Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Cancer remains one of the major causes of morbidity and mortality worldwide. Scientists from different fields are working to devise an efficient treatment strategy in order to reduce the global burden of cancer. Commonly used treatment approaches for cancer treatment include chemotherapy, immunotherapy, photodynamic therapy, radiation, surgery, These treatment procedures have several pitfalls, such as toxicity, limited bioavailability, rapid elimination, poor specificity, and high cost. On the other side, plant-derived anticancer compounds exhibit several advantages and can overcome these shortcomings. Plant-based anticancer compounds are safer, potent, easily available, and comparatively cost-effective. The current review discusses pure plant-based compounds that are used as a therapeutic remedy for anticancer application. The proposed mechanisms of action, through which these compounds inhibit cancer cell growth, tumor growth, angiogenesis, instigate apoptosis, cytotoxicity, mitochondrial membrane degradation, and reduce cell viability as well as cell cycle progression, are also reviewed. These naturally occurring compounds exhibit great therapeutic potential and could be used as candidate drugs in clinical applications.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266268185240320085619
2024-03-27
2025-09-04
Loading full text...

Full text loading...

References

  1. RothmanN. WacholderS. CaporasoN.E. Garcia-ClosasM. BuetowK. FraumeniJ.F.Jr The use of common genetic polymorphisms to enhance the epidemiologic study of environmental carcinogens.Biochim. Biophys. Acta200114712C1C1011342183
    [Google Scholar]
  2. NandiS. BagchiM.C. Exploring CDKs, Ras-ERK, and PI3K-Aktin abnormal signaling and cancer.J. Cancer Res. Updates202211636910.30683/1929‑2279.2022.11.09
    [Google Scholar]
  3. CooperG. AdamsK. The cell: A molecular approach.Oxford University Press202210.1093/hesc/9780197583746.001.0001
    [Google Scholar]
  4. Cancer Facts & Figures, 2008. Available from : https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2008.html
  5. TarverT. Cancer facts & figures 2012. American cancer society.American Cancer SocietyTaylor & Francis.2012166
    [Google Scholar]
  6. DeVitaN. HellmanS. RosenbergS. Cancer: Principles and practice of oncology.Lippincott-RavenPhiladelphia, PA1997
    [Google Scholar]
  7. XiaC. DongX. LiH. CaoM. SunD. HeS. YangF. YanX. ZhangS. LiN. ChenW. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants.Chin. Med. J.2022135558459010.1097/CM9.000000000000210835143424
    [Google Scholar]
  8. ChhikaraB.S. ParangK. Global Cancer Statistics 2022: The trends projection analysis.Chemical Biology Letters2023101451451
    [Google Scholar]
  9. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  10. FerlayJ. ParkinD.M. Steliarova-FoucherE. Estimates of cancer incidence and mortality in Europe in 2008.Eur. J. Cancer201046476578110.1016/j.ejca.2009.12.01420116997
    [Google Scholar]
  11. PilleronS. Soto-Perez-de-CelisE. VignatJ. FerlayJ. SoerjomataramI. BrayF. SarfatiD. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050.Int. J. Cancer2021148360160810.1002/ijc.3323232706917
    [Google Scholar]
  12. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  13. PlummerM. de MartelC. VignatJ. FerlayJ. BrayF. FranceschiS. Global burden of cancers attributable to infections in 2012: A synthetic analysis.Lancet Glob. Health201649e609e61610.1016/S2214‑109X(16)30143‑727470177
    [Google Scholar]
  14. DeyS. SamadderA. NandiS. Exploring current role of nanotechnology used in food processing industry to control food additives and their biochemical mechanisms.Curr. Drug Targets202223551353910.2174/138945012366621121615035534915833
    [Google Scholar]
  15. DeyR. NandiS. SamadderA. “Pelargonidin mediated selective activation of p53 and parp proteins in preventing food additive induced genotoxicity: An in vivo coupled in silico molecular docking study”.Eur. J. Pharm. Sci.202115610558610.1016/j.ejps.2020.10558633039567
    [Google Scholar]
  16. VogelsteinB. FearonE.R. HamiltonS.R. KernS.E. PreisingerA.C. LeppertM. SmitsA.M.M. BosJ.L. SmitsA.M. BosJ.L. Genetic alterations during colorectal-tumor development.N. Engl. J. Med.1988319952553210.1056/NEJM1988090131909012841597
    [Google Scholar]
  17. FearonE.R. VogelsteinB. A genetic model for colorectal tumorigenesis.Cell199061575976710.1016/0092‑8674(90)90186‑I2188735
    [Google Scholar]
  18. HanahanD. WeinbergR.A. The hallmarks of cancer.Cell20001001577010.1016/S0092‑8674(00)81683‑910647931
    [Google Scholar]
  19. VogelsteinB. KinzlerK.W. Cancer genes and the pathways they control.Nat. Med.200410878979910.1038/nm108715286780
    [Google Scholar]
  20. WeinbergR.A. The Biology of Cancer: Second International Student Edition.WW Norton & Company201310.1201/9780429258794
    [Google Scholar]
  21. FidlerI.J. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited.Nat. Rev. Cancer20033645345810.1038/nrc109812778135
    [Google Scholar]
  22. FogartyM.P. KesslerJ.D. Wechsler-ReyaR.J. Morphing into cancer: The role of developmental signaling pathways in brain tumor formation.J. Neurobiol.200564445847510.1002/neu.2016616041741
    [Google Scholar]
  23. KisaA. CollaborationC. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study.JAMA Oncol201951217491768
    [Google Scholar]
  24. American_cancer_society, global cancer facts & Figures.Available from : https://support.conquer.org/page/143988/donate/1?ea.tracking.id=RKD_search&utm_campaign=fy24_cqr_evergreen_cpc&gad_source=1&gclid=EAIaIQobChMIosafkcDrhAMVa4toCR3pTghQEAAYASAAEgLbSvD_BwE 2018
  25. WHONational cancer control programmes: policies and managerial guidelines.Available from : https://www.who.int/publications/i/item/national-cancer-control-programmes 2002
  26. EfferthT. Mechanistic perspectives for 1,2,4-trioxanes in anti-cancer therapy.Drug Resist. Updat.200581-2859710.1016/j.drup.2005.04.00315878303
    [Google Scholar]
  27. PatraC.R. MukherjeeS. KotcherlakotaR. Biosynthesized silver nanoparticles: A step forward for cancer theranostics?Nanomedicine20149101445144810.2217/nnm.14.8925253493
    [Google Scholar]
  28. MukherjeeS. PatraC.R. Therapeutic application of anti-angiogenic nanomaterials in cancers.Nanoscale2016825124441247010.1039/C5NR07887C27067119
    [Google Scholar]
  29. CaiF. LuisM. LinX. WangM. CaiL. CenC. BiskupE. Anthracycline‑induced cardiotoxicity in the chemotherapy treatment of breast cancer: Preventive strategies and treatment (Review).Mol. Clin. Oncol.2019111152310.3892/mco.2019.185431289672
    [Google Scholar]
  30. WeaverB.A. How Taxol/paclitaxel kills cancer cells.Mol. Biol. Cell201425182677268110.1091/mbc.e14‑04‑091625213191
    [Google Scholar]
  31. AstenP. BarrettJ. SymmonsD. Risk of developing certain malignancies is related to duration of immunosuppressive drug exposure in patients with rheumatic diseases.J. Rheumatol.19992681705171410451066
    [Google Scholar]
  32. Brianna LeeS.H. Chemotherapy: How to reduce its adverse effects while maintaining the potency?Med. Oncol.20234038810.1007/s12032‑023‑01954‑636735206
    [Google Scholar]
  33. HuangJ. WuR. ChenL. YangZ. YanD. LiM. Understanding anthracycline cardiotoxicity from mitochondrial aspect.Front. Pharmacol.20221381140610.3389/fphar.2022.81140635211017
    [Google Scholar]
  34. SahinT.K. BilirB. KucukO. Modulation of inflammation by phytochemicals to enhance efficacy and reduce toxicity of cancer chemotherapy.Crit. Rev. Food Sci. Nutr.202363152494250810.1080/10408398.2021.197672134529530
    [Google Scholar]
  35. RossJ.S. RossJ.S. HortobagyiG.N. Molecular oncology of breast cancer.Jones & Bartlett Learning20051500
    [Google Scholar]
  36. BasuD. PalR. SarkarM. BarmaS. HalderS. RoyH. NandiS. SamadderA. To investigate growth factor receptor targets and generate cancer targeting inhibitors.Curr. Top. Med. Chem.202323302877297210.2174/011568026626115023111005365038164722
    [Google Scholar]
  37. NandiS. BagchiM.C. 3D-QSAR and molecular docking studies of 4-anilinoquinazoline derivatives: A rational approach to anticancer drug design.Mol. Divers.2010141273810.1007/s11030‑009‑9137‑919330460
    [Google Scholar]
  38. ZeienJ. QiuW. TriayM. DhaibarH.A. Cruz-TopeteD. CornettE.M. UritsI. ViswanathO. KayeA.D. Clinical implications of chemotherapeutic agent organ toxicity on perioperative care.Biomed. Pharmacother.202214611250310.1016/j.biopha.2021.11250334922113
    [Google Scholar]
  39. NandiS. DeyR. SamadderA. SaxenaA. SaxenaA.K. Natural sourced inhibitors of EGFR, PDGFR, FGFR and VEGFRMediated signaling pathways as potential anticancer agents.Curr. Med. Chem.202229221223410.2174/092986732866621030310134533655823
    [Google Scholar]
  40. NandiS. Naturally sourced CDK inhibitors and current trends in structure-based synthetic anticancer drug design by crystallography.Anti-Can. Agent Med. Chem.202222348549810.2174/1871520621666210908101751
    [Google Scholar]
  41. CornB.W. Advances in the combination of radiation therapy and chemotherapy against cancer.Drug News Perspect.200417746947515514706
    [Google Scholar]
  42. AungT. QuZ. KortschakR. AdelsonD. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action.Int. J. Mol. Sci.201718365610.3390/ijms1803065628304343
    [Google Scholar]
  43. CraggG.M. NewmanD.J. YangS.S. Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience.J. Nat. Prod.200669348849810.1021/np058121616562862
    [Google Scholar]
  44. KhanH. Medicinal plants in light of history: Recognized therapeutic modality.J. Evid. Based Complementary Altern. Med.201419321621910.1177/215658721453334624789912
    [Google Scholar]
  45. AliM. KhanT. FatimaK. AliQ.A. OvaisM. KhalilA.T. UllahI. RazaA. ShinwariZ.K. IdreesM. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions.Phytother. Res.201832219921510.1002/ptr.595729047177
    [Google Scholar]
  46. KhanT. AliM. KhanA. NisarP. JanS.A. AfridiS. ShinwariZ.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects.Biomolecules20191014710.3390/biom1001004731892257
    [Google Scholar]
  47. CraggG.M. KingstonD.G. NewmanD.J. Anticancer agents from natural products.CRC pressBoca Raton2011176710.1201/b11185
    [Google Scholar]
  48. ButlerM.S. RobertsonA.A.B. CooperM.A. Natural product and natural product derived drugs in clinical trials.Nat. Prod. Rep.201431111612166110.1039/C4NP00064A25204227
    [Google Scholar]
  49. NewmanD.J. CraggG.M. Natural products as sources of new drugs from 1981 to 2014.J. Nat. Prod.201679362966110.1021/acs.jnatprod.5b0105526852623
    [Google Scholar]
  50. TsvetkovaD. IvanovaS. Application of approved cisplatin derivatives in combination therapy against different cancer diseases.Molecules2022278246610.3390/molecules2708246635458666
    [Google Scholar]
  51. PapichM.G. Cytarabine.Saunders Handbook of Veterinary Drugs.4th ed PapichM.G. St. LouisW.B. Saunders201619819910.1016/B978‑0‑323‑24485‑5.00184‑4
    [Google Scholar]
  52. BouffardD.Y. JolivetJ. LeblondL. HamelinB. OuelletF. BarbeauS. RichardA. GourdeauH. Complementary antineoplastic activity of the cytosine nucleoside analogues troxacitabine (Troxatyl) and cytarabine in human leukemia cells.Cancer Chemother. Pharmacol.200352649750610.1007/s00280‑003‑0699‑412955470
    [Google Scholar]
  53. SchiffP.B. HorwitzS.B. Taxol stabilizes microtubules in mouse fibroblast cells.Proc. Natl. Acad. Sci.19807731561156510.1073/pnas.77.3.15616103535
    [Google Scholar]
  54. FuchsD.A. JohnsonR.K. Cytologic evidence that taxol, an antineoplastic agent from Taxus brevifolia, acts as a mitotic spindle poison.Cancer Treat. Rep.197862812191222688258
    [Google Scholar]
  55. YoonS. LeeB.K. KimK.P. Caffeine enhances chemosensitivity to irinotecan in the treatment of colorectal cancer.Phytomedicine202312115512010.1016/j.phymed.2023.15512037806154
    [Google Scholar]
  56. NaseemY. ZhangC. ZhouX. DongJ. XieJ. ZhangH. AgboyiborC. BiY. LiuH. Inhibitors targeting the F-BOX proteins.Cell Biochem. Biophys.202381457759710.1007/s12013‑023‑01160‑137624574
    [Google Scholar]
  57. İpekE. TuncaR. Silymarin protects against doxorubicin induced cardiotoxicity by down-regulating topoisomerase IIβ expression in mice.Biotech. Histochem.202398641242310.1080/10520295.2023.2218648
    [Google Scholar]
  58. AlotaykL.I. AldubayanM.A. AleneziS.K. AnwarM.J. AlhowailA.H. Comparative evaluation of doxorubicin, cyclophosphamide, 5-fluorouracil, and cisplatin on cognitive dysfunction in rats: Delineating the role of inflammation of hippocampal neurons and hypothyroidism.Biomed. Pharmacother.202316511524510.1016/j.biopha.2023.11524537523981
    [Google Scholar]
  59. PourmadadiM. Recent advancements in the targeted delivery of Gemcitabine: Harnessing nanomedicine for enhanced cancer therapy.OpenNanoElsevier202313100177
    [Google Scholar]
  60. AllanE.K. HolyoakeT.L. CraigA.R. JørgensenH.G. Omacetaxine may have a role in chronic myeloid leukaemia eradication through downregulation of Mcl-1 and induction of apoptosis in stem/progenitor cells.Leukemia201125698599410.1038/leu.2011.5521468038
    [Google Scholar]
  61. LebwohlM. SwansonN. AndersonL.L. MelgaardA. XuZ. BermanB. Ingenol mebutate gel for actinic keratosis.N. Engl. J. Med.2012366111010101910.1056/NEJMoa111117022417254
    [Google Scholar]
  62. Amiri-KordestaniL. BlumenthalG.M. XuQ.C. ZhangL. TangS.W. HaL. WeinbergW.C. ChiB. Candau-ChaconR. HughesP. RussellA.M. MiksinskiS.P. ChenX.H. McGuinnW.D. PalmbyT. SchrieberS.J. LiuQ. WangJ. SongP. MehrotraN. SkarupaL. ClouseK. Al-HakimA. SridharaR. IbrahimA. JusticeR. PazdurR. CortazarP. FDA approval: Ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer.Clin. Cancer Res.201420174436444110.1158/1078‑0432.CCR‑14‑001224879797
    [Google Scholar]
  63. LealM. SapraP. HurvitzS.A. SenterP. WahlA. SchuttenM. ShahD.K. Haddish-BerhaneN. KabbarahO. Antibody–drug conjugates: An emerging modality for the treatment of cancer.Ann. N. Y. Acad. Sci.201413211415410.1111/nyas.1249925123209
    [Google Scholar]
  64. SinghS. SharmaB. KanwarS.S. KumarA. Lead phytochemicals for anticancer drug development.Front. Plant Sci.20167166710.3389/fpls.2016.0166727877185
    [Google Scholar]
  65. AnastyukS.D. ShevchenkoN.M. ErmakovaS.P. VishchukO.S. NazarenkoE.L. DmitrenokP.S. ZvyagintsevaT.N. Anticancer activity in vitro of a fucoidan from the brown alga Fucus evanescens and its low-molecular fragments, structurally characterized by tandem mass-spectrometry.Carbohydr. Polym.201287118619410.1016/j.carbpol.2011.07.03634662949
    [Google Scholar]
  66. KoklesovaL. JakubikovaJ. CholujovaD. SamecM. MazurakovaA. ŠudomováM. PecM. HassanS.T.S. BiringerK. BüsselbergD. HurtovaT. GolubnitschajaO. KubatkaP. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management—Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine.Front. Pharmacol.202314112195010.3389/fphar.2023.112195037033601
    [Google Scholar]
  67. NajmiA. JavedS.A. Al BrattyM. AlhazmiH.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents.Molecules202227234910.3390/molecules2702034935056662
    [Google Scholar]
  68. Saldívar-GonzálezF.I. Aldas-BulosV.D. Medina-FrancoJ.L. PlissonF. Natural product drug discovery in the artificial intelligence era.Chem. Sci.20221361526154610.1039/D1SC04471K35282622
    [Google Scholar]
  69. FanK. ChengL. LiL. Artificial intelligence and machine learning methods in predicting anti-cancer drug combination effects.Brief. Bioinform.2021226bbab27110.1093/bib/bbab27134347041
    [Google Scholar]
  70. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv95126400175
    [Google Scholar]
  71. KikuchiT. NiheiM. NagaiH. FukushiH. TabataK. SuzukiT. AkihisaT. Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line.Chem. Pharm. Bull.201058456857110.1248/cpb.58.56820410645
    [Google Scholar]
  72. LaiH. SinghN.P. Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat.Cancer Lett.20062311434810.1016/j.canlet.2005.01.01916356830
    [Google Scholar]
  73. Dell’EvaR. PfefferU. VenéR. AnfossoL. ForlaniA. AlbiniA. EfferthT. Inhibition of angiogenesis in vivo and growth of Kaposi’s sarcoma xenograft tumors by the anti-malarial artesunate.Biochem. Pharmacol.200468122359236610.1016/j.bcp.2004.08.02115548382
    [Google Scholar]
  74. HongweiW. HailongL. qinC.F. JunL. JingG. HupingW. HongyanW. YanX. Baicalin extracted from Huang qin ( Radix Scutellariae Baicalensis ) induces apoptosis in gastric cancer cells by regulating B cell lymphoma (Bcl-2)/Bcl-2-associated X protein and activating caspase-3 and caspase-9.J. Tradit. Chin. Med.201737222923510.1016/S0254‑6272(17)30049‑329960296
    [Google Scholar]
  75. KumagaiT. MüllerC.I. DesmondJ.C. ImaiY. HeberD. KoefflerH.P. Scutellaria baicalensis, a herbal medicine: Anti-proliferative and apoptotic activity against acute lymphocytic leukemia, lymphoma and myeloma cell lines.Leuk. Res.200731452353010.1016/j.leukres.2006.08.01917007926
    [Google Scholar]
  76. HoY.T. LuC.C. YangJ.S. ChiangJ.H. LiT.C. IpS.W. HsiaT.C. LiaoC.L. LinJ.G. WoodW.G. ChungJ.G. Berberine induced apoptosis via promoting the expression of caspase-8, -9 and -3, apoptosis-inducing factor and endonuclease G in SCC-4 human tongue squamous carcinoma cancer cells.Anticancer Res.200929104063407019846952
    [Google Scholar]
  77. GoelA. BolandC.R. ChauhanD.P. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells.Cancer Lett.2001172211111810.1016/S0304‑3835(01)00655‑311566484
    [Google Scholar]
  78. ShaoZ.M. ShenZ.Z. LiuC.H. SartippourM.R. GoV.L. HeberD. NguyenM. Curcumin exerts multiple suppressive effects on human breast carcinoma cells.Int. J. Cancer200298223424010.1002/ijc.1018311857414
    [Google Scholar]
  79. KharA. AliA.M. PardhasaradhiB.V.V. BegumZ. AnjumR. Antitumor activity of curcumin is mediated through the induction of apoptosis in AK-5 tumor cells.FEBS Lett.1999445116516810.1016/S0014‑5793(99)00114‑310069393
    [Google Scholar]
  80. SikoraE. Bielak-ZmijewskaA. PiwockaK. JanuszS. RadziszewskaE. Inhibition of proliferation and apoptosis of human and rat T lymphocytes by curcumin, a curry pigment.Biochem. Pharmacol.199754889990710.1016/S0006‑2952(97)00251‑79354590
    [Google Scholar]
  81. CiprianiB. BorsellinoG. KnowlesH. TramontiD. CavaliereF. BernardiG. BattistiniL. BrosnanC.F. Curcumin inhibits activation of Vgamma9Vdelta2 T cells by phosphoantigens and induces apoptosis involving apoptosis-inducing factor and large scale DNA fragmentation.J. Immunol.200116763454346210.4049/jimmunol.167.6.345411544338
    [Google Scholar]
  82. HuangT. XiaoY. YiL. LiL. WangM. TianC. MaH. HeK. WangY. HanB. YeX. LiX. Coptisine from rhizoma coptidis suppresses HCT-116 cells-related tumor growth in vitro and in vivo.Sci. Rep.2017713852410.1038/srep3852428165459
    [Google Scholar]
  83. LakshmiS. SureshS. RahulB.S. SaikantR. MayaV. GopiM. PadmajaG. RemaniP. in vitro and in vivo studies of 5,7-dihydroxy flavones isolated from Alpinia galanga (L.) against human lung cancer and ascetic lymphoma.Med. Chem. Res.2019281395110.1007/s00044‑018‑2260‑3
    [Google Scholar]
  84. KabeerF.A. RajalekshmiD.S. NairM.S. PrathapanR. in vitro and in vivo antitumor activity of deoxyelephantopin from a potential medicinal plant Elephantopus scaber against Ehrlich ascites carcinoma.Biocatal. Agric. Biotechnol.20191910110610.1016/j.bcab.2019.101106
    [Google Scholar]
  85. ChenV. StaubR.E. BaggettS. ChimmaniR. TagliaferriM. CohenI. ShtivelmanE. Identification and analysis of the active phytochemicals from the anti-cancer botanical extract Bezielle.PLoS One201271e3010710.1371/journal.pone.003010722272282
    [Google Scholar]
  86. ChoB.O. JinC.H. ParkY.D. RyuH.W. ByunM.W. SeoK.I. JeongI.Y. Isoegomaketone induces apoptosis through caspase-dependent and caspase-independent pathways in human DLD1 cells.Biosci. Biotechnol. Biochem.20117571306131110.1271/bbb.11008821737934
    [Google Scholar]
  87. IbrahimL.F. KawashtyS.A. El-HagrassyA.M. NassarM.I. MabryT.J. A new kaempferol triglycoside from Fagonia taeckholmiana: Cytotoxic activity of its extracts.Carbohydr. Res.2008343115515810.1016/j.carres.2007.10.01118005952
    [Google Scholar]
  88. BaoR. ShuY. WuX. WengH. DingQ. CaoY. LiM. MuJ. WuW. DingQ. TanZ. LiuT. JiangL. HuY. GuJ. LiuY. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway.BMC Cancer201414121710.1186/1471‑2407‑14‑21724655726
    [Google Scholar]
  89. KimM.O. MoonD.O. ChoiY.H. ShinD.Y. KangH.S. ChoiB.T. LeeJ.D. LiW. KimG.Y. Platycodin D induces apoptosis and decreases telomerase activity in human leukemia cells.Cancer Lett.200826119810710.1016/j.canlet.2007.11.01018093727
    [Google Scholar]
  90. LeeK.J. HwangS.J. ChoiJ.H. JeongH.G. Saponins derived from the roots of Platycodon grandiflorum inhibit HT-1080 cell invasion and MMPs activities: Regulation of NF-κB activation via ROS signal pathway.Cancer Lett.2008268223324310.1016/j.canlet.2008.03.05818499341
    [Google Scholar]
  91. HeM.F. HuangY.H. WuL.W. GeW. ShawP.C. ButP.P.H. Triptolide functions as a potent angiogenesis inhibitor.Int. J. Cancer2010126126627810.1002/ijc.2469419569053
    [Google Scholar]
  92. BaskarA.A. IgnacimuthuS. PaulrajG.M. Al NumairK.S. Chemopreventive potential of β-Sitosterol in experimental colon cancer model: An in vitro and in vivo study.BMC Complement. Altern. Med.20101012410.1186/1472‑6882‑10‑2420525330
    [Google Scholar]
  93. Djoumbou FeunangY. EisnerR. KnoxC. ChepelevL. HastingsJ. OwenG. FahyE. SteinbeckC. SubramanianS. BoltonE. GreinerR. WishartD.S. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy.J. Cheminform.2016816110.1186/s13321‑016‑0174‑y27867422
    [Google Scholar]
  94. Martín-CorderoC. López-LázaroM. GálvezM. Jesús AyusoM. Curcumin as a DNA topoisomerase II poison.J. Enzyme Inhib. Med. Chem.200318650550910.1080/1475636031000161308515008515
    [Google Scholar]
  95. MedhiB. PatyarS. RaoR.S. Byrav DSP. PrakashA. Pharmacokinetic and toxicological profile of artemisinin compounds: An update.Pharmacology200984632333210.1159/00025265819851082
    [Google Scholar]
  96. BigoniyaP. SahuT. TiwariV. Hematological and biochemical effects of sub-chronic artesunate exposure in rats.Toxicol. Rep.2015228028810.1016/j.toxrep.2015.01.00728962361
    [Google Scholar]
  97. XiangY. LongY. YangQ. ZhengC. CuiM. CiZ. LvX. LiN. ZhangR. Pharmacokinetics, pharmacodynamics and toxicity of Baicalin liposome on cerebral ischemia reperfusion injury rats via intranasal administration.Brain Res.2020172614650310.1016/j.brainres.2019.14650331605698
    [Google Scholar]
  98. SinghN. SharmaB. Toxicological effects of berberine and sanguinarine.Front. Mol. Biosci.201852110.3389/fmolb.2018.0002129616225
    [Google Scholar]
  99. ChenH.W. HuangH.C. Effect of curcumin on cell cycle progression and apoptosis in vascular smooth muscle cells.Br. J. Pharmacol.199812461029104010.1038/sj.bjp.07019149720770
    [Google Scholar]
  100. JanaN.R. DikshitP. GoswamiA. NukinaN. Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway.J. Biol. Chem.200427912116801168510.1074/jbc.M31036920014701837
    [Google Scholar]
  101. RashmiR. KumarS. KarunagaranD. Ectopic expression of Hsp70 confers resistance and silencing its expression sensitizes human colon cancer cells to curcumin-induced apoptosis.Carcinogenesis200325217918710.1093/carcin/bgh00114604899
    [Google Scholar]
  102. DuvoixA. MorceauF. DelhalleS. SchmitzM. SchnekenburgerM. GalteauM.M. DicatoM. DiederichM. Induction of apoptosis by curcumin: mediation by glutathione S-transferase P1-1 inhibition.Biochem. Pharmacol.20036681475148310.1016/S0006‑2952(03)00501‑X14555224
    [Google Scholar]
  103. WooJ.H. KimY.H. ChoiY.J. KimD.G. LeeK.S. BaeJ.H. MinD.S. ChangJ.S. JeongY.J. LeeY.H. ParkJ.W. KwonT.K. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt.Carcinogenesis20032471199120810.1093/carcin/bgg08212807727
    [Google Scholar]
  104. DeebD. XuY.X. JiangH. GaoX. JanakiramanN. ChapmanR.A. GautamS.C. Curcumin (diferuloyl-methane>) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells.Mol. Cancer Ther.2003219510312533677
    [Google Scholar]
  105. ChenY.C. KuoT.C. Lin-ShiauS.Y. LinJ.K. Induction ofHSP70 gene expression by modulation of Ca+2 ion and cellular p53 protein by curcumin in colorectal carcinoma cells.Mol. Carcinog.199617422423410.1002/(SICI)1098‑2744(199612)17:4<224::AID‑MC6>3.0.CO;2‑D8989916
    [Google Scholar]
  106. GautamS.C. XuY.X. PindoliaK.R. JanakiramanN. ChapmanR.A. Nonselective inhibition of proliferation of transformed and nontransformed cells by the anticancer agent curcumin (diferuloylmethane).Biochem. Pharmacol.19985581333133710.1016/S0006‑2952(98)00019‑79719490
    [Google Scholar]
  107. KuoM.L. HuangT.S. LinJ.K. Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells.Biochim. Biophys. Acta Mol. Basis Dis.1996131729510010.1016/S0925‑4439(96)00032‑48950193
    [Google Scholar]
  108. HanifR. QiaoL. ShiffS.J. RigasB. Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway.J. Lab. Clin. Med.1997130657658410.1016/S0022‑2143(97)90107‑49422331
    [Google Scholar]
  109. ChoudhuriT. PalS. AgwarwalM.L. DasT. SaG. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction.FEBS Lett.20025121-333434010.1016/S0014‑5793(02)02292‑511852106
    [Google Scholar]
  110. SurhY.J. ChunK.S. ChaH.H. HanS.S. KeumY.S. ParkK.K. LeeS.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation.Mutat. Res.2001480-48124326810.1016/S0027‑5107(01)00183‑X11506818
    [Google Scholar]
  111. JarugaE. Bielak-ZmijewskaA. SikoraE. SkierskiJ. RadziszewskaE. PiwockaK. BartoszG. Glutathione-independent mechanism of apoptosis inhibition by curcumin in rat thymocytes.Biochem. Pharmacol.199856896196510.1016/S0006‑2952(98)00144‑09776306
    [Google Scholar]
  112. KharA. AliA.M. PardhasaradhiB.V.V. VaralakshmiC. AnjumR. KumariA.L. Induction of stress response renders human tumor cell lines resistant to curcumin-mediated apoptosis: Role of reactive oxygen intermediates.Cell Stress Chaperones20016436837610.1379/1466‑1268(2001)006<0368:IOSRRH>2.0.CO;211795474
    [Google Scholar]
  113. Chainani-WuN. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa).J. Altern. Complement. Med.20039116116810.1089/10755530332122303512676044
    [Google Scholar]
  114. LeeJ.H. Clinical usefulness of serum CYFRA 21–1 in patients with colorectal cancer.Nucl. Med. Mol. Imaging201347318118710.1007/s13139‑013‑0218‑424900105
    [Google Scholar]
  115. WieskopfB. DemangeatC. PurohitA. StengerR. GriesP. KreismanH. QuoixE. Cyfra 21-1 as a biologic marker of non-small cell lung cancer. Evaluation of sensitivity, specificity, and prognostic role.Chest1995108116316910.1378/chest.108.1.1637541742
    [Google Scholar]
  116. FarkhondehT. SamarghandianS. BafandehF. The cardiovascular protective effects of chrysin: A narrative review on experimental researches.Cardio. & Hematol. Agents Med. Chem.2019171172710.2174/1871525717666190114145137
    [Google Scholar]
  117. KabeerF.A. RajalekshmiD.S. NairM.S. PrathapanR. Molecular mechanisms of anticancer activity of deoxyelephantopin in cancer cells.Integr. Med. Res.20176219020610.1016/j.imr.2017.03.00428664142
    [Google Scholar]
  118. VerveridisF. TrantasE. DouglasC. VollmerG. KretzschmarG. PanopoulosN. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health.Biotechnol. J.20072101214123410.1002/biot.20070008417935117
    [Google Scholar]
  119. RugoH. ShtivelmanE. PerezA. VogelC. FrancoS. Tan ChiuE. MeliskoM. TagliaferriM. CohenI. ShoemakerM. TranZ. TripathyD. Phase I trial and antitumor effects of BZL101 for patients with advanced breast cancer.Breast Cancer Res. Treat.20071051172810.1007/s10549‑006‑9430‑617111207
    [Google Scholar]
  120. WangM. A review on flavonoid apigenin: Dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota.Biomed. Res. Intern2019201910.1155/2019/7010467
    [Google Scholar]
  121. TanM.L. OoiJ.P. IsmailN. MoadA.I.H. MuhammadT.S.T. Programmed cell death pathways and current antitumor targets.Pharm. Res.20092671547156010.1007/s11095‑009‑9895‑119407932
    [Google Scholar]
  122. MellierG. HuangS. ShenoyK. PervaizS. TRAILing death in cancer.Mol. Aspects Med.20103119311210.1016/j.mam.2009.12.00219995571
    [Google Scholar]
  123. WuG.S. TRAIL as a target in anti-cancer therapy.Cancer Lett.200928511510.1016/j.canlet.2009.02.02919299078
    [Google Scholar]
  124. ZhangJ. WangR. QinY. FengC. Defining the potential targets for biological activity of isoegomaketone based on network pharmacology and molecular docking methods.Life20221212211510.3390/life1212211536556480
    [Google Scholar]
  125. SkehanP. StorengR. ScudieroD. MonksA. McMahonJ. VisticaD. WarrenJ.T. BokeschH. KenneyS. BoydM.R. New colorimetric cytotoxicity assay for anticancer-drug screening.J. Natl. Cancer Inst.199082131107111210.1093/jnci/82.13.11072359136
    [Google Scholar]
  126. InoueM. SuzukiR. KoideT. SakaguchiN. OgiharaY. YabuY. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells.Biochem. Biophys. Res. Commun.1994204289890410.1006/bbrc.1994.25447980558
    [Google Scholar]
  127. Rodríguez-VargasJ.M. Ruiz-MagañaM.J. Ruiz-RuizC. Majuelos-MelguizoJ. Peralta-LealA. RodríguezM.I. Muñoz-GámezJ.A. de AlmodóvarM.R. SilesE. RivasA.L. JäättelaM. OliverF.J. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy.Cell Res.20122271181119810.1038/cr.2012.7022525338
    [Google Scholar]
  128. LvH. LiY. DuH. FangJ. SongX. ZhangJ. The synthetic compound norcantharidin induced apoptosis in mantle cell lymphoma in vivo and in vitro through the PI3K-Akt-NF- κ B Signaling Pathway.Evid. Based Complement. Alternat. Med.2013201311110.1155/2013/46148723935664
    [Google Scholar]
  129. SheE.X. HaoZ. A novel piperazine derivative potently induces caspase-dependent apoptosis of cancer cells via inhibition of multiple cancer signaling pathways.Am. J. Transl. Res.20135662263324093059
    [Google Scholar]
  130. DuL. MeiH.F. YinX. XingY.Q. Delayed growth of glioma by a polysaccharide from Aster tataricus involve upregulation of Bax/Bcl-2 ratio, activation of caspase-3/8/9, and downregulation of the Akt.Tumour Biol.20143531819182510.1007/s13277‑013‑1243‑824081677
    [Google Scholar]
  131. LeeW.H. GamC.O. KuS.K. ChoiS.H. Single oral dose toxicity test of platycodin d, a saponin from platycodin radix in mice.Toxicol. Res.201127421722410.5487/TR.2011.27.4.21724278575
    [Google Scholar]
  132. HeM.F. LiuL. GeW. ShawP.C. JiangR. WuL.W. ButP.P.H. Antiangiogenic activity of Tripterygium wilfordii and its terpenoids.J. Ethnopharmacol.20091211616810.1016/j.jep.2008.09.03318996177
    [Google Scholar]
  133. SherwoodL.M. ParrisE.E. FolkmanJ. Tumor angiogenesis: Therapeutic implications.N. Engl. J. Med.1971285211182118610.1056/NEJM1971111828521084938153
    [Google Scholar]
  134. BhatT.A. SinghR.P. Tumor angiogenesis: A potential target in cancer chemoprevention.Food Chem. Toxicol.20084641334134510.1016/j.fct.2007.08.03217919802
    [Google Scholar]
  135. FidlerJ.M. LiK. ChungC. WeiK. RossJ.A. GaoM. RosenG.D. PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy.Mol. Cancer Ther.20032985586214555704
    [Google Scholar]
  136. Azadmard-DamirchiS. DuttaP.C. Phytosterol classes in olive oils and their analysis by common chromatographic methods.Olives and olive oil in Health and disease prevention.Elsevier201024925710.1016/B978‑0‑12‑374420‑3.00027‑9
    [Google Scholar]
  137. FarrellA.T. PapadouliI. HoriA. HarczyM. HarrisonB. AsakuraW. MartyM. DagherR. PazdurR. The advisory process for anticancer drug regulation: A global perspective.Ann. Oncol.200617688989610.1093/annonc/mdj09916357020
    [Google Scholar]
  138. CalixtoJ.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents).Braz. J. Med. Biol. Res.200033217918910.1590/S0100‑879X200000020000410657057
    [Google Scholar]
  139. MezherM. FDA Adopts ICH Guideline on Nonclinical Evaluation for Anticancer Drugs.Rockville, MD, USARegulatory Affairs Professional Society2018
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266268185240320085619
Loading
/content/journals/ctmc/10.2174/0115680266268185240320085619
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Angiogenesis; Apoptosis; Cancer; Cytotoxicity; Phytochemicals; Plants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test