Skip to content
2000
Volume 11, Issue 5
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Various neurodegenerative diseases have become a serious threat to human health all around the world. The progressive loss of functionality of active neurons causes neurodegenerative disease. Current research suggests that plant-derived foods, such as fruits and vegetables, are a good source of natural polyphenols, which can be effective in reducing the risk factors of neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), These polyphenols exhibit cognitive repair and can reduce the production of reactive oxygen species (ROS) to establish neuroprotection. Various animal models were developed to understand the neuromodulatory and therapeutic activities of polyphenols for the treatment of AD, PD, HD, Moreover, polyphenols indirectly modulate the gut microbiome to generate neuroprotection. Although there is a disadvantage to the low oral bioavailability of these polyphenols, the conjugation can enhance the efficiency of these compounds with nanoparticles. The present review gives an outline of plant-generated polyphenols and highlights their effects in the treatment of various neurodegenerative diseases. As a result, the prevention of aging-related disorders through natural products certainly shows excellent therapeutic efficiency soon. For this study, various reviews as well as original research articles from PubMed describing the possible therapeutic effects of dietary polyphenols to cure neurodegenerative diseases are used.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/2215083810666230823094940
2024-03-21
2026-01-03
Loading full text...

Full text loading...

References

  1. FarooquiA.A. Phytochemicals, Signal Transduction, and Neurological Disorders.New York, NYSpringer201210.1007/978‑1‑4614‑3804‑5
    [Google Scholar]
  2. UddinM.S. KabirM.T. TewariD. Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer’s disease.J. Neurol. Sci.202041611697410.1016/j.jns.2020.116974 32559516
    [Google Scholar]
  3. Jurado-CoronelJ.C. Ávila-RodriguezM. ValentinaE. Implication of green tea as a possible therapeutic approach for Parkinson disease.CNS Neurol. Disord. Drug Targets2016153292300
    [Google Scholar]
  4. HamaguchiT. OnoK. YamadaM. REVIEW: Curcumin and Alzheimer’s disease.CNS Neurosci. Ther.201016528529710.1111/j.1755‑5949.2010.00147.x 20406252
    [Google Scholar]
  5. ParadaE. BuendiaI. NavarroE. AvendañoC. EgeaJ. LópezM.G. Microglial HO-1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects.Mol. Nutr. Food Res.20155991690170010.1002/mnfr.201500279 26047311
    [Google Scholar]
  6. El-FarA.H. ElewaY.H.A. AbdelfattahE.Z.A. Thymoquinone and curcumin defeat aging-associated oxidative alterations induced by d-galactose in rats’ brain and heart.Int. J. Mol. Sci.20212213683910.3390/ijms22136839 34202112
    [Google Scholar]
  7. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.41 28620474
    [Google Scholar]
  8. AyM. LuoJ. LangleyM. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease.J. Neurochem.2017141576678210.1111/jnc.14033 28376279
    [Google Scholar]
  9. AhmedT. GilaniA.H. AbdollahiM. DagliaM. NabaviS.F. NabaviS.M. Berberine and neurodegeneration: A review of literature.Pharmacol. Rep.201567597097910.1016/j.pharep.2015.03.002 26398393
    [Google Scholar]
  10. ChengZ. KangC. CheS. Berberine: A promising treatment for neurodegenerative diseases.Front. Pharmacol.20221384559110.3389/fphar.2022.845591 35668943
    [Google Scholar]
  11. AkterR. ChowdhuryM.A.R. RahmanM.H. Flavonoids and polyphenolic compounds as potential talented agents for the treatment of Alzheimer’s disease and their antioxidant activities.Curr. Pharm. Des.202127334535610.2174/18734286MTExrMDYa2 33138754
    [Google Scholar]
  12. WangB. LuY. WangR. LiuS. HuX. WangH. Transport and metabolic profiling studies of amentoflavone in Caco-2 cells by UHPLC-ESI-MS/MS and UHPLC-ESI-Q-TOF-MS/MS.J. Pharm. Biomed. Anal.202018911344110.1016/j.jpba.2020.113441 32615340
    [Google Scholar]
  13. RothwellJ.A. Perez-JimenezJ. NeveuV. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content.Database 201320130bat07010.1093/database/bat070 24103452
    [Google Scholar]
  14. da SilvaA.B. GiacomoniF. PavotB. PhytoHub V1. 4: A new release for the online database dedicated to food phytochemicals and their human metabolites.International Conference on Food Bioactives & Health
    [Google Scholar]
  15. MarinoM. Del Bo’C. MartiniD. PorriniM. RisoP. A review of registered clinical trials on dietary (poly) phenols: Past efforts and possible future directions.Foods2020911160610.3390/foods9111606 33158145
    [Google Scholar]
  16. Medina-RemónA. Tresserra-RimbauA. PonsA. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial.Nutr. Metab. Cardiovasc. Dis.2015251606710.1016/j.numecd.2014.09.001 25315667
    [Google Scholar]
  17. Rodriguez-MateosA. VauzourD. KruegerC.G. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update.Arch. Toxicol.201488101803185310.1007/s00204‑014‑1330‑7 25182418
    [Google Scholar]
  18. NooyensA.C.J. Bueno-de-MesquitaH.B. van BoxtelM.P.J. van GelderB.M. VerhagenH. VerschurenW.M.M. Fruit and vegetable intake and cognitive decline in middle-aged men and women: The Doetinchem Cohort Study.Br. J. Nutr.2011106575276110.1017/S0007114511001024 21477405
    [Google Scholar]
  19. PsaltopoulouT. SergentanisT.N. PanagiotakosD.B. SergentanisI.N. KostiR. ScarmeasN. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis.Ann. Neurol.201374458059110.1002/ana.23944 23720230
    [Google Scholar]
  20. SpencerJ.P.E. Food for thought: The role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance.Proc. Nutr. Soc.200867223825210.1017/S0029665108007088 18412998
    [Google Scholar]
  21. WilliamsR.J. SpencerJ.P.E. Flavonoids, cognition, and dementia: Actions, mechanisms, and potential therapeutic utility for Alzheimer disease.Free Radic. Biol. Med.2012521354510.1016/j.freeradbiomed.2011.09.010 21982844
    [Google Scholar]
  22. WallaceC.H.R. BaczkóI. JonesL. FerchoM. LightP.E. Inhibition of cardiac voltage-gated sodium channels by grape polyphenols.Br. J. Pharmacol.2006149665766510.1038/sj.bjp.0706897 17016511
    [Google Scholar]
  23. KurutasE.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state.Nutr. J.20151517110.1186/s12937‑016‑0186‑5 27456681
    [Google Scholar]
  24. KrikorianR. ShidlerM.D. NashT.A. Blueberry supplementation improves memory in older adults.J. Agric. Food Chem.20105873996400010.1021/jf9029332 20047325
    [Google Scholar]
  25. DevoreE.E. KangJ.H. BretelerM.M.B. GrodsteinF. Dietary intakes of berries and flavonoids in relation to cognitive decline.Ann. Neurol.201272113514310.1002/ana.23594 22535616
    [Google Scholar]
  26. BowtellJ.L. Aboo-BakkarZ. ConwayM.E. AdlamA.L.R. FulfordJ. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation.Appl. Physiol. Nutr. Metab.201742777377910.1139/apnm‑2016‑0550 28249119
    [Google Scholar]
  27. MillerM.G. HamiltonD.A. JosephJ.A. Shukitt-HaleB. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial.Eur. J. Nutr.20185731169118010.1007/s00394‑017‑1400‑8 28283823
    [Google Scholar]
  28. MacreadyA.L. KennedyO.B. EllisJ.A. WilliamsC.M. SpencerJ.P.E. ButlerL.T. Flavonoids and cognitive function: A review of human randomized controlled trial studies and recommendations for future studies.Genes Nutr.20094422724210.1007/s12263‑009‑0135‑4 19680703
    [Google Scholar]
  29. FrancisS.T. HeadK. MorrisP.G. MacdonaldI.A. The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people.J. Cardiovasc. Pharmacol.200647S2S215S22010.1097/00005344‑200606001‑00018 16794461
    [Google Scholar]
  30. FieldD.T. WilliamsC.M. ButlerL.T. Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions.Physiol. Behav.20111033-425526010.1016/j.physbeh.2011.02.013 21324330
    [Google Scholar]
  31. FernandesI. de FreitasV. MateusN. Anthocyanins and human health: How gastric absorption may influence acute human physiology.Nutr. Aging 20142111410.3233/NUA‑130030
    [Google Scholar]
  32. CzankC. CassidyA. ZhangQ. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A 13C-tracer study.Am. J. Clin. Nutr.2013975995100310.3945/ajcn.112.049247 23604435
    [Google Scholar]
  33. de FerrarsR.M. CzankC. ZhangQ. The pharmacokinetics of anthocyanins and their metabolites in humans.Br. J. Pharmacol.2014171133268328210.1111/bph.12676 24602005
    [Google Scholar]
  34. OttavianiJ.I. BorgesG. MommaT.Y. The metabolome of [2-14C](−)-epicatechin in humans: implications for the assessment of efficacy, safety and mechanisms of action of polyphenolic bioactives.Sci. Rep.2016612903410.1038/srep29034 28442746
    [Google Scholar]
  35. Actis-GorettaL. LévèquesA. GiuffridaF. Elucidation of (−)-epicatechin metabolites after ingestion of chocolate by healthy humans.Free Radic. Biol. Med.201253478779510.1016/j.freeradbiomed.2012.05.023 22664313
    [Google Scholar]
  36. StoupiS. WilliamsonG. VitonF. In vivo bioavailability, absorption, excretion, and pharmacokinetics of [14C]procyanidin B2 in male rats.Drug Metab. Dispos.201038228729110.1124/dmd.109.030304 19910517
    [Google Scholar]
  37. WilliamsonG. The role of polyphenols in modern nutrition.Nutr. Bull.201742322623510.1111/nbu.12278 28983192
    [Google Scholar]
  38. FelicianoR. IstasG. HeissC. Rodriguez-MateosA. Plasma and urinary phenolic profiles after acute and repetitive intake of wild blueberry.Molecules2016219112010.3390/molecules21091120 27571052
    [Google Scholar]
  39. FelicianoR.P. BoeresA. MassacessiL. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols.Arch. Biochem. Biophys.2016599314110.1016/j.abb.2016.01.014 26836705
    [Google Scholar]
  40. StalmachA. EdwardsC.A. WightmanJ.D. CrozierA. Gastrointestinal stability and bioavailability of (poly)phenolic compounds following ingestion of Concord grape juice by humans.Mol. Nutr. Food Res.201256349750910.1002/mnfr.201100566 22331633
    [Google Scholar]
  41. DayA.J. CañadaF.J. DíazJ.C. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase.FEBS Lett.20004682-316617010.1016/S0014‑5793(00)01211‑4 10692580
    [Google Scholar]
  42. Del RioD. Rodriguez-MateosA. SpencerJ.P.E. TognoliniM. BorgesG. CrozierA. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases.Antioxid. Redox Signal.201318141818189210.1089/ars.2012.4581 22794138
    [Google Scholar]
  43. González-SarríasA. García-VillalbaR. Romo-VaqueroM. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: A randomized clinical trial.Mol. Nutr. Food Res.2017615160083010.1002/mnfr.201600830 27879044
    [Google Scholar]
  44. EspínJ.C. LarrosaM. García-ConesaM.T. Tomás-BarberánF. Biological significance of urolithins, the gut microbial ellagic Acid-derived metabolites: The evidence so far.Evid. Based Complement. Alternat. Med.2013201327041810.1155/2013/270418
    [Google Scholar]
  45. FilosaS. FicoA. PaglialungaF. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress.Biochem. J.2003370393594310.1042/bj20021614 12466018
    [Google Scholar]
  46. FicoA. PaglialungaF. CiglianoL. RETRACTED ARTICLE: Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis.Cell Death Differ.200411882383110.1038/sj.cdd.4401420 15044966
    [Google Scholar]
  47. Redza-DutordoirM. Averill-BatesD.A. Activation of apoptosis signalling pathways by reactive oxygen species.Biochim. Biophys. Acta Mol. Cell Res.20161863122977299210.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  48. MartindaleJ.L. HolbrookN.J. Cellular response to oxidative stress: Signaling for suicide and survival.J. Cell. Physiol.2002192111510.1002/jcp.10119 12115731
    [Google Scholar]
  49. YoungI.S. WoodsideJ.V. Antioxidants in health and disease.J. Clin. Pathol.200154317618610.1136/jcp.54.3.176 11253127
    [Google Scholar]
  50. HalliwellB. Antioxidant characterization.Biochem. Pharmacol.199549101341134810.1016/0006‑2952(95)00088‑H 7763275
    [Google Scholar]
  51. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules24081583 31013638
    [Google Scholar]
  52. NunomuraA. HondaK. TakedaA. Oxidative damage to RNA in neurodegenerative diseases.J. Biomed. Biotechnol.2006200631610.1155/JBB/2006/82323 17047315
    [Google Scholar]
  53. BattagliniM. MarinoA. CarmignaniA. Polydopamine nanoparticles as an organic and biodegradable multitasking tool for neuroprotection and remote neuronal stimulation.ACS Appl. Mater. Interfaces20201232357823579810.1021/acsami.0c05497 32693584
    [Google Scholar]
  54. WardR.J. DexterD.T. CrichtonR.R. Ageing neuroinflammation and neurodegeneration.Front. Biosci.20157118920410.2741/s433 25961695
    [Google Scholar]
  55. AngelovaP.R. AbramovA.Y. Alpha-synuclein and beta-amyloid – different targets, same players: Calcium, free radicals and mitochondria in the mechanism of neurodegeneration.Biochem. Biophys. Res. Commun.201748341110111510.1016/j.bbrc.2016.07.103 27470584
    [Google Scholar]
  56. HöhnA. WeberD. JungT. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence.Redox Biol.20171148250110.1016/j.redox.2016.12.001 28086196
    [Google Scholar]
  57. ChenZ. ZhongC. Oxidative stress in Alzheimer’s disease.Neurosci. Bull.201430227128110.1007/s12264‑013‑1423‑y 24664866
    [Google Scholar]
  58. SerraJ.A. DomínguezR.O. de LustigE.S. Parkinson’s disease is associated with oxidative stress: Comparison of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia patients.J. Neural Transm. 2001108101135114810.1007/s007020170003 11725816
    [Google Scholar]
  59. LiaoD. ChenY. GuoY. Salvianolic acid B improves chronic mild stress-induced depressive behaviors in rats: involvement of AMPK/SIRT1 signaling pathway.J. Inflamm. Res.20201319520610.2147/JIR.S249363 32494183
    [Google Scholar]
  60. ChoiJ. ZhengQ. KatzH.E. GuilarteT.R. Silica-based nanoparticle uptake and cellular response by primary microglia.Environ. Health Perspect.2010118558959510.1289/ehp.0901534 20439179
    [Google Scholar]
  61. BrandesM.S. GrayN.E. NRF2 as a therapeutic target in neurodegenerative diseases.ASN Neuro202012175909141989978210.1177/1759091419899782 31964153
    [Google Scholar]
  62. GoldR. KapposL. ArnoldD.L. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis.N. Engl. J. Med.2012367121098110710.1056/NEJMoa1114287 22992073
    [Google Scholar]
  63. ShanB. CaiY.Z. SunM. CorkeH. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents.J. Agric. Food Chem.200553207749775910.1021/jf051513y 16190627
    [Google Scholar]
  64. LüJ.M. LinP.H. YaoQ. ChenC. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems.J. Cell. Mol. Med.201014484086010.1111/j.1582‑4934.2009.00897.x 19754673
    [Google Scholar]
  65. WestfallS. PasinettiG.M. The gut microbiota links dietary polyphenols with management of psychiatric mood disorders.Front. Neurosci.201913119610.3389/fnins.2019.01196 31749681
    [Google Scholar]
  66. CrispiS. FilosaS. Di MeoF. Polyphenols-gut microbiota interplay and brain neuromodulation.Neural Regen. Res.201813122055205910.4103/1673‑5374.241429 30323120
    [Google Scholar]
  67. PandeyK.B. RizviS.I. Plant polyphenols as dietary antioxidants in human health and disease.Oxid. Med. Cell. Longev.20092527027810.4161/oxim.2.5.9498 20716914
    [Google Scholar]
  68. QuonT. LinL.C. GangulyA. TobinA.B. MilliganG. Therapeutic opportunities and challenges in targeting the orphan G protein-coupled receptor GPR35.ACS Pharmacol. Transl. Sci.20203580181210.1021/acsptsci.0c00079 33073184
    [Google Scholar]
  69. PattersonE. RyanP.M. WileyN. Gamma-aminobutyric acid-producing lactobacilli positively affect metabolism and depressive-like behaviour in a mouse model of metabolic syndrome.Sci. Rep.2019911632310.1038/s41598‑019‑51781‑x 31704943
    [Google Scholar]
  70. DingS. JiangH. FangJ. Regulation of immune function by polyphenols.J. Immunol. Res.20182018126407410.1155/2018/1264074
    [Google Scholar]
  71. OrgogozoJ.M. DartiguesJ.F. LafontS. Wine consumption and dementia in the elderly: A prospective community study in the Bordeaux area.Rev. Neurol.19971533185192 9296132
    [Google Scholar]
  72. Noguchi-ShinoharaM. YukiS. DohmotoC. Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline.PLoS One201495e9601310.1371/journal.pone.0096013 24828424
    [Google Scholar]
  73. RossiL. MazzitelliS. ArcielloM. CapoC.R. RotilioG. Benefits from dietary polyphenols for brain aging and Alzheimer’s disease.Neurochem. Res.200833122390240010.1007/s11064‑008‑9696‑7 18415677
    [Google Scholar]
  74. NgT.P. ChiamP.C. LeeT. ChuaH.C. LimL. KuaE.H. Curry consumption and cognitive function in the elderly.Am. J. Epidemiol.2006164989890610.1093/aje/kwj267 16870699
    [Google Scholar]
  75. TruelsenT. ThudiumD. GrønbaekM. Amount and type of alcohol and risk of dementia: The Copenhagen City Heart Study.Neurology20025991313131910.1212/01.WNL.0000031421.50369.E7 12427876
    [Google Scholar]
  76. BjelakovicG. NikolovaD. GluudL.L. SimonettiR.G. GluudC. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis.JAMA2007297884285710.1001/jama.297.8.842 17327526
    [Google Scholar]
  77. OgleW.O. SpeismanR.B. OrmerodB.K. Potential of treating age-related depression and cognitive decline with nutraceutical approaches: a mini-review.Gerontology2013591233110.1159/000342208 22947921
    [Google Scholar]
  78. ZhangH. TsaoR. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects.Curr. Opin. Food Sci.20168334210.1016/j.cofs.2016.02.002
    [Google Scholar]
  79. ZhouY. ZhengJ. LiY. Natural polyphenols for prevention and treatment of cancer.Nutrients20168851510.3390/nu8080515 27556486
    [Google Scholar]
  80. KhuranaS. VenkataramanK. HollingsworthA. PicheM. TaiT. Polyphenols: Benefits to the cardiovascular system in health and in aging.Nutrients20135103779382710.3390/nu5103779 24077237
    [Google Scholar]
  81. JiangH. WangJ. RogersJ. XieJ. Brain iron metabolism dysfunction in Parkinson’s disease.Mol. Neurobiol.20175443078310110.1007/s12035‑016‑9879‑1 27039308
    [Google Scholar]
  82. WangS. Moustaid-MoussaN. ChenL. Novel insights of dietary polyphenols and obesity.J. Nutr. Biochem.201425111810.1016/j.jnutbio.2013.09.001 24314860
    [Google Scholar]
  83. HuB. LiuX. ZhangC. ZengX. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols.Yao Wu Shi Pin Fen Xi2017251315 28911541
    [Google Scholar]
  84. des RieuxA. FievezV. GarinotM. SchneiderY.J. PréatV. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach.J. Control. Release2006116112710.1016/j.jconrel.2006.08.013 17050027
    [Google Scholar]
  85. FanS. ZhengY. LiuX. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease.Drug Deliv.20182511091110210.1080/10717544.2018.1461955 30107760
    [Google Scholar]
  86. DowdingJ.M. SongW. BossyK. Cerium oxide nanoparticles protect against Aβ-induced mitochondrial fragmentation and neuronal cell death.Cell Death Differ.201421101622163210.1038/cdd.2014.72 24902900
    [Google Scholar]
  87. KhalilI. YehyeW.A. EtxeberriaA.E. Nanoantioxidants: Recent trends in antioxidant delivery applications.Antioxidants2019912410.3390/antiox9010024 31888023
    [Google Scholar]
  88. NieT. HeZ. ZhuJ. Non-invasive delivery of levodopa-loaded nanoparticles to the brain via lymphatic vasculature to enhance treatment of Parkinson’s disease.Nano Res.20211482749276110.1007/s12274‑020‑3280‑0
    [Google Scholar]
  89. SandhirR. YadavA. MehrotraA. SunkariaA. SinghA. SharmaS. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease.Neuromolecular Med.201416110611810.1007/s12017‑013‑8261‑y 24008671
    [Google Scholar]
  90. RzigalinskiB.A. CarfagnaC.S. EhrichM. Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201794e144410.1002/wnan.1444 27860449
    [Google Scholar]
  91. RishithaN. MuthuramanA. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish.Life Sci.2018199808710.1016/j.lfs.2018.03.010 29522770
    [Google Scholar]
  92. ConstantinescuC.S. FarooqiN. O’BrienK. GranB. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS).Br. J. Pharmacol.201116441079110610.1111/j.1476‑5381.2011.01302.x 21371012
    [Google Scholar]
  93. RegeS.D. GeethaT. GriffinG.D. BroderickT.L. BabuJ.R. Neuroprotective effects of resveratrol in Alzheimer disease pathology.Front. Aging Neurosci.2014621810.3389/fnagi.2014.00218 25309423
    [Google Scholar]
  94. KairisaloM. BonomoA. HyrskyluotoA. Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells.Neurosci. Lett.2011488326326610.1016/j.neulet.2010.11.042 21094207
    [Google Scholar]
  95. SinghN.A. MandalA.K.A. KhanZ.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG).Nutr. J.20151516010.1186/s12937‑016‑0179‑4 27268025
    [Google Scholar]
  96. YeQ. YeL. XuX. Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway.BMC Complement. Altern. Med.20121218210.1186/1472‑6882‑12‑82 22742579
    [Google Scholar]
  97. MohammadzadehH.N. SaedisomeoliaA. AbdolahiM. Molecular anti-inflammatory mechanisms of retinoids and carotenoids in Alzheimer’s disease: A review of current evidence.J. Mol. Neurosci.201761328930410.1007/s12031‑016‑0857‑x 27864661
    [Google Scholar]
  98. SowndhararajanK. DeepaP. KimM. ParkS. KimS. Neuroprotective and cognitive enhancement potentials of baicalin: A review.Brain Sci.20188610410.3390/brainsci8060104 29891783
    [Google Scholar]
  99. LiuC. WuJ. XuK. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway.J. Neurochem.201011261500151210.1111/j.1471‑4159.2009.06561.x 20050973
    [Google Scholar]
  100. AntunesM.S. GoesA.T.R. BoeiraS.P. PrigolM. JesseC.R. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice.Nutrition20143011-121415142210.1016/j.nut.2014.03.024 25280422
    [Google Scholar]
  101. HouC.W. LinY.T. ChenY.L. Neuroprotective effects of carnosic acid on neuronal cells under ischemic and hypoxic stress.Nutr. Neurosci.201215625726310.1179/1476830512Y.0000000021 22687582
    [Google Scholar]
  102. MinJ. YuS.W. BaekS.H. Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia.Neurosci. Lett.2011500315716110.1016/j.neulet.2011.05.048 21651957
    [Google Scholar]
  103. RehfeldtS.C.H. SilvaJ. AlvesC. Neuroprotective effect of luteolin-7-o-glucoside against 6-OHDA-induced damage in undifferentiated and RA-differentiated SH-SY5Y cells.Int. J. Mol. Sci.2022236291410.3390/ijms23062914 35328335
    [Google Scholar]
  104. HuangC.S. LiiC.K. LinA.H. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes.Arch. Toxicol.201387116717810.1007/s00204‑012‑0913‑4 22864849
    [Google Scholar]
  105. MercerL.D. KellyB.L. HorneM.K. BeartP.M. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures.Biochem. Pharmacol.200569233934510.1016/j.bcp.2004.09.018 15627486
    [Google Scholar]
  106. CostaL.G. GarrickJ.M. RoquèP.J. PellacaniC. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more.Oxid. Med. Cell. Longev.20162016298679610.1155/2016/2986796
    [Google Scholar]
  107. BhullarK.S. RupasingheH.P. Polyphenols: Multipotent therapeutic agents in neurodegenerative diseases.Oxid. Med. Cell. Longev.2013201389174810.1155/2013/891748
    [Google Scholar]
  108. LeeD.S. JeongG.S. Butein provides neuroprotective and anti-neuroinflammatory effects through Nrf2/ARE-dependent haem oxygenase 1 expression by activating the PI3K/Akt pathway.Br. J. Pharmacol.2016173192894290910.1111/bph.13569 27465039
    [Google Scholar]
  109. AhmedM.R. ShaikhM.A. Ul HaqS.H.I. NazirS. Neuroprotective role of chrysin in attenuating loss of dopaminergic neurons and improving motor, learning and memory functions in rats.Int. J. Health Sci.20181233543 29896070
    [Google Scholar]
  110. El-ShiekhR.A. AshourR.M. Abd El-HaleimE.A. AhmedK.A. Abdel-SattarE. Hibiscus sabdariffa L.: A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer’s disease in mice.Biomed. Pharmacother.202012811030310.1016/j.biopha.2020.110303 32480228
    [Google Scholar]
  111. KaoE.S. HsuJ.D. WangC.J. YangS.H. ChengS.Y. LeeH.J. Polyphenols extracted from Hibiscus sabdariffa L. inhibited lipopolysaccharide-induced inflammation by improving antioxidative conditions and regulating cyclooxygenase-2 expression.Biosci. Biotechnol. Biochem.200973238539010.1271/bbb.80639 19202285
    [Google Scholar]
  112. ZhaoX. MooreD.L. Neural stem cells: Developmental mechanisms and disease modeling.Cell Tissue Res.201837111610.1007/s00441‑017‑2738‑1 29196810
    [Google Scholar]
  113. VauzourD. Dietary polyphenols as modulators of brain functions: Biological actions and molecular mechanisms underpinning their beneficial effects.Oxid. Med. Cell. Longev.2012201291427310.1155/2012/914273
    [Google Scholar]
  114. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood–brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.030 19664713
    [Google Scholar]
  115. YoudimK.A. DobbieM.S. KuhnleG. ProteggenteA.R. AbbottN.J. Rice-EvansC. Interaction between flavonoids and the blood-brain barrier: In vitro studies.J. Neurochem.200385118019210.1046/j.1471‑4159.2003.01652.x 12641740
    [Google Scholar]
  116. CommengesD. ScotetV. RenaudS. Jacqmin-GaddaH. Barberger-GateauP. DartiguesJ.F. Intake of flavonoids and risk of dementia.Eur. J. Epidemiol.200016435736310.1023/A:1007614613771 10959944
    [Google Scholar]
  117. OnoK. CondronM.M. HoL. Effects of grape seed-derived polyphenols on amyloid β-protein self-assembly and cytotoxicity.J. Biol. Chem.200828347321763218710.1074/jbc.M806154200 18815129
    [Google Scholar]
  118. SpencerJ.P.E. WhitemanM. JennerP. HalliwellB. 5-S-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons.J. Neurochem.200281112212910.1046/j.1471‑4159.2002.00808.x 12067224
    [Google Scholar]
  119. StewartV.C. HealesS.J.R. Nitric oxide-induced mitochondrial dysfunction: Implications for neurodegeneration.Free Radic. Biol. Med.200334328730310.1016/S0891‑5849(02)01327‑8 12543245
    [Google Scholar]
  120. SpencerJ.P.E. VafeiadouK. WilliamsR.J. VauzourD. Neuroinflammation: Modulation by flavonoids and mechanisms of action.Mol. Aspects Med.2012331839710.1016/j.mam.2011.10.016 22107709
    [Google Scholar]
  121. BiX. Alzheimer disease: Update on basic mechanisms.J. Osteopath. Med.20101109S3S9 20926741
    [Google Scholar]
  122. TangY. ZhangD. GongX. ZhengJ. A mechanistic survey of Alzheimer’s disease.Biophys. Chem.202228110673510.1016/j.bpc.2021.106735 34894476
    [Google Scholar]
  123. GrossbergG.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on.Curr. Ther. Res. Clin. Exp.200364421623510.1016/S0011‑393X(03)00059‑6 24944370
    [Google Scholar]
  124. NewcomerJ.W. FarberN.B. OlneyJ.W. NMDA receptor function, memory, and brain aging.Dialogues Clin. Neurosci.202223219232 22034391
    [Google Scholar]
  125. CurtainC.C. AliF. VolitakisI. Alzheimer’s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits.J. Biol. Chem.200127623204662047310.1074/jbc.M100175200 11274207
    [Google Scholar]
  126. MaynardC.J. BushA.I. MastersC.L. CappaiR. LiQ.X. Metals and amyloid-β in Alzheimer’s disease.Int. J. Exp. Pathol.200586314715910.1111/j.0959‑9673.2005.00434.x 15910549
    [Google Scholar]
  127. RajmohanR. ReddyP.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons.J. Alzheimers Dis.201757497599910.3233/JAD‑160612 27567878
    [Google Scholar]
  128. de la MonteS.M. Insulin resistance and neurodegeneration: Progress towards the development of new therapeutics for Alzheimer’s disease.Drugs2017771476510.1007/s40265‑016‑0674‑0 27988872
    [Google Scholar]
  129. NishinakaT. IchijoY. ItoM. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element.Toxicol. Lett.2007170323824710.1016/j.toxlet.2007.03.011 17449203
    [Google Scholar]
  130. BardestaniA. EbrahimpourS. EsmaeiliA. EsmaeiliA. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles.J. Nanobiotechnology202119132710.1186/s12951‑021‑01059‑0 34663344
    [Google Scholar]
  131. HuY. HuX. LuY. ShiS. YangD. YaoT. New strategy for reducing tau aggregation cytologically by a hairpinlike molecular inhibitor, tannic acid encapsulated in liposome.ACS Chem. Neurosci.202011213623363410.1021/acschemneuro.0c00508 33048528
    [Google Scholar]
  132. LiR. HuangY.G. FangD. LeW.D. (?)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury.J. Neurosci. Res.200478572373110.1002/jnr.20315 15478178
    [Google Scholar]
  133. VasicV. BarthK. SchmidtM.H.H. Neurodegeneration and neuro-regeneration—Alzheimer’s disease and stem cell therapy.Int. J. Mol. Sci.20192017427210.3390/ijms20174272 31480448
    [Google Scholar]
  134. BiancoP. RobeyP.G. SimmonsP.J. Mesenchymal stem cells: Revisiting history, concepts, and assays.Cell Stem Cell20082431331910.1016/j.stem.2008.03.002 18397751
    [Google Scholar]
  135. LiaoL. ShiB. ChangH. Heparin improves BMSC cell therapy: Anticoagulant treatment by heparin improves the safety and therapeutic effect of bone marrow-derived mesenchymal stem cell cytotherapy.Theranostics20177110611610.7150/thno.16911 28042320
    [Google Scholar]
  136. HuangF. JunfangW. AnminC. Effects of co-grafts mesenchymal stem cells and nerve growth factor suspension in the repair of spinal cord injury.J. Huazhong Univ. Sci. Technolog. Med. Sci.200626220621010.1007/BF02895817 16850748
    [Google Scholar]
  137. RaJ.C. ShinI.S. KimS.H. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans.Stem Cells Dev.20112081297130810.1089/scd.2010.0466 21303266
    [Google Scholar]
  138. BonsiP. CuomoD. PicconiB. Striatal metabotropic glutamate receptors as a target for pharmacotherapy in Parkinson’s disease.Amino Acids200732218919510.1007/s00726‑006‑0320‑3 16715415
    [Google Scholar]
  139. Wyss-CorayT. MuckeL. Inflammation in neurodegenerative disease--a double-edged sword.Neuron200235341943210.1016/S0896‑6273(02)00794‑8 12165466
    [Google Scholar]
  140. BhattacharjeeN. BorahA. Oxidative stress and mitochondrial dysfunction are the underlying events of dopaminergic neurodegeneration in homocysteine rat model of Parkinson’s disease.Neurochem. Int.2016101485510.1016/j.neuint.2016.10.001 27732886
    [Google Scholar]
  141. MurphyD.D. RueterS.M. TrojanowskiJ.Q. LeeV.M.Y. Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons.J. Neurosci.20002093214322010.1523/JNEUROSCI.20‑09‑03214.2000 10777786
    [Google Scholar]
  142. ChiangC.E. ChenS.A. Siong TeoW. An accurate stepwise electrocardiographic algorithm for localization of accessory pathways in patients with Wolff-Parkinson-White syndrome from a comprehensive analysis of delta waves and R/S ratio during sinus rhythm.Am. J. Cardiol.1995761-2404610.1016/S0002‑9149(99)80798‑X 7793401
    [Google Scholar]
  143. BlandiniF. Neural and immune mechanisms in the pathogenesis of Parkinson’s disease.J. Neuroimmune Pharmacol.20138118920110.1007/s11481‑013‑9435‑y 23378275
    [Google Scholar]
  144. KimS. KwonS.H. KamT.I. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease.Neuron20191034627641.e710.1016/j.neuron.2019.05.035 31255487
    [Google Scholar]
  145. LiuB. GaoH.M. HongJ.S. Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: Role of neuroinflammation.Environ. Health Perspect.200311181065107310.1289/ehp.6361 12826478
    [Google Scholar]
  146. GhaffariF. Hajizadeh MoghaddamA. ZareM. Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of Parkinson disease: Biochemical and behavioral evidence.Basic Clin. Neurosci.20189531732410.32598/bcn.9.5.317 30719246
    [Google Scholar]
  147. SinghS. KumarP. Piperine in combination with quercetin halt 6-OHDA induced neurodegeneration in experimental rats: Biochemical and neurochemical evidences.Neurosci. Res.2018133384710.1016/j.neures.2017.10.006 29056550
    [Google Scholar]
  148. ZhaoJ. LiangQ. SunQ. (−)-Epigallocatechin-3-gallate (EGCG) inhibits fibrillation, disaggregates amyloid fibrils of α-synuclein, and protects PC12 cells against α-synuclein-induced toxicity.RSC Advances2017752325083251710.1039/C7RA03752J
    [Google Scholar]
  149. WangS. HeH. ChenL. ZhangW. ZhangX. ChenJ. Protective effects of salidroside in the MPTP/MPP(+)-induced model of Parkinson’s disease through ROS-NO-related mitochondrion pathway.Mol. Neurobiol.201551271872810.1007/s12035‑014‑8755‑0 24913834
    [Google Scholar]
  150. AbolajiA.O. AdedaraA.O. AdieM.A. Vicente-CrespoM. FarombiE.O. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster.Biochem. Biophys. Res. Commun.201850321042104810.1016/j.bbrc.2018.06.114 29935183
    [Google Scholar]
  151. da RochaL.G. BonfantiS.D. ColleD. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism.Nanomedicine20151071127113810.2217/nnm.14.165 25929569
    [Google Scholar]
  152. SrivastavaA.K. BulteJ.W.M. Seeing stem cells at work in vivo.Stem Cell Rev.201410112714410.1007/s12015‑013‑9468‑x 23975604
    [Google Scholar]
  153. KarumbayaramS. NovitchB.G. PattersonM. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons.Stem Cells200927480681110.1002/stem.31 19350680
    [Google Scholar]
  154. TraubR. MitsumotoH. RowlandL.P. Research advances in amyotrophic lateral sclerosis, 2009 to 2010.Curr. Neurol. Neurosci. Rep.2011111677710.1007/s11910‑010‑0160‑0 21080240
    [Google Scholar]
  155. XuL. YanJ. ChenD. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats.Transplantation200682786587510.1097/01.tp.0000235532.00920.7a 17038899
    [Google Scholar]
  156. DobsonR. GiovannoniG. Multiple sclerosis – a review.Eur. J. Neurol.2019261274010.1111/ene.13819 30300457
    [Google Scholar]
  157. CarrollD. An examination of the relationship between the prevalence of multiple sclerosis and the geological environment specifically exposure to indoor radon before the age of 15 years.
    [Google Scholar]
  158. HergesK. MillwardJ.M. HentschelN. Infante-DuarteC. AktasO. ZippF. Neuroprotective effect of combination therapy of glatiramer acetate and epigallocatechin-3-gallate in neuroinflammation.PLoS One2011610e2545610.1371/journal.pone.0025456 22022398
    [Google Scholar]
  159. YahfoufiN. AlsadiN. JambiM. MatarC. The immunomodulatory and anti-inflammatory role of polyphenols.Nutrients20181011161810.3390/nu10111618 30400131
    [Google Scholar]
  160. HendriksJ.J.A. de VriesH.E. van der PolS.M.A. van den BergT.K. van TolE.A.F. DijkstraC.D. Flavonoids inhibit myelin phagocytosis by macrophages; a structure–activity relationship study.Biochem. Pharmacol.200365587788510.1016/S0006‑2952(02)01609‑X 12628496
    [Google Scholar]
  161. GugliandoloA. BramantiP. MazzonE. Mesenchymal stem cells in multiple sclerosis: Recent evidence from pre-clinical to clinical studies.Int. J. Mol. Sci.20202122866210.3390/ijms21228662 33212873
    [Google Scholar]
  162. MennenL.I. WalkerR. Bennetau-PelisseroC. ScalbertA. Risks and safety of polyphenol consumption.Am. J. Clin. Nutr.200581S1326S329S10.1093/ajcn/81.1.326S 15640498
    [Google Scholar]
  163. DunnickJ. HaileyJ.R. Toxicity and carcinogenicity studies of quercetin, a natural component of foods.Fundam. Appl. Toxicol.199219342343110.1016/0272‑0590(92)90181‑G 1459373
    [Google Scholar]
  164. HagiwaraA. HiroseM. TakahashiS. OgawaK. ShiraiT. ItoN. Forestomach and kidney carcinogenicity of caffeic acid in F344 rats and C57BL/6N x C3H/HeN F1 mice.Cancer Res.1991512056555660 1913684
    [Google Scholar]
  165. SakihamaY. CohenM.F. GraceS.C. YamasakiH. Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants.Toxicology20021771678010.1016/S0300‑483X(02)00196‑8 12126796
    [Google Scholar]
  166. DevineM.J. LewisP.A. Emerging pathways in genetic Parkinson’s disease: Tangles, Lewy bodies and LRRK2.FEBS J.2008275235748575710.1111/j.1742‑4658.2008.06707.x 19021752
    [Google Scholar]
  167. ChenS. GeX. ChenY. LvN. LiuZ. YuanW. Advances with RNA interference in Alzheimer’s disease research.Drug Des. Devel. Ther.20137117125 23459401
    [Google Scholar]
  168. MittalS. BjørnevikK. ImD.S. β2-Adrenoreceptor is a regulator of the α-synuclein gene driving risk of Parkinson’s disease.Science2017357635489189810.1126/science.aaf3934 28860381
    [Google Scholar]
  169. BrundinP DaveKD KordowerJH Therapeutic approaches to target alpha-synuclein pathology.Exp Neurol2017298Pt B2253510.1016/j.expneurol.2017.10.00328987463
    [Google Scholar]
/content/journals/ctm/10.2174/2215083810666230823094940
Loading
/content/journals/ctm/10.2174/2215083810666230823094940
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test