneD.C. BeckerM.W. BennettJ.M. SullivanE. LachowiczJ.L. VaughanA. SweeneyC.J. MatthewsW. CarrollM. LiesveldJ.L. CrooksP.A. JordanC.T. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells.Blood2007110134427443510.1182/blood‑2007‑05‑09062117804695
    [Google Scholar]
  122. AshkenaziA. Targeting death and decoy receptors of the tumour-necrosis factor superfamily.Nat. Rev. Cancer20022642043010.1038/nrc82112189384
    [Google Scholar]
  123. FalschlehnerC. EmmerichC.H. GerlachB. WalczakH. TRAIL signalling: Decisions between life and death.Int. J. Biochem. Cell Biol.2007397-81462147510.1016/j.biocel.2007.02.00717403612
    [Google Scholar]
  124. ScaffidiC. FuldaS. SrinivasanA. FriesenC. LiF. TomaselliK.J. DebatinK.M. KrammerP.H. PeterM.E. Two CD95 (APO-1/Fas) signaling pathways.EMBO J.19981761675168710.1093/emboj/17.6.16759501089
    [Google Scholar]
  125. AshkenaziA. HerbstR.S. To kill a tumor cell: The potential of proapoptotic receptor agonists.J. Clin. Invest.200811861979199010.1172/JCI3435918523647
    [Google Scholar]
  126. DebatinK.M. Fulda Simone. Apoptosis and Cancer Therapy : From Cutting-Edge Science to Novel Therapeutic Concepts.Wiley-VCH200610.1002/9783527619665
    [Google Scholar]
  127. KruytF.A.E. SchuringaJ.J. Apoptosis and cancer stem cells: Implications for apoptosis targeted therapy.Biochem. Pharmacol.201080442343010.1016/j.bcp.2010.04.01020394737
    [Google Scholar]
  128. HuY. FuL. Targeting cancer stem cells: A new therapy to cure cancer patients.Am. J. Cancer Res.20122334035622679565
    [Google Scholar]
  129. IschenkoI. Cancer stem cells: How can we target them?Curr. Med. Chem.2008153031713184
    [Google Scholar]
  130. SellS. Stem cell origin of cancer and differentiation therapy.Crit. Rev. Oncol. Hematol.200451112810.1016/j.critrevonc.2004.04.00715207251
    [Google Scholar]
  131. MassardC. DeutschE. SoriaJ.C. Tumour stem cell-targeted treatment: Elimination or differentiation.Ann. Oncol.200617111620162410.1093/annonc/mdl07416600978
    [Google Scholar]
  132. ArimaY. NobusueH. SayaH. Targeting of cancer stem cells by differentiation therapy.Cancer Sci.202011182689269510.1111/cas.1450432462706
    [Google Scholar]
  133. XiaL. WurmbachE. WaxmanS. JingY. Upregulation of Bfl-1/A1 in leukemia cells undergoing differentiation by all-trans retinoic acid treatment attenuates chemotherapeutic agent-induced apoptosis.Leukemia20062061009101610.1038/sj.leu.240419816572199
    [Google Scholar]
  134. MatsushitaH. ScaglioniP.P. BhaumikM. RegoE.M. CaiL.F. MajidS.M. MiyachiH. KakizukaA. MillerW.H.Jr PandolfiP.P. in vivo analysis of the role of aberrant histone deacetylase recruitment and RARα blockade in the pathogenesis of acute promyelocytic leukemia.J. Exp. Med.2006203482182810.1084/jem.2005061616549595
    [Google Scholar]
  135. SalvadorM.A. WicinskiJ. CabaudO. ToironY. FinettiP. JosselinE. LelièvreH. Kraus-BerthierL. DepilS. BertucciF. ColletteY. BirnbaumD. Charafe-JauffretE. GinestierC. The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression.Clin. Cancer Res.201319236520653110.1158/1078‑0432.CCR‑13‑087724141629
    [Google Scholar]
  136. ChikamatsuK. IshiiH. MurataT. SakakuraK. ShinoM. ToyodaM. TakahashiK. MasuyamaK. Alteration of cancer stem cell-like phenotype by histone deacetylase inhibitors in squamous cell carcinoma of the head and neck.Cancer Sci.2013104111468147510.1111/cas.1227123992541
    [Google Scholar]
  137. TomuleasaC. MoşteanuO. ŞuşmanS. CristeaV. ALDH as a tumor marker for pancreatic cancer.J. Gastrointestin. Liver Dis.201120444344422187714
    [Google Scholar]
  138. MoonR.T. Wnt/β-catenin pathway.Sci. STKE20052005271cm1cm110.1126/stke.2712005cm115713948
    [Google Scholar]
  139. NusseR. VarmusH.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome.Cell19823119910910.1016/0092‑8674(82)90409‑36297757
    [Google Scholar]
  140. DihlmannSusanne Magnus von KnebelDoeberitz Wnt/beta- catenin-pathway as a molecular target for future anti-cancer therapeutics.Int. J. Cancer2005113451552410.1002/ijc.20609
    [Google Scholar]
  141. CleversH. Wnt/beta-catenin signaling in development and disease.Cell2006127346948010.1016/j.cell.2006.10.01817081971
    [Google Scholar]
  142. AndradeA.C. NilssonO. BarnesK.M. BaronJ. Wnt gene expression in the post-natal growth plate: Regulation with chondrocyte differentiation.Bone20074051361136910.1016/j.bone.2007.01.00517337262
    [Google Scholar]
  143. LiuChenglong TakadaKohichi Targeting Wnt/β-catenin pathway for drug therapy.Med. Drug Discov.2020810006610.1016/j.medidd.2020.100066
    [Google Scholar]
  144. MacDonaldB.T. TamaiK. HeX. Wnt/β-catenin signaling: Components, mechanisms, and diseases.Dev. Cell200917192610.1016/j.devcel.2009.06.01619619488
    [Google Scholar]
  145. LiuJ. XiaoQ. XiaoJ. NiuC. LiY. ZhangX. ZhouZ. ShuG. YinG. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities.Signal Transduct. Target. Ther.202271310.1038/s41392‑021‑00762‑634980884
    [Google Scholar]
  146. WuD. PanW. GSK3: A multifaceted kinase in Wnt signaling.Trends Biochem. Sci.201035316116810.1016/j.tibs.2009.10.00219884009
    [Google Scholar]
  147. BilićJ. HuangY.L. DavidsonG. ZimmermannT. CruciatC.M. BienzM. NiehrsC. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation.Science200731658311619162210.1126/science.113706517569865
    [Google Scholar]
  148. GordonM.D. NusseR. Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors.J. Biol. Chem.200628132224292243310.1074/jbc.R60001520016793760
    [Google Scholar]
  149. KarstenU. GoletzS. What makes cancer stem cell markers different?Springerplus20132130110.1186/2193‑1801‑2‑30123888272
    [Google Scholar]
  150. MohammedT.A. HolenK.D. Jaskula-SztulR. MulkerinD. LubnerS.J. SchelmanW.R. EickhoffJ. ChenH. LoConteN.K. A pilot phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma.Oncologist201116683584310.1634/theoncologist.2011‑003121632454
    [Google Scholar]
  151. IzrailitJ. BermanH.K. DattiA. WranaJ.L. ReedijkM. High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGFβ pathways as fundamental Notch regulators in breast cancer.Proc. Natl. Acad. Sci.201311051714171910.1073/pnas.121401411023319603
    [Google Scholar]
  152. AlbainK. S1-5: Modulation of cancer and stem cell biomarkers by the notch inhibitor mk-0752 added to endocrine therapy for early stage ER+ breast cancer.Cancer Res.20117124 SS1S5
    [Google Scholar]
  153. OsipoC. PatelP. RizzoP. ClementzA.G. HaoL. GoldeT.E. MieleL. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a γ-secretase inhibitor.Oncogene200827375019503210.1038/onc.2008.14918469855
    [Google Scholar]
  154. ZhangC.C. YanZ. ZongQ. FangD.D. PainterC. ZhangQ. ChenE. LiraM.E. John-BaptisteA. ChristensenJ.G. Synergistic effect of the γ-secretase inhibitor PF-03084014 and docetaxel in breast cancer models.Stem Cells Transl. Med.20132323324210.5966/sctm.2012‑009623408105
    [Google Scholar]
  155. VermeulenL. De Sousa E MeloF. van der HeijdenM. CameronK. de JongJ.H. BorovskiT. TuynmanJ.B. TodaroM. MerzC. RodermondH. SprickM.R. KemperK. RichelD.J. StassiG. MedemaJ.P. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment.Nat. Cell Biol.201012546847610.1038/ncb204820418870
    [Google Scholar]
  156. StrosbergJ.R. YeatmanT. WeberJ. CoppolaD. SchellM.J. HanG. AlmhannaK. KimR. ValoneT. JumpH. SullivanD. A phase II study of RO4929097 in metastatic colorectal cancer.Eur. J. Cancer2012487997100310.1016/j.ejca.2012.02.05622445247
    [Google Scholar]
  157. BeachyP.A. HymowitzS.G. LazarusR.A. LeahyD.J. SieboldC. Interactions between Hedgehog proteins and their binding partners come into view.Genes Dev.201024182001201210.1101/gad.195171020844013
    [Google Scholar]
  158. FanG. YeD. ZhuS. XiJ. GuoX. QiaoJ. WuY. JiaW. WangG. FanG. KangJ. RTL1 promotes melanoma proliferation by regulating Wnt/β-catenin signalling.Oncotarget201786210602610603710.18632/oncotarget.2252329285312
    [Google Scholar]
  159. BerthonA. Sahut-BarnolaI. Lambert-LanglaisS. de JoussineauC. Damon-SoubeyrandC. LouisetE. TaketoM.M. TissierF. BertheratJ. Lefrançois-MartinezA.M. MartinezA. ValP. Constitutive β-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development.Hum. Mol. Genet.20101981561157610.1093/hmg/ddq02920106872
    [Google Scholar]
  160. CraneA.M. KramerP. BuiJ.H. ChungW.J. LiX.S. Gonzalez-GarayM.L. HawkinsF. LiaoW. MoraD. ChoiS. WangJ. SunH.C. PaschonD.E. GuschinD.Y. GregoryP.D. KottonD.N. HolmesM.C. SorscherE.J. DavisB.R. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells.Stem Cell Reports20154456957710.1016/j.stemcr.2015.02.00525772471
    [Google Scholar]
  161. GurneyA. AxelrodF. BondC.J. CainJ. ChartierC. DoniganL. FischerM. ChaudhariA. JiM. KapounA.M. LamA. LazeticS. MaS. MitraS. ParkI.K. PickellK. SatoA. SatyalS. StroudM. TranH. YenW.C. LewickiJ. HoeyT. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors.Proc. Natl. Acad. Sci. USA201210929117171172210.1073/pnas.112006810922753465
    [Google Scholar]
  162. ZhangX. LouY. ZhengX. WangH. SunJ. DongQ. HanB. Wnt blockers inhibit the proliferation of lung cancer stem cells.Drug Des. Devel. Ther.201592399240725960639
    [Google Scholar]
  163. LobryC. OhP. MansourM.R. LookA.T. AifantisI. Notch signaling: switching an oncogene to a tumor suppressor.Blood2014123162451245910.1182/blood‑2013‑08‑35581824608975
    [Google Scholar]
  164. LobryC. OhP. AifantisI. Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think.J. Exp. Med.2011208101931193510.1084/jem.2011185521948802
    [Google Scholar]
  165. Practice Bulletin Number 179: Breast Cancer Risk Assessment and Screening in Average-Risk Women.Obstet. Gynecol.20171301e1e1610.1097/AOG.000000000000215828644335
    [Google Scholar]
  166. ReedijkM. Notch signaling and breast cancer.Adv. Exp. Med. Biol.201272724125710.1007/978‑1‑4614‑0899‑4_18
    [Google Scholar]
  167. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2018.CA Cancer J. Clin.201868173010.3322/caac.2144229313949
    [Google Scholar]
  168. StuckeyA. FebbraroT. LapriseJ. WilburJ.S. LopesV. RobisonK. Adherence Patterns to National Comprehensive Cancer Network Guidelines for Referral of Women With Breast Cancer to Genetics Professionals.Am. J. Clin. Oncol.201639436336710.1097/COC.000000000000007324710121
    [Google Scholar]
  169. KontomanolisE.N. KalagasidouS. PouliliouS. AnthoulakiX. GeorgiouN. PapamanolisV. FasoulakisZ.N. The notch pathway in breast cancer progression.ScientificWorldJournal2018201811110.1155/2018/241548930111989
    [Google Scholar]
  170. BrouC. LogeatF. GuptaN. BessiaC. LeBailO. DoedensJ.R. CumanoA. RouxP. BlackR.A. IsraëlA. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE.Mol. Cell20005220721610.1016/S1097‑2765(00)80417‑710882063
    [Google Scholar]
  171. MummJ.S. SchroeterE.H. SaxenaM.T. GriesemerA. TianX. PanD.J. RayW.J. KopanR. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1.Mol. Cell20005219720610.1016/S1097‑2765(00)80416‑510882062
    [Google Scholar]
  172. HsiehJ.J.D. ZhouS. ChenL. YoungD.B. HaywardS.D. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex.Proc. Natl. Acad. Sci. USA1999961232810.1073/pnas.96.1.239874765
    [Google Scholar]
  173. JarriaultS. BrouC. LogeatF. SchroeterE.H. KopanR. IsraelA. Signalling downstream of activated mammalian Notch.Nature1995377654735535810.1038/377355a07566092
    [Google Scholar]
  174. KaoH.Y. OrdentlichP. Koyano-NakagawaN. TangZ. DownesM. KintnerC.R. EvansR.M. KadeschT. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway.Genes Dev.199812152269227710.1101/gad.12.15.22699694793
    [Google Scholar]
  175. FryerC.J. WhiteJ.B. JonesK.A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover.Mol. Cell200416450952010.1016/j.molcel.2004.10.01415546612
    [Google Scholar]
  176. WuL. AsterJ.C. BlacklowS.C. LakeR. Artavanis-TsakonasS. GriffinJ.D. MAML1, a human homologue of Drosophila Mastermind, is a transcriptional co-activator for NOTCH receptors.Nat. Genet.200026448448910.1038/8264411101851
    [Google Scholar]
  177. WuL. SunT. KobayashiK. GaoP. GriffinJ.D. Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors.Mol. Cell. Biol.200222217688770010.1128/MCB.22.21.7688‑7700.200212370315
    [Google Scholar]
  178. Brzozowa-ZasadaM. PiecuchA. DittfeldA. MielańczykŁ. MichalskiM. WyrobiecG. Harabin-SłowińskaM. KurekJ. WojniczR. Notch signalling pathway as an oncogenic factor involved in cancer development.Contemp. Oncol. (Pozn.)20164426727210.5114/wo.2016.6184527688721
    [Google Scholar]
  179. Brzozowa-ZasadaM. PiecuchA. MichalskiM. SegietO. KurekJ. Harabin-SłowińskaM. WojniczR. Notch and its oncogenic activity in human malignancies.Eur. Surg.201749519920910.1007/s10353‑017‑0491‑z29104587
    [Google Scholar]
  180. EllisenL.W. BirdJ. WestD.C. SorengA.L. ReynoldsT.C. SmithS.D. SklarJ. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms.Cell199166464966110.1016/0092‑8674(91)90111‑B1831692
    [Google Scholar]
  181. KimH.A. KooB.K. ChoJ.H. KimY.Y. SeongJ. ChangH.J. OhY.M. StangeD.E. ParkJ.G. HwangD. KongY.Y. Notch1 counteracts WNT/β-catenin signaling through chromatin modification in colorectal cancer.J. Clin. Invest.201212293248325910.1172/JCI6121622863622
    [Google Scholar]
  182. HarrisonH. FarnieG. HowellS.J. RockR.E. StylianouS. BrennanK.R. BundredN.J. ClarkeR.B. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor.Cancer Res.201070270971810.1158/0008‑5472.CAN‑09‑168120068161
    [Google Scholar]
  183. Osanyingbemi-ObidiJ. DobromilskayaI. IlleiP.B. HannC.L. RudinC.M. Notch signaling contributes to lung cancer clonogenic capacity in vitro but may be circumvented in tumorigenesis in vivo .Mol. Cancer Res.20119121746175410.1158/1541‑7786.MCR‑11‑028621994468
    [Google Scholar]
  184. HassanK.A. WangL. KorkayaH. ChenG. MaillardI. BeerD.G. KalemkerianG.P. WichaM.S. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma.Clin. Cancer Res.20131981972198010.1158/1078‑0432.CCR‑12‑037023444212
    [Google Scholar]
  185. Al-HajjM. WichaM.S. Benito-HernandezA. MorrisonS.J. ClarkeM.F. Prospective identification of tumorigenic breast cancer cells.Proc. Natl. Acad. Sci. USA200310073983398810.1073/pnas.053029110012629218
    [Google Scholar]
  186. DeangeloD.J. StoneR.M. SilvermanL.B. StockW. AttarE.C. FearenI. DallobA. MatthewsC. StoneJ. FreedmanS.J. AsterJ. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias.J. Clin. Oncol.20062418_suppl658510.1200/jco.2006.24.18_suppl.6585
    [Google Scholar]
  187. PetersJ.U. GalleyG. JacobsenH. CzechC. David-PiersonP. KitasE.A. OzmenL. Novel orally active, dibenzazepinone-based γ-secretase inhibitors.Bioorg. Med. Chem. Lett.200717215918592310.1016/j.bmcl.2007.07.07817869099
    [Google Scholar]
  188. WuY. Cain-HomC. ChoyL. HagenbeekT.J. de LeonG.P. ChenY. FinkleD. VenookR. WuX. RidgwayJ. Schahin-ReedD. DowG.J. SheltonA. StawickiS. WattsR.J. ZhangJ. ChoyR. HowardP. KadykL. YanM. ZhaJ. CallahanC.A. HymowitzS.G. SiebelC.W. Therapeutic antibody targeting of individual Notch receptors.Nature201046472911052105710.1038/nature0887820393564
    [Google Scholar]
  189. YenW.C. FischerM.M. AxelrodF. BondC. CainJ. CancillaB. HennerW.R. MeisnerR. SatoA. ShahJ. TangT. WallaceB. WangM. ZhangC. KapounA.M. LewickiJ. GurneyA. HoeyT. Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency.Clin. Cancer Res.20152192084209510.1158/1078‑0432.CCR‑14‑280825934888
    [Google Scholar]
  190. VenkateshVandana NatarajRaghu ThangarajGopenath S. KarthikeyanMurugesan GnanasekaranAshok KaginelliShanmukhappa B. KuppannaGobianand KallappaChandrashekrappa Gowdru BasalingappaKanthesh M. Targeting Notch signalling pathway of cancer stem cells.Stem Cell Investig.20185510.21037/sci.2018.02.02
    [Google Scholar]
  191. SuzieJ. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy.Trends Pharmacol. Sci.200930630331210.1016/j.tips.2009.03.007
    [Google Scholar]
  192. McMahonA.P. InghamP.W. TabinC.J. 1 Developmental roles and clinical significance of Hedgehog signaling.Curr. Top. Dev. Biol.200353111410.1016/S0070‑2153(03)53002‑212509125
    [Google Scholar]
  193. CohenD.J. Targeting the hedgehog pathway: role in cancer and clinical implications of its inhibition.Hematol. Oncol. Clin. North Am.2012263565588, viii10.1016/j.hoc.2012.01.00522520980
    [Google Scholar]
  194. MerchantA.A. MatsuiW. Targeting Hedgehog--a cancer stem cell pathway.Clin. Cancer Res.201016123130314010.1158/1078‑0432.CCR‑09‑284620530699
    [Google Scholar]
  195. HahnH. WickingC. ZaphiropoulosP.G. GailaniM.R. ShanleyS. ChidambaramA. VorechovskyI. HolmbergE. UndenA.B. GilliesS. NegusK. SmythI. PressmanC. LeffellD.J. GerrardB. GoldsteinA.M. DeanM. ToftgardR. Chenevix-TrenchG. WainwrightB. BaleA.E. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome.Cell199685684185110.1016/S0092‑8674(00)81268‑48681379
    [Google Scholar]
  196. JohnsonR.L. RothmanA.L. XieJ. GoodrichL.V. BareJ.W. BonifasJ.M. QuinnA.G. MyersR.M. CoxD.R. EpsteinE.H.Jr ScottM.P. Human homolog of patched, a candidate gene for the basal cell nevus syndrome.Science199627252681668167110.1126/science.272.5268.16688658145
    [Google Scholar]
  197. GailaniM.R. Ståhle-BäckdahlM. LeffellD.J. GlynM. ZaphiropoulosP.G. UndénA.B. DeanM. BrashD.E. BaleA.E. ToftgårdR. ToftgårdR. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas.Nat. Genet.1996141788110.1038/ng0996‑788782823
    [Google Scholar]
  198. XieJ. MuroneM. LuohS.M. RyanA. GuQ. ZhangC. BonifasJ.M. LamC.W. HynesM. GoddardA. RosenthalA. EpsteinE.H.Jr de SauvageF.J. Activating Smoothened mutations in sporadic basal-cell carcinoma.Nature19983916662909210.1038/342019422511
    [Google Scholar]
  199. SladeI. MurrayA. HanksS. KumarA. WalkerL. HargraveD. DouglasJ. StillerC. IzattL. RahmanN. Heterogeneity of familial medulloblastoma and contribution of germline PTCH1 and SUFU mutations to sporadic medulloblastoma.Fam. Cancer201110233734210.1007/s10689‑010‑9411‑021188540
    [Google Scholar]
  200. RaffelC. JenkinsR.B. FrederickL. HebrinkD. AldereteB. FultsD.W. JamesC.D. Sporadic medulloblastomas contain PTCH mutations.Cancer Res.19975758428459041183
    [Google Scholar]
  201. ReifenbergerJ. WolterM. WeberR.G. MegahedM. RuzickaT. LichterP. ReifenbergerG. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system.Cancer Res.1998589179818039581815
    [Google Scholar]
  202. TaylorM.D. LiuL. RaffelC. HuiC. MainprizeT.G. ZhangX. AgatepR. ChiappaS. GaoL. LowranceA. HaoA. GoldsteinA.M. StavrouT. SchererS.W. DuraW.T. WainwrightB. SquireJ.A. RutkaJ.T. HoggD. Mutations in SUFU predispose to medulloblastoma.Nat. Genet.200231330631010.1038/ng91612068298
    [Google Scholar]
  203. InghamP.W. McMahonA.P. Hedgehog signaling in animal development: paradigms and principles.Genes Dev.200115233059308710.1101/gad.93860111731473
    [Google Scholar]
  204. AmakyeD. JaganiZ. DorschM. Unraveling the therapeutic potential of the Hedgehog pathway in cancer.Nat. Med.201319111410142210.1038/nm.338924202394
    [Google Scholar]
  205. RubinLee L. de SauvageFrederic J. Targeting the Hedgehog pathway in cancer.Nat. Rev. Drug Discov.20065121026103310.1038/nrd2086
    [Google Scholar]
  206. CampbellV. CoplandM. Hedgehog signaling in cancer stem cells: a focus on hematological cancers.Stem Cells Cloning20158273825691811
    [Google Scholar]
  207. AbergerF. KernD. GreilR. HartmannT.N. Canonical and noncanonical Hedgehog/GLI signaling in hematological malignancies.Vitam. Horm.201288255410.1016/B978‑0‑12‑394622‑5.00002‑X22391298
    [Google Scholar]
  208. DennlerS. AndréJ. AlexakiI. LiA. MagnaldoT. ten DijkeP. WangX.J. VerrecchiaF. MauvielA. Induction of sonic hedgehog mediators by transforming growth factor-β: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo .Cancer Res.200767146981698610.1158/0008‑5472.CAN‑07‑049117638910
    [Google Scholar]
  209. JaganiZ. Mora-BlancoE.L. SansamC.G. McKennaE.S. WilsonB. ChenD. KlekotaJ. TamayoP. NguyenP.T.L. TolstorukovM. ParkP.J. ChoY.J. HsiaoK. BuonamiciS. PomeroyS.L. MesirovJ.P. RuffnerH. BouwmeesterT. LuchanskyS.J. MurtieJ. KelleherJ.F. WarmuthM. SellersW.R. RobertsC.W.M. DorschM. Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway.Nat. Med.201016121429143310.1038/nm.225121076395
    [Google Scholar]
  210. JiZ. MeiF.C. XieJ. ChengX. Oncogenic KRAS activates hedgehog signaling pathway in pancreatic cancer cells.J. Biol. Chem.200728219140481405510.1074/jbc.M61108920017353198
    [Google Scholar]
  211. RiobóN.A. LuK. AiX. HainesG.M. EmersonC.P.Jr Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling.Proc. Natl. Acad. Sci. USA2006103124505451010.1073/pnas.050433710316537363
    [Google Scholar]
  212. WangY. DingQ. YenC.J. XiaW. IzzoJ.G. LangJ.Y. LiC.W. HsuJ.L. MillerS.A. WangX. LeeD.F. HsuJ.M. HuoL. LaBaffA.M. LiuD. HuangT.H. LaiC.C. TsaiF.J. ChangW.C. ChenC.H. WuT.T. ButtarN.S. WangK.K. WuY. WangH. AjaniJ. HungM.C. The crosstalk of mTOR/S6K1 and Hedgehog pathways.Cancer Cell201221337438710.1016/j.ccr.2011.12.02822439934
    [Google Scholar]
  213. CooperM.K. PorterJ.A. YoungK.E. BeachyP.A. Teratogen-mediated inhibition of target tissue response to Shh signaling.Science199828053691603160710.1126/science.280.5369.16039616123
    [Google Scholar]
  214. ChenJ.K. TaipaleJ. CooperM.K. BeachyP.A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened.Genes Dev.200216212743274810.1101/gad.102530212414725
    [Google Scholar]
  215. DirixL. Discovery and exploitation of novel targets by approved drugs.J. Clin. Oncol.201432872072110.1200/JCO.2013.53.711824493724
    [Google Scholar]
  216. SekulicA. MigdenM.R. OroA.E. DirixL. LewisK.D. HainsworthJ.D. SolomonJ.A. YooS. ArronS.T. FriedlanderP.A. MarmurE. RudinC.M. ChangA.L.S. LowJ.A. MackeyH.M. YauchR.L. GrahamR.A. ReddyJ.C. HauschildA. Efficacy and safety of vismodegib in advanced basal-cell carcinoma.N. Engl. J. Med.2012366232171217910.1056/NEJMoa111371322670903
    [Google Scholar]
  217. VasefifarP. MotafakkerazadR. MalekiL.A. NajafiS. GhrobaninezhadF. NajafzadehB. AlemohammadH. AminiM. BaghbanzadehA. BaradaranB. Nanog, as a key cancer stem cell marker in tumor progression.Gene202282714644810.1016/j.gene.2022.14644835337852
    [Google Scholar]
  218. WalcherL. KistenmacherA.K. SuoH. KitteR. DluczekS. StraußA. BlaudszunA.R. YevsaT. FrickeS. Kossatz-BoehlertU. Cancer stem cells—origins and biomarkers: perspectives for targeted personalized therapies.Front. Immunol.202011128010.3389/fimmu.2020.0128032849491
    [Google Scholar]
  219. ThapaR. WilsonG.D. The importance of CD44 as a stem cell biomarker and therapeutic target in cancer.Stem Cells Int.2016201611510.1155/2016/208720427200096
    [Google Scholar]
  220. HanJ. WonM. KimJ.H. JungE. MinK. JangiliP. KimJ.S. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective.Chem. Soc. Rev.202049227856787810.1039/D0CS00379D32633291
    [Google Scholar]
  221. LiC. LeeC. SimeoneD.M. Identification of human pancreatic cancer stem cells.Cancer Stem Cells.Springer200916117310.1007/978‑1‑59745‑280‑9_10
    [Google Scholar]
  222. PrinceM.E. SivanandanR. KaczorowskiA. WolfG.T. KaplanM.J. DalerbaP. WeissmanI.L. ClarkeM.F. AillesL.E. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma.Proc. Natl. Acad. Sci. USA2007104397397810.1073/pnas.061011710417210912
    [Google Scholar]
  223. ZhangH. BrownR.L. WeiY. ZhaoP. LiuS. LiuX. DengY. HuX. ZhangJ. GaoX.D. KangY. MercurioA.M. GoelH.L. ChengC. CD44 splice isoform switching determines breast cancer stem cell state.Genes Dev.2019333-416617910.1101/gad.319889.11830692202
    [Google Scholar]
  224. TakaishiS. OkumuraT. TuS. WangS.S.W. ShibataW. VigneshwaranR. GordonS.A.K. ShimadaY. WangT.C. Identification of gastric cancer stem cells using the cell surface marker CD44.Stem Cells20092751006102010.1002/stem.3019415765
    [Google Scholar]
  225. NamK. OhS. LeeK. YooS. ShinI. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells.Cell. Signal.20152791882189410.1016/j.cellsig.2015.05.00225979842
    [Google Scholar]
  226. LeeS.Y. KimK.A. KimC.H. KimY.J. LeeJ.H. KimH.R. CD44-shRNA recombinant adenovirus inhibits cell proliferation, invasion, and migration, and promotes apoptosis in HCT116 colon cancer cells.Int. J. Oncol.201750132933610.3892/ijo.2016.380127959393
    [Google Scholar]
  227. MunTIMaduguE. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanopartiCLes of salinomycin and paclitaxel.Coll. Surf B Biointer.2016143532546
    [Google Scholar]
  228. AlshaerW. HillaireauH. VergnaudJ. IsmailS. FattalE. Functionalizing liposomes with anti-CD44 aptamer for selective targeting of cancer cells.Bioconjug. Chem.20152671307131310.1021/bc500431325343502
    [Google Scholar]
  229. LiZ. CD133: a stem cell biomarker and beyond.Exp. Hematol. Oncol.2013211710.1186/2162‑3619‑2‑1723815814
    [Google Scholar]
  230. WangX. LiB. LiR. YangY. ZhangH. TianB. CuiL. WengH. WeiF. Anti-CD133 monoclonal antibody conjugated immunomagnetic nanosensor for molecular imaging of targeted cancer stem cells.Sens. Actuators B Chem.20182553447345710.1016/j.snb.2017.09.175
    [Google Scholar]
  231. TahmasebiE. AlikhaniM. YazdanianA. YazdanianM. TebyanianH. SeifalianA. The current markers of cancer stem cell in oral cancers.Life Sci.202024911748310.1016/j.lfs.2020.11748332135187
    [Google Scholar]
  232. BaiX. NiJ. BeretovJ. GrahamP. LiY. Cancer stem cell in breast cancer therapeutic resistance.Cancer Treat. Rev.20186915216310.1016/j.ctrv.2018.07.00430029203
    [Google Scholar]
  233. WangD., Guo, Y., Li, Y., Li, W., Zheng, X., Xia, H., & Mao, Q. Detection of CD133 expression in U87 glioblastoma cells using a novel anti-CD133 monoclonal antibody.Oncology Letters2015962603260810.1081/DMR‑12003400115237855
    [Google Scholar]
  234. SládekN.E. Human aldehyde dehydrogenases: Potential pathological, pharmacological, and toxicological impact.J. Biochem. Mol. Toxicol.200317172310.1002/jbt.1005712616643
    [Google Scholar]
  235. Toledo-GuzmánM.E. HernándezM.I. Gómez-GallegosÁ.A. Ortiz-SánchezE. ALDH as a Stem Cell Marker in Solid Tumors.Curr. Stem Cell Res. Ther.201914537538810.2174/1574888X1366618081012001230095061
    [Google Scholar]
  236. JonesR.J. BarberJ.P. ValaM.S. CollectorM.I. KaufmannS.H. LudemanS.M. ColvinO.M. HiltonJ. Assessment of aldehyde dehydrogenase in viable cells.Blood199585102742274610.1182/blood.V85.10.2742.bloodjournal851027427742535
    [Google Scholar]
  237. GinestierC. WicinskiJ. CerveraN. MonvilleF. FinettiP. BertucciF. WichaM.S. BirnbaumD. Charafe-JauffretE. Retinoid signaling regulates breast cancer stem cell differentiation.Cell Cycle20098203297330210.4161/cc.8.20.976119806016
    [Google Scholar]
  238. AdamsA. WarnerK. PearsonA.T. ZhangZ. KimH.S. MochizukiD. BasuraG. HelmanJ. MantessoA. CastilhoR.M. WichaM.S. NörJ.E. ALDH/CD44 identifies uniquely tumorigenic cancer stem cells in salivary gland mucoepidermoid carcinomas.Oncotarget2015629266332665010.18632/oncotarget.578226449187
    [Google Scholar]
  239. ChiouS.H. YuC.C. HuangC.Y. LinS.C. LiuC.J. TsaiT.H. ChouS.H. ChienC.S. KuH.H. LoJ.F. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma.Clin. Cancer Res.200814134085409510.1158/1078‑0432.CCR‑07‑440418593985
    [Google Scholar]
  240. ScottiF.M. MittV.C. VieiraD.S.C. BizM.T. CastroR.G. ModoloF. Expression of stem cell markers Nanog and Nestin in lip squamous cell carcinoma and actinic cheilitis.Oral Dis.20182471209121610.1111/odi.1289129761881
    [Google Scholar]
  241. XiangY. YangT. PangB. ZhuY. LiuY. The progress and prospects of putative biomarkers for liver cancer stem cells in hepatocellular carcinoma.Stem Cells Int.2016201611410.1155/2016/761497127610139
    [Google Scholar]
  242. WangD. LuP. ZhangH. LuoM. ZhangX. WeiX. GaoJ. ZhaoZ. LiuC. Oct-4 and Nanog promote the epithelial-mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients.Oncotarget2014521108031081510.18632/oncotarget.250625301732
    [Google Scholar]
  243. YangF. ZhangJ. YangH. OCT4, SOX2, and NAN OG positive expression correlates with poor differentiation, advanced disease stages, and worse overall survival in HER2+ breast cancer patients.OncoTargets Ther.2018117873788110.2147/OTT.S17352230464534
    [Google Scholar]
  244. KimH.M. KangY.H. ByunJ.H. JangS.J. RhoG.J. LeeJ.S. ParkB.W. Midkine and NANOG have similar immunohistochemical expression patterns and contribute equally to an adverse prognosis of oral squamous cell carcinoma.Int. J. Mol. Sci.20171811233910.3390/ijms1811233929113102
    [Google Scholar]
  245. SchnellU CirulliV GiepmansBN EpCAM: Structure and function in health and disease.Biochim. Biophys. Acta.2013182881989200110.1016/j.bbamem.2013.04.018
    [Google Scholar]
  246. HiragaT. ItoS. NakamuraH. Ep CAM expression in breast cancer cells is associated with enhanced bone metastasis formation.Int. J. Cancer201613871698170810.1002/ijc.2992126576938
    [Google Scholar]
  247. ChenY., Li, S., Li, W., Yang, R., Zhang, X., Ye, Y., & Tang, W. Circulating tumor cells undergoing EMT are poorly correlated with clinical stages or predictive of recurrence in hepatocellular carcinoma.Scientific Reports201991708410.1016/j.jons.2017.04.002
    [Google Scholar]
  248. DingXi-wei WuJun-hua JiangChun-ping ABCG2: A potential marker of stem cells and novel target in stem cell and cancer therapy.Life Sci.201086(17-18)63163710.1016/j.lfs.2010.02.012
    [Google Scholar]
  249. BoeschM. SpizzoG. SeeberA. Concise review: aggressive colorectal cancer: role of epithelial cell adhesion molecule in cancer stem cells and epithelial-to-Mesenchymal transition.Stem Cells Transl. Med.20187649550110.1002/sctm.17‑028929667344
    [Google Scholar]
  250. ShigdarS. LinJ. YuY. PastuovicM. WeiM. DuanW. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule.Cancer Sci.20111025991998
    [Google Scholar]
  251. ChenY CD133(þ) EpCAM(þ) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells.Int. J. Biol. Sci.20128992e1004
    [Google Scholar]
  252. ZhouS. Schuetz, J.D. Bunting, K.D. Colapietro, A.M. Sampath, J. Morris, J.J. & Sorrentino, B.P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype.Nature Medicine2001791028103410.1182/blood.V99.2.50711781231
    [Google Scholar]
  253. KobayashiI. SaitoK. MoritomoT. ArakiK. TakizawaF. NakanishiT. Characterization and localization of side population (SP) cells in zebrafish kidney hematopoietic tissue.Blood200811131131113710.1182/blood‑2007‑08‑10429917932252
    [Google Scholar]
  254. AbbottB.L. ColapietroA.M. BarnesY. MariniF. AndreeffM. SorrentinoB.P. Low levels of ABCG2 expression in adult AML blast samples.Blood20021001345944601
    [Google Scholar]
  255. SteinbachD. SellW. VoigtA. HermannJ. ZintlF. SauerbreyA. BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia.Leukemia20021681443144710.1038/sj.leu.240254112145683
    [Google Scholar]
  256. SauerbreyA. SellW. SteinbachD. VoigtA. ZintlF. Expression of the BCRP gene (ABCG2/MXR/ABCP) in childhood acute lymphoblastic leukaemia.Br. J. Haematol.2002118114715010.1046/j.1365‑2141.2002.03550.x12100141
    [Google Scholar]
  257. PlasschaertS.L. van der KolkD.M. de BontE.S. KampsW.A. MorisakiK. BatesS.E. SchefferG.L. ScheperR.J. VellengaE. de VriesE.G. The role of breast cancer resistance protein in acute lymphoblastic leukemia.Clin. Cancer Res.20039145171517714613996
    [Google Scholar]
  258. SeigelG.M. CampbellL.M. NarayanM. Gonzalez-FernandezF. Cancer stem cell characteristics in retinoblastoma.Mol. Vis.20051186–8772973716179903
    [Google Scholar]
  259. HoM.M. NgA.V. LamS. HungJ.Y. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells.Cancer Res.200767104827483310.1158/0008‑5472.CAN‑06‑355717510412
    [Google Scholar]
  260. ShiG.M. XuY. FanJ. ZhouJ. YangX.R. QiuS.J. LiaoY. WuW.Z. JiY. KeA.W. DingZ.B. HeY.Z. WuB. YangG.H. QinW.Z. ZhangW. ZhuJ. MinZ.H. WuZ.Q. Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials.J. Cancer Res. Clin. Oncol.2008134111155116310.1007/s00432‑008‑0407‑118470535
    [Google Scholar]
  261. WangY. LiF. LuoB. WangX. SunH. LiuS. CuiY. XuX. A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics.Neoplasma200956537137810.4149/neo_2009_05_37119580337
    [Google Scholar]
  262. MonzaniE. FacchettiF. GalmozziE. CorsiniE. BenettiA. CavazzinC. GrittiA. PiccininiA. PorroD. SantinamiM. InverniciG. ParatiE. AlessandriG. La PortaC.A.M. La PortaC.A.M. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential.Eur. J. Cancer200743593594610.1016/j.ejca.2007.01.01717320377
    [Google Scholar]
  263. ZenY. Fujii, T. Yoshikawa, S. Takamura, H. Tani, T. Ohta, T. & Nakanuma, Y. Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma.The American Journal of Pathology200717051750176217287174
    [Google Scholar]
  264. SunM. YangC. ZhengJ. WangM. ChenM. LeD.Q.S. KjemsJ. BüngerC.E. Enhanced efficacy of chemotherapy for breast cancer stem cells by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense.Acta Biomater.20152817118210.1016/j.actbio.2015.09.02926415776
    [Google Scholar]
  265. LiuK. LinB. ZhaoM. YangX. ChenM. GaoA. LiuF. QueJ. LanX. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis.Cell. Signal.20132551264127110.1016/j.cellsig.2013.02.01323416461
    [Google Scholar]
  266. ChouM.Y. HuF.W. YuC.H. YuC.C. Sox2 expression involvement in the oncogenicity and radiochemoresistance of oral cancer stem cells.Oral Oncol.2015511313910.1016/j.oraloncology.2014.10.00225456004
    [Google Scholar]
  267. ChenY. ShiL. ZhangL. LiR. LiangJ. YuW. SunL. YangX. WangY. ZhangY. ShangY. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer.J. Biol. Chem.200828326179691797810.1074/jbc.M80291720018456656
    [Google Scholar]
  268. NeumannJ. BahrF. HorstD. KrieglL. EngelJ. Mejías-LuqueR. GerhardM. KirchnerT. JungA. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer.BMC Cancer201111151810.1186/1471‑2407‑11‑51822168803
    [Google Scholar]
  269. LagaA.C. ZhanQ. WeishauptC. MaJ. FrankM.H. MurphyG.F. SOX2 and nestin expression in human melanoma: An immunohistochemical and experimental study.Exp. Dermatol.201120433934510.1111/j.1600‑0625.2011.01247.x21410764
    [Google Scholar]
  270. AnnovazziL. MellaiM. CalderaV. ValenteG. SchifferD. SOX2 expression and amplification in gliomas and glioma cell lines.Cancer Genomics Proteomics20118313914721518820
    [Google Scholar]
  271. ZhangJ. ChangD.Y. Mercado-UribeI. LiuJ. Sex-determining region Y-box 2 expression predicts poor prognosis in human ovarian carcinoma.Hum. Pathol.20124391405141210.1016/j.humpath.2011.10.01622401770
    [Google Scholar]
  272. RenZ.H. ZhangC.P. JiT. Expression of SOX2 in oral squamous cell carcinoma and the association with lymph node metastasis.Oncol. Lett.20161131973197910.3892/ol.2016.420726998109
    [Google Scholar]
  273. TakedaK. MizushimaT. YokoyamaY. HiroseH. WuX. QianY. IkehataK. MiyoshiN. TakahashiH. HaraguchiN. HataT. MatsudaC. DokiY. MoriM. YamamotoH. Sox2 is associated with cancer stem-like properties in colorectal cancer.Sci. Rep.2018811763910.1038/s41598‑018‑36251‑030518951
    [Google Scholar]
  274. TakahashiK. TanabeK. OhnukiM. NaritaM. IchisakaT. TomodaK. YamanakaS. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell2007131586187210.1016/j.cell.2007.11.01918035408
    [Google Scholar]
  275. Herreros-VillanuevaM. ZhangJ-S. KoenigA. AbelE.V. SmyrkT.C. BamletW.R. de NarvajasA.A-M. GomezT.S. SimeoneD.M. BujandaL. BilladeauD.D. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells.Oncogenesis201328e6110.1038/oncsis.2013.2323917223
    [Google Scholar]
  276. JiJ. ZhengP.S. Expression of Sox2 in human cervical carcinogenesis.Hum. Pathol.201041101438144710.1016/j.humpath.2009.11.02120709360
    [Google Scholar]
  277. PivaM. DomeniciG. IriondoO. RábanoM. SimõesB.M. ComaillsV. BarredoI. López-RuizJ.A. ZabalzaI. KyptaR. VivancoM.M. Sox2 promotes tamoxifen resistance in breast cancer cells.EMBO Mol. Med.201461667910.1002/emmm.20130341124178749
    [Google Scholar]
  278. YeX. WuF. WuC. WangP. JungK. GopalK. MaY. LiL. LaiR. β-Catenin, a Sox2 binding partner, regulates the DNA binding and transcriptional activity of Sox2 in breast cancer cells.Cell. Signal.201426349250110.1016/j.cellsig.2013.11.02324291232
    [Google Scholar]
  279. McCaughanF. PoleJ.C.M. BankierA.T. KonfortovB.A. CarrollB. FalzonM. RabbittsT.H. GeorgeP.J. DearP.H. RabbittsP.H. Progressive 3q amplification consistently targets SOX2 in preinvasive squamous lung cancer.Am. J. Respir. Crit. Care Med.20101821839110.1164/rccm.201001‑0005OC20299530
    [Google Scholar]
  280. GaoF. ZhouB. XuJ.C. GaoX. LiS.X. ZhuG.C. ZhangX.G. YangC. The role of LGR5 and ALDH1A1 in non-small cell lung cancer: Cancer progression and prognosis.Biochem. Biophys. Res. Commun.20154622919810.1016/j.bbrc.2015.04.02925881507
    [Google Scholar]
  281. BarkerN. van EsJ.H. KuipersJ. Identification of stem cells in small intestine and colon by marker gene LGR5.Nature200744910031007
    [Google Scholar]
  282. PatelS.S. ShahK.A. ShahM.J. KothariK.C. RawalR.M. Cancer stem cells and stemness markers in oral squamous cell carcinomas.Asian Pac. J. Cancer Prev.201415208549855610.7314/APJCP.2014.15.20.854925374166
    [Google Scholar]
  283. CosgunK.N.N. Lgr5 functions as negative regulator of Wnt signaling in B cells and is critical for self-renewal of normal and transformed B cells.Blood20171303989
    [Google Scholar]
  284. FanX.S. WuH.Y. YuH.P. ZhouQ. ZhangY.F. HuangQ. Expression of Lgr5 in human colorectal carcinogenesis and its potential correlation with β-catenin.Int. J. Colorectal Dis.201025558359010.1007/s00384‑010‑0903‑z20195621
    [Google Scholar]
  285. BeckerL. HuangQ. MashimoH. Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue.ScientificWorldJournal200881168117610.1100/tsw.2008.14819030762
    [Google Scholar]
  286. UchidaH. YamazakiK. FukumaM. YamadaT. HayashidaT. HasegawaH. KitajimaM. KitagawaY. SakamotoM. Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer.Cancer Sci.201010171731173710.1111/j.1349‑7006.2010.01571.x20384634
    [Google Scholar]
  287. TaneseK. FukumaM. YamadaT. MoriT. YoshikawaT. WatanabeW. IshikoA. AmagaiM. NishikawaT. SakamotoM. G-protein-coupled receptor GPR49 is up-regulated in basal cell carcinoma and promotes cell proliferation and tumor formation.Am. J. Pathol.2008173383584310.2353/ajpath.2008.07109118688030
    [Google Scholar]
  288. YamamotoY. SakamotoM. FujiiG. TsuijiH. KenetakaK. AsakaM. HirohashiS. Overexpression of orphan G-protein–coupled receptor, Gpr49, in human hepatocellular carcinomas with β-catenin mutations.Hepatology200337352853310.1053/jhep.2003.5002912601349
    [Google Scholar]
  289. VieiraG.C. ChockalingamS. MeleghZ. GreenhoughA. MalikS. SzemesM. ParkJ.H. KaidiA. ZhouL. CatchpooleD. MorganR. BatesD.O. GabbP.D. MalikK. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma.Oncotarget2015637400534006710.18632/oncotarget.554826517508
    [Google Scholar]
  290. BarkerN. RidgwayR.A. van EsJ.H. van de WeteringM. BegthelH. van den BornM. DanenbergE. ClarkeA.R. SansomO.J. CleversH. Crypt stem cells as the cells-of-origin of intestinal cancer.Nature2009457722960861110.1038/nature0760219092804
    [Google Scholar]
  291. NicholsJ. ZevnikB. AnastassiadisK. NiwaH. Klewe-NebeniusD. ChambersI. SchölerH. SmithA. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Cell199895337939110.1016/S0092‑8674(00)81769‑99814708
    [Google Scholar]
  292. JerabekS. MerinoF. SchölerH.R. CojocaruV. OCT4: Dynamic DNA binding pioneers stem cell pluripotency, Biochimica et Biophysica Acta (BBA) -.Gene Regulatory Mechanisms20141839138154
    [Google Scholar]
  293. KarS. Investigation of the Epigenetic Regulators and Signaling Pathways Influencing Pluripotency Inducing Transcription Factors Mediated Tumorigenesis.Ph.D. Thesis. National Institute of Technology Rourkela, Rourkela, Odisha, India.2017
    [Google Scholar]
  294. ChenY.C. HsuH.S. ChenY.W. TsaiT.H. HowC.K. WangC.Y. HungS.C. ChangY.L. TsaiM.L. LeeY.Y. KuH.H. ChiouS.H. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells.PLoS One200837e263710.1371/journal.pone.000263718612434
    [Google Scholar]
  295. KaufholdS. GarbánH. BonavidaB. Yin Yang 1 is associated with cancer stem cell transcription factors (SOX2, OCT4, BMI1) and clinical implication.J. Exp. Clin. Cancer Res.20163518410.1186/s13046‑016‑0359‑227225481
    [Google Scholar]
  296. BlumW. PeczeL. Felley-BoscoE. WuL. de PerrotM. SchwallerB. Stem cell factor-based identification and functional properties of in vitro -selected subpopulations of malignant mesothelioma cells.Stem Cell Reports2017841005101710.1016/j.stemcr.2017.02.00528285878
    [Google Scholar]
  297. ZeineddineD. HammoudA.A. MortadaM. BoeufH. The Oct4 protein: more than a magic stemness marker.Am. J. Stem Cells201432748225232507
    [Google Scholar]
  298. ZbindenM. DuquetA. Lorente-TrigosA. NgwabytS.N. BorgesI. Ruiz i AltabaA. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53.EMBO J.201029152659267410.1038/emboj.2010.13720581802
    [Google Scholar]
  299. ChoiS.C. ChoiJ.H. ParkC.Y. AhnC.M. HongS.J. LimD.S. Nanog regulates molecules involved in stemness and cell cycle-signaling pathway for maintenance of pluripotency of P19 embryonal carcinoma stem cells.J. Cell. Physiol.2012227113678369210.1002/jcp.2407622378194
    [Google Scholar]
  300. TsaiL.L. YuC.C. ChangY.C. YuC.H. ChouM.Y. Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma.J. Oral Pathol. Med.201140862162810.1111/j.1600‑0714.2011.01015.x21342274
    [Google Scholar]
  301. HanJ. ZhangF. YuM. ZhaoP. JiW. ZhangH. WuB. WangY. NiuR. RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells.Cancer Lett.20123211808810.1016/j.canlet.2012.02.02122381696
    [Google Scholar]
  302. ZhangX. HanB. HuangJ. ZhengB. GengQ. AzizF. DongQ. Prognostic significance of OCT4 expression in adenocarcinoma of the lung.Jpn. J. Clin. Oncol.2010401096196610.1093/jjco/hyq06620462980
    [Google Scholar]
  303. RijlaarsdamM.A. van HerkH A D.M. GillisA.J.M. StoopH. JensterG. MartensJ. van LeendersG.J.L.H. DinjensW. HooglandA.M. TimmermansM. LooijengaL.H.J. Specific detection of OCT3/4 isoform A/B/B1 expression in solid (germ cell) tumours and cell lines: Confirmation of OCT3/4 specificity for germ cell tumours.Br. J. Cancer2011105685486310.1038/bjc.2011.27021847120
    [Google Scholar]
  304. HuangP. ChenJ. WangL. NaY. KakuH. UekiH. SasakiK. YamaguchiK. ZhangK. SaikaT. NasuY. WatanabeM. KumonH. Implications of transcriptional factor, OCT-4, in human bladder malignancy and tumor recurrence.Med. Oncol.201229282983410.1007/s12032‑011‑9962‑421533858
    [Google Scholar]
  305. ZhaoP. LiuC. XuK. ZhengS. LiH. XuY. XuA. LiB. HuangP. [Expression of OCT4 protein in bladder cancer and its clinicopathological implicationsNan Fang Yi Ke Da Xue Xue Bao201232564364622588915
    [Google Scholar]
  306. HuangC.F. XuX.R. WuT.F. SunZ.J. ZhangW.F. Correlation of ALDH 1, CD 44, OCT 4 and SOX 2 in tongue squamous cell carcinoma and their association with disease progression and prognosis.J. Oral Pathol. Med.201443749249810.1111/jop.1215924450601
    [Google Scholar]
  307. RihawiK. RicciA.D. RizzoA. BrocchiS. MarascoG. PastoreL.V. LlimpeF.L.R. GolfieriR. RenzulliM. Tumor-associated macrophages and inflammatory microenvironment in gastric cancer: novel translational implications.Int. J. Mol. Sci.2021228380510.3390/ijms2208380533916915
    [Google Scholar]
  308. AlamgeerM. PeacockC.D. MatsuiW. GanjuV. WatkinsD.N. Cancer stem cells in lung cancer: Evidence and controversies.Respirology201318575776410.1111/resp.1209423586700
    [Google Scholar]
  309. Al-HajjM. WichaM.S. Benito-HernandezA. MorrisonS.J. ClarkeM.F. Prospective identification of tumorigenic breast cancer cells.Proc. Natl. Acad. Sci.2003100739833988
    [Google Scholar]
  310. LiL. HaoX. QinJ. TangW. HeF. SmithA. ZhangM. SimeoneD.M. QiaoX.T. ChenZ.N. LawrenceT.S. XuL. Antibody against CD44s inhibits pancreatic tumor initiation and postradiation recurrence in mice.Gastroenterology2014146411081118.e1210.1053/j.gastro.2013.12.03524397969
    [Google Scholar]
  311. KimY.J. SieglerE.L. SiriwonN. WangP. Therapeutic strategies for targeting cancer stem cells.J. Cancer Metastasis Treat.20162723310.20517/2394‑4722.2016.26
    [Google Scholar]
  312. VisusC. ItoD. AmoscatoA. Maciejewska-FranczakM. AbdelsalemA. DhirR. ShinD.M. DonnenbergV.S. WhitesideT.L. DeLeoA.B. Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck.Cancer Res.20076721105381054510.1158/0008‑5472.CAN‑07‑134617974998
    [Google Scholar]
  313. ChenW. DongJ. HaiechJ. KilhofferM.C. ZeniouM. Cancer stem cell quiescence and plasticity as major challenges in cancer therapy.Stem Cells Int.2016201611610.1155/2016/174093627418931
    [Google Scholar]
  314. HuangT. SongX. XuD. TiekD. GoenkaA. WuB. SastryN. HuB. ChengS.Y. Stem cell programs in cancer initiation, progression, and therapy resistance.Theranostics202010198721874310.7150/thno.4164832754274
    [Google Scholar]
  315. BatlleE. CleversH. Cancer stem cells revisited.Nat. Med.201723101124113410.1038/nm.440928985214
    [Google Scholar]
  316. ChoI.J. LuiP.P. ObajdinJ. RiccioF. StroukovW. WillisT.L. SpagnoliF. WattF.M. Mechanisms, hallmarks, and implications of stem cell quiescence.Stem Cell Reports20191261190120010.1016/j.stemcr.2019.05.01231189093
    [Google Scholar]
  317. AglianoA. CalvoA. BoxC. The challenge of targeting cancer stem cells to halt metastasis.Semin. Cancer Biol.201744254210.1016/j.semcancer.2017.03.00328323021
    [Google Scholar]
  318. YangT. LiangN. LiJ. HuP. HuangQ. ZhaoZ. WangQ. ZhangH. MDSCs might be “Achilles heel” for eradicating CSCs.Cytokine Growth Factor Rev.202265395010.1016/j.cytogfr.2022.04.00635595600
    [Google Scholar]
  319. Herreros-PomaresA. Identification, culture and targeting of cancer stem cells.Life202212218410.3390/life1202018435207472
    [Google Scholar]
  320. Becerril-RicoJ. Alvarado-OrtizE. Toledo-GuzmánM.E. PelayoR. Ortiz-SánchezE. The cross talk between gastric cancer stem cells and the immune microenvironment: A tumor-promoting factor.Stem Cell Res. Ther.202112149810.1186/s13287‑021‑02562‑934503571
    [Google Scholar]
  321. LiJ. EuJ.Q. KongL.R. WangL. LimY.C. GohB.C. WongA.L.A. Targeting metabolism in cancer cells and the tumour microenvironment for cancer therapy.Molecules20202520483110.3390/molecules2520483133092283
    [Google Scholar]
  322. WongA.L. SooR.A. TanD.S. LeeS.C. LimJ.S. MarbanP.C. KongL.R. LeeY.J. WangL.Z. ThuyaW.L. SoongR. YeeM.Q. ChinT.M. CorderoM.T. AsuncionB.R. PangB. PervaizS. HirparaJ.L. SinhaA. XuW.W. YuasaM. TsunodaT. MotoyamaM. YamauchiT. GohB.C. Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies.Ann. Oncol.2015265998100510.1093/annonc/mdv02625609248
    [Google Scholar]
  323. KhawajaM.R. NickA.M. MadhusudanannairV. FuS. HongD. McQuinnL.M. NgC.S. Piha-PaulS.A. JankuF. SubbiahV. TsimberidouA. KarpD. Meric-BernstamF. LuK.H. NaingA. Phase I dose escalation study of temsirolimus in combination with metformin in patients with advanced/refractory cancers.Cancer Chemother. Pharmacol.201677597397710.1007/s00280‑016‑3009‑727014780
    [Google Scholar]
  324. ClaraJ.A. MongeC. YangY. TakebeN. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update.Nat. Rev. Clin. Oncol.202017420423210.1038/s41571‑019‑0293‑231792354
    [Google Scholar]
  325. YangY. LiX. WangT. GuoQ. XiT. ZhengL. Emerging agents that target signaling pathways in cancer stem cells.J. Hematol. Oncol.20201316010.1186/s13045‑020‑00901‑632456660
    [Google Scholar]
  326. MarescalO. CheesemanI.M. Cellular mechanisms and regulation of quiescence.Dev. Cell202055325927110.1016/j.devcel.2020.09.02933171109
    [Google Scholar]
  327. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/2050312121103436634408877
    [Google Scholar]
  328. FuY. ChangH. PengX. BaiQ. YiL. ZhouY. ZhuJ. MiM. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/β-catenin signaling pathway.PLoS One201497e10253510.1371/journal.pone.010253525068516
    [Google Scholar]
  329. ShankarS. NallD. TangS.N. MeekerD. PassariniJ. SharmaJ. SrivastavaR.K. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition.PLoS One201161e1653010.1371/journal.pone.001653021304978
    [Google Scholar]
  330. BabaeiG. AzizS.G.G. JaghiN.Z.Z. EMT, cancer stem cells and autophagy; The three main axes of metastasis.Biomed. Pharmacother.202113311090910.1016/j.biopha.2020.11090933227701
    [Google Scholar]
  331. MenendezJ.A. AlarcónT. Metabostemness: A new cancer hallmark.Front. Oncol.2014426210.3389/fonc.2014.0026225325014
    [Google Scholar]
  332. De FrancescoE.M. SotgiaF. LisantiM.P. Cancer stem cells (CSCs): Metabolic strategies for their identification and eradication.Biochem. J.201847591611163410.1042/BCJ2017016429743249
    [Google Scholar]
  333. FanM. ShiY. ZhaoJ. LiL. Cancer stem cell fate determination: Mito-nuclear communication.Cell Commun. Signal.202321115910.1186/s12964‑023‑01160‑x37370081
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266275014240110071351
Loading
/content/journals/ctmc/10.2174/0115680266275014240110071351
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test