Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Introduction

Sarcopenia, characterized by a significant decline in muscle mass and strength, poses a serious threat to the quality of life. Current treatment options are limited, necessitating the exploration of alternative therapeutic strategies. This study investigated the efficacy and mechanism of Jianpi Recipe (JPR), a traditional Chinese medicine formulation, in ameliorating Sarcopenia.

Methods

This study employed a dexamethasone (DEX)-induced muscle atrophy mouse model to evaluate the efficacy of JPR. miRNA sequencing was conducted to identify differentially expressed miRNAs (DEmiRNAs). Enrichment analyses of target mRNAs were performed. The hub DEmiRNAs were identified by a Venn diagram and incorporated to construct a lncRNA-miRNA-mRNA ceRNA network. Finally, the hub DEmiRNAs were validated RT-qPCR and correlation analysis.

Results

JPR dose-dependently improved grip strength, muscle mass, and skeletal muscle histopathology. The miRNA sequencing identified 48 DEmiRNAs in the DEX . control group, as well as in the DEX and medium-dose JPR(DEX+M-JPR) . DEX group. Enrichment analyses revealed significant pathways, such as the Ras and Wnt signaling pathways, which are involved in the mechanisms underlying the efficacy of JPR. Nine hub DEmiRNAs were identified, with three (mmu-miR-423-3p, mmu-miR-328-3p, and mmu-miR-5621-3p) forming the ceRNA network. RT-qPCR showed that the expression levels of hub DEmiRNAs in control, DEX, and DEX+M - JPR groups were consistent with miRNA sequencing. Correlation analysis revealed a negative correlation between hub DEmiRNAs and relative grip strength and gastrocnemius muscle index.

Discussion

This study clarified the protective effects of JPR against Sarcopenia and the mechanisms underlying miRNA modulation.

Conclusion

JPR is suggested as a promising treatment for Sarcopenia.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838421384250811103712
2026-01-01
2025-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838421384.html?itemId=/content/journals/ctm/10.2174/0122150838421384250811103712&mimeType=html&fmt=ahah

References

  1. SayerA.A. Cruz-JentoftA. Sarcopenia definition, diagnosis and treatment: Consensus is growing.Age Ageing20225110afac22010.1093/ageing/afac22036273495
    [Google Scholar]
  2. SayerA.A. CooperR. AraiH. CawthonP.M. Ntsama EssombaM.J. FieldingR.A. GroundsM.D. WithamM.D. Cruz-JentoftA.J. Sarcopenia.Nat. Rev. Dis. Primers20241016810.1038/s41572‑024‑00550‑w39300120
    [Google Scholar]
  3. Cruz-JentoftA.J. SayerA.A. Sarcopenia.Lancet2019393101912636264610.1016/S0140‑6736(19)31138‑931171417
    [Google Scholar]
  4. Al SaediA. DebruinD.A. HayesA. HamrickM. Lipid metabolism in sarcopenia.Bone202216411653910.1016/j.bone.2022.11653936007811
    [Google Scholar]
  5. AlvesF.M. AytonS. BushA.I. LynchG.S. KoopmanR. Age-related changes in skeletal muscle iron homeostasis.J. Gerontol. A Biol. Sci. Med. Sci.2023781162410.1093/gerona/glac139
    [Google Scholar]
  6. GuoC. MaY. LiuS. ZhuR. XuX. LiZ. FangL. Traditional chinese medicine and sarcopenia: A systematic review.Front. Aging Neurosci.20221487223310.3389/fnagi.2022.87223335645784
    [Google Scholar]
  7. Pascual-FernándezJ. Fernández-MonteroA. Córdova-MartínezA. PastorD. Martínez-RodríguezA. RocheE. Sarcopenia: Molecular pathways and potential targets for intervention.Int. J. Mol. Sci.20202122884410.3390/ijms2122884433266508
    [Google Scholar]
  8. DaiJ. ShuiH. WuY. ZhangH. LiY. ZhangS. YangB. TangD. Effects of Jianpi therapy for cancer-related fatigue:a meta-analysis of randomized controlled trials.Front. Oncol.202515151246010.3389/fonc.2025.151246039980555
    [Google Scholar]
  9. DaiL. LiuZ. ZhouW. ZhangL. MiaoM. WangL. HuaH. WangB. JiG. Sijunzi decoction, a classical Chinese herbal formula, improves fatigue symptoms with changes in gut microbiota in chronic fatigue syndrome: A randomized, double-blind, placebo-controlled, multi-center clinical trial.Phytomedicine202412915563610.1016/j.phymed.2024.15563638640860
    [Google Scholar]
  10. XiaH. ZhangB. YangD. ZhuC. ZhangJ. ChenH. MaH. HuS. XuC. ShiC. LuK. ZhangP. Yi–Qi–Jian–Pi–Xiao–Yu–Xie–Zhuo Formula Improves Muscle Atrophy via Modulating the IGF-1/PI3K/Akt Signaling Pathway in 5/6 Nephrectomized Rats.Front. Pharmacol.20211262430310.3389/fphar.2021.62430333986663
    [Google Scholar]
  11. LiangJ. ZhangH. ZengZ. LvJ. HuangJ. WuX. WangM. XuJ. FanJ. ChenN. MicroRNA profiling of different exercise interventions for alleviating skeletal muscle atrophy in naturally aging rats.J. Cachexia Sarcopenia Muscle202314135636810.1002/jcsm.1313736457259
    [Google Scholar]
  12. LiuH.C. HanD.S. HsuC.C. WangJ.S. Circulating MicroRNA-486 and MicroRNA-146a serve as potential biomarkers of sarcopenia in the older adults.BMC Geriatr.20212118610.1186/s12877‑021‑02040‑033516190
    [Google Scholar]
  13. SilvaW.J. GraçaF.A. CruzA. SilvestreJ.G. LabeitS. MiyabaraE.H. YanC.Y.I. WangD.Z. MoriscotA.S. miR-29c improves skeletal muscle mass and function throughout myocyte proliferation and differentiation and by repressing atrophy-related genes.Acta Physiol.201922641327810.1111/apha.1327830943315
    [Google Scholar]
  14. GaoS. LiuJ. WangM. LiuY. MengX. ZhangT. QiY. ZhangB. LiuH. SunX. XiaoP. Exploring on the bioactive markers of Codonopsis Radix by correlation analysis between chemical constituents and pharmacological effects.J. Ethnopharmacol.2019236314110.1016/j.jep.2019.02.03230776470
    [Google Scholar]
  15. BaiY. WeiW. YaoC. WuS. WangW. GuoD. Advances in the chemical constituents, pharmacological properties and clinical applications of TCM formula Yupingfeng San.Fitoterapia202316410538510.1016/j.fitote.2022.10538536473539
    [Google Scholar]
  16. MankhongS. KimS. MoonS. KwakH.B. ParkD.H. KangJ.H. Experimental models of sarcopenia: Bridging molecular mechanism and therapeutic strategy.Cells202096138510.3390/cells906138532498474
    [Google Scholar]
  17. WuJ. WangS. ZhuangH. WangW. WangY. ChenY. HuangZ. ChenC. ChenX. Proteomics analysis provides insights into the role of lipid metabolism in T2DM-related sarcopenia.ACS Omega2024931340563406910.1021/acsomega.4c0466839130597
    [Google Scholar]
  18. DingK. JiangW. ZhangwangJ. WangY. ZhangJ. LeiM. The potential of traditional herbal active ingredients in the treatment of sarcopenia animal models: Focus on therapeutic effects and mechanisms.Naunyn Schmiedebergs Arch. Pharmacol.2023396123483350110.1007/s00210‑023‑02639‑737526688
    [Google Scholar]
  19. ZhangY. LiuK. ZhanY. ZhaoY. ChaiY. NingJ. PanH. KongL. YuanW. Impact of Chinese herbal medicine on sarcopenia in enhancing muscle mass, strength, and function: A systematic review and meta-analysis of randomized controlled trials.Phytother. Res.20243852303232210.1002/ptr.815438419525
    [Google Scholar]
  20. ChoY.H. LeeS.Y. LeeC.H. ParkJ.H. SoY.S. Effect of Schisandra chinensis Baillon extracts and regular low-intensity exercise on muscle strength and mass in older adults: A randomized, double-blind, placebo-controlled trial.Am. J. Clin. Nutr.202111361440144610.1093/ajcn/nqaa44733710261
    [Google Scholar]
  21. ChenZ. LiuL. GaoC. ChenW. VongC.T. YaoP. YangY. LiX. TangX. WangS. WangY. Astragali radix (Huangqi): A promising edible immunomodulatory herbal medicine.J. Ethnopharmacol.202025811289510.1016/j.jep.2020.11289532330511
    [Google Scholar]
  22. HeP. ChenL. QinX. DuG. LiZ. Astragali radix–codonopsis radix–jujubae fructus water extracts ameliorate exercise-induced fatigue in mice via modulating gut microbiota and its metabolites.J. Sci. Food Agric.2022102125141515210.1002/jsfa.1186635285935
    [Google Scholar]
  23. FengY. ChenY. YangB. LanQ. WangT. CuiG. RenZ. ChoiI.C. LeungG.P.H. YanF. ChenD. YuH.H. LeeS.M.Y. Hepatoprotective effect of jianpi huoxue formula on nonalcoholic fatty liver disease induced by methionine-choline-deficient diet in rat.BioMed Res. Int.2019201911210.1155/2019/746527231355279
    [Google Scholar]
  24. LiX. MaL. ZhangL. Molecular basis for Poria cocos mushroom polysaccharide used as an antitumor drug in China.Prog. Mol. Biol. Transl. Sci.201916326329610.1016/bs.pmbts.2019.02.01131030751
    [Google Scholar]
  25. KimA. KimY.R. ParkS.M. LeeH. ParkM. YiJ.M. ChaS. KimN.S. Jakyak-gamcho-tang, a decoction of Paeoniae Radix and Glycyrrhizae Radix et Rhizoma, ameliorates dexamethasone-induced muscle atrophy and muscle dysfunction.Phytomedicine202412315505710.1016/j.phymed.2023.15505737984121
    [Google Scholar]
  26. BrzeszczyńskaJ. BrzeszczyńskiF. HamiltonD.F. McGregorR. SimpsonA.H.R.W. Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis.Bone Joint Res.202091179880710.1302/2046‑3758.911.BJR‑2020‑0178.R133174473
    [Google Scholar]
  27. Sadeghi ShakerM. RokniM. MahmoudiM. FarhadiE. Ras family signaling pathway in immunopathogenesis of inflammatory rheumatic diseases.Front. Immunol.202314115124610.3389/fimmu.2023.115124637256120
    [Google Scholar]
  28. LiS.Z. ZhangZ.Y. ChenJ. DongM.Y. DuX.H. GaoJ. ShuQ.P. LiC. LiangX.Y. DingZ.H. DuR.L. WangJ. ZhangX.D. NLK is required for Ras/ERK/SRF/ELK signaling to tune skeletal muscle development by phosphorylating SRF and antagonizing the SRF/MKL pathway.Cell Death Discov.202281410.1038/s41420‑021‑00774‑935013153
    [Google Scholar]
  29. RimE.Y. CleversH. NusseR. The wnt pathway: From signaling mechanisms to synthetic modulators.Annu. Rev. Biochem.202291157159810.1146/annurev‑biochem‑040320‑10361535303793
    [Google Scholar]
  30. HashemolhosseiniS. GesslerL. Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction.Neural Regen. Res.20252092464247910.4103/NRR.NRR‑D‑24‑0041739248171
    [Google Scholar]
  31. ChenQ. HuangC. SuY. ZhaoQ. PuY. HeX. JiangL. MaY. ZhaoQ. YeS. Transcriptomic analysis reveals mrna and alternative splicing events in ovine skeletal muscle satellite cells during proliferation and differentiation.Animals2023136107610.3390/ani1306107636978617
    [Google Scholar]
  32. GokuladhasS. SchierdingW. Cameron-SmithD. WakeM. ScotterE.L. O’SullivanJ. Shared regulatory pathways reveal novel genetic correlations between grip strength and neuromuscular disorders.Front. Genet.20201139310.3389/fgene.2020.0039332391060
    [Google Scholar]
  33. XuJ. HeJ. HuangH. PengR. XiJ. [Retracted] MicroRNA‑423‑3p promotes glioma growth by targeting PANX2.Oncol. Lett.202122257210.3892/ol.2021.1283334113400
    [Google Scholar]
  34. HuangJ. WangF. SunX. ChuX. JiangR. WangY. PangL. Myocardial infarction cardiomyocytes-derived exosomal miR-328-3p promote apoptosis via Caspase signaling.Am. J. Transl. Res.20211342365237834017395
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838421384250811103712
Loading
/content/journals/ctm/10.2174/0122150838421384250811103712
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test