Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

The Liliaceae family, encompassing a diverse range of flowering medicinal plants, is a rich source of bioactive alkaloids with significant pharmacological potential. These alkaloids possess potent therapeutic properties and have long been utilized in traditional ethnomedicinal practices. Their pharmacological activities span a wide spectrum, including anti-inflammatory, antimicrobial, anticancer, antidiabetic, and neuroprotective effects. In recent years, advancements in phytochemical and pharmacological research have facilitated the isolation and characterization of novel alkaloid compounds from key Liliaceae genera such as , , and . These compounds have demonstrated promising results in preclinical studies through mechanisms such as antioxidant modulation, apoptosis induction, enzyme inhibition, and immune regulation. This review highlights the structural diversity of alkaloids derived from Liliaceae and explores recent progress in understanding their pharmacological relevance.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838409685250804055456
2025-08-22
2026-01-02
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838409685.html?itemId=/content/journals/ctm/10.2174/0122150838409685250804055456&mimeType=html&fmt=ahah

References

  1. XuZ. ChangL. XuZ. ChangL. Liliaceae.Idend. Cont. Common Weed.20173891894
    [Google Scholar]
  2. LiJ. CaiJ. QinH.H. PriceM. ZhangZ. YuY. XieD.F. HeX.J. ZhouS.D. GaoX.F. Phylogeny, age, and evolution of tribe Lilieae (Liliaceae) based on whole plastid genomes.Front. Plant Sci.20221269922610.3389/fpls.2021.69922635178055
    [Google Scholar]
  3. YinG. ZhangS. ChengW. DongM. ChenY. Characteristics of leaf epidermis of 22 Lilieae (Liliaceae) under different altitudes in China.Am. J. Plant Sci.2023141294010.4236/ajps.2023.141003
    [Google Scholar]
  4. ComptonJ.A. SytinA.K. The History and introduction of the Daurian Lily Lilium pensylvanicum and the new combination L. pensylvanicum var. alpinum (Liliaceae).PhytoKeys202323621524710.3897/phytokeys.236.11174138162927
    [Google Scholar]
  5. RodewaldS.E. KleinD.P. ShteinR. SmithG.F. JoyceE.M. Morales-BrionesD.F. BernhardS. LetsaraR. MertesH. HühnP. KadereitG. A new phylogenetic framework for the genus Kalanchoe (Crassulaceae) and implications for infrageneric classification.Ann. Bot. (Lond.)20252mcaf00410.1093/aob/mcaf00439827087
    [Google Scholar]
  6. HiernauxQ. History and philosophy of early modern Botany.Encyclopedia of Early Modern Philosophy and the SciencesSpringer201911510.1007/978‑3‑319‑20791‑9_160‑1
    [Google Scholar]
  7. GrayS.F. A Natural Arrangement of British Plants: According to Their Relations to Each Other as Pointed Out by Jussieu, De Candolle, Brown, &c: Baldwin.Cradock, and Joy182110.5962/bhl.title.43804
    [Google Scholar]
  8. nlmary theory of botany: Exposition of the principles of natural classification and the art of describing and studying plants.Déterville1819
    [Google Scholar]
  9. BenthamG. Genera plantarum ad exemplaria imprimis in Herberiis Kewensibus servata definita: Reeve.Williams & Norgate1876
    [Google Scholar]
  10. An ordinal classification for the families of flowering plants.Ann. Mo. Bot. Gard.1998854531553
    [Google Scholar]
  11. RudallPJ StobartKL HongW-P ConranJG FurnessCA KiteGC Consider the lilies: Systematics of Liliales.Monocots – Systematics and EvolutionCSIRO2000347359
    [Google Scholar]
  12. RevealJ.L. A checklist of familial and suprafamilial names for extant vascular plants.Phytotaxa201361140210.11646/phytotaxa.6.1.1
    [Google Scholar]
  13. PattersonT.B. GivnishT.J. Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: Insights from rbcL and ndhF sequence data.Evolution200256223325211926492
    [Google Scholar]
  14. de JussieuA.L. Genera plantarum secundum ordines naturales disposita (etc.).Gyan Publisher1789
    [Google Scholar]
  15. StevensPF DavisH Angiosperm phylogeny website: Missouri Botanical Garden St.Available from: https://www.mobot.org/mobot/research/APweb/ 2001
  16. KubitzkiK. Flowering plants. Monocotyledones.The Families and Genera of Vascular Plants Vol. III–Berlin.Springer1998
    [Google Scholar]
  17. SpichigerR-E. JeanmonodD. Systematic Botany of Flowering Plants: A New Phylogenetic Approach to the Angiosperms of Temperate and Tropical Regions.EPFL Press2002
    [Google Scholar]
  18. LiangZ.X. ZhangJ.Z. XinC. LiD. SunM.Y. ShiL. Analysis of edible characteristics, antioxidant capacities, and phenolic pigment monomers in Lilium bulbs native to China.Food Res. Int.202215111085410.1016/j.foodres.2021.11085434980390
    [Google Scholar]
  19. WangT. HuangH. ZhangY. LiX. LiH. JiangQ. GaoW. Role of effective composition on antioxidant, anti-inflammatory, sedative-hypnotic capacities of 6 common edible Lilium varieties.J. Food Sci.2015804H857H86810.1111/1750‑3841.1278725702713
    [Google Scholar]
  20. KregielD BerlowskaJ WitonskaI AntolakH ProestosC BabicM Saponin-based, biological-active surfactants from plants.Application and Characterization of Surfactants IntechOpen201710.5772/68062
    [Google Scholar]
  21. ZhouJ. AnR. HuangX. Genus Lilium: A review on traditional uses, phytochemistry and pharmacology.J. Ethnopharmacol.202127011385210.1016/j.jep.2021.11385233485985
    [Google Scholar]
  22. Shojaee-AliabadiS. AbbasiA. MoradiS. SanejK.D. BazzazS. Dehghan NayeriB. Bioactive compounds and biological activities of madonna lily (Lilium candidum L.).Bioactive compounds in the storage organs of plants.Springer2023113
    [Google Scholar]
  23. EspositoD. MunafoJ.P.Jr LucibelloT. BaldeonM. KomarnytskyS. GianfagnaT.J. Steroidal glycosides from the bulbs of Easter lily (Lilium longiflorum Thunb.) promote dermal fibroblast migration in vitro.J. Ethnopharmacol.2013148243344010.1016/j.jep.2013.04.03223644411
    [Google Scholar]
  24. IguchiT. YokosukaA. KurodaM. TakeyaM. HagiyaM. MimakiY. Steroidal glycosides from the bulbs of Lilium speciosum. Phytochem. Lett.202037212810.1016/j.phytol.2020.01.008
    [Google Scholar]
  25. WangM. TangH.P. BaiQ.X. YuA.Q. WangS. WuL.H. FuL. WangZ.B. KuangH.X. Extraction, purification, structural characteristics, biological activities, and applications of polysaccharides from the genus Lilium: A review.Int. J. Biol. Macromol.2024267Pt 113149910.1016/j.ijbiomac.2024.13149938614164
    [Google Scholar]
  26. DeebSE AshourEA YoussefIM AlshehryG AbuljadayelDA AljahdaliN Enhancing broiler growth, carcass quality, blood parameters and intestinal microbial load: The role of dietary garlic powder as a natural growth promoter.Annal. Animal Sci.202510.2478/aoas‑2025‑0024
    [Google Scholar]
  27. MawalP. KapoorM. PradhanS.K. RaniJ. GuptaR.C. Comparative HPTLC analysis of shatavarin IV, sarsasapogenin, caffeic acid, β-sitosterol and lupeol in roots and cladodes of ten Asparagus L. ssp. from North India.Nat. Prod. Res.2024211110.1080/14786419.2024.240588339319375
    [Google Scholar]
  28. CapraroH-G. BrossiA. The Alkaloids: Chemistry and Pharmacology.Elsevier1984170
    [Google Scholar]
  29. OndraP. VálkaI. VičarJ. SütlüpinarN. ŠimánekV. Chromatographic determination of constituents of the genus Colchicum (Liliaceae).J. Chromatogr. A1995704235135610.1016/0021‑9673(95)00185‑P
    [Google Scholar]
  30. GajendraK. PratapG.K. PoornimaD.V. ShantaramM. RanjitaG. Natural acetylcholinesterase inhibitors: A multi-targeted therapeutic potential in Alzheimer’s disease.Eur. J. Med. Chem. Rep.20241110015410.1016/j.ejmcr.2024.100154
    [Google Scholar]
  31. WangA.W. LiuY.M. ZhuM.M. MaR.X. Isosteroidal alkaloids of Fritillaria taipaiensis and their implication to Alzheimer’s disease: Isolation, structural elucidation and biological activity.Phytochemistry202220111327910.1016/j.phytochem.2022.11327935728673
    [Google Scholar]
  32. AkhtarM.N. Atta-ur-Rahman ChoudharyM.I. SenerB. ErdoganI. TsudaY. New class of steroidal alkaloids from Fritillaria imperialis. Phytochemistry200363111512210.1016/S0031‑9422(02)00569‑112657306
    [Google Scholar]
  33. Atta-ur-Rahman AkhtarM.N. ChoudharyM.I. TsudaY. SenerB. KhalidA. ParvezM. New steroidal alkaloids from Fritillaria imperialis and their cholinesterase inhibiting activities.Chem. Pharm. Bull. (Tokyo)20025081013101610.1248/cpb.50.101312192128
    [Google Scholar]
  34. AkhtarM.N. Zaheer-Ul-HaqS.Z. AdzaharN.S. MohamadS.A. Isolation and molecular docking studies of dihydroimperialine as butyrylcholinesterase inhibitor from the bulbs of Fritillaria Imperialis. Biomed. J. Sci. Tech. Res.20191416
    [Google Scholar]
  35. SüleymanH. DemirezerL.Ö. KuruüzümA. BanoğluZ.N. GöçerF. ÖzbakirG. GepdiremenA. Antiinflammatory effect of the aqueous extract from Rumex patientia L. roots.J. Ethnopharmacol.199965214114810.1016/S0378‑8741(98)00175‑510465654
    [Google Scholar]
  36. KannanS. WesleyS.D. RubaA. RajalakshmiA.R. KumaragurubaranK. Optimization of solvents for effective isolation of colchicines from Gloriosa superba L. seeds.Nat. Prod. Res.200721546947210.1080/1478641060112950717487621
    [Google Scholar]
  37. EllingtonE. BastidaJ. ViladomatF. S̆imánekV. CodinaC. Occurrence of colchicine derivatives in plants of the genus Androcymbium.Biochem. Syst. Ecol.200331771572210.1016/S0305‑1978(02)00248‑X
    [Google Scholar]
  38. JoshiC.S. PriyaE.S. MathelaC.S. Isolation and anti-inflammatory activity of colchicinoids from Gloriosa superba seeds.Pharm. Biol.201048220620910.3109/1388020090308177020645842
    [Google Scholar]
  39. LuD. JiangP. WangY. LiY. NaseemA. Mohammed AlgradiA. PanJ. GuanW. WuJ. KuangH. YangB. LiuY. Undescribed steroidal alkaloids from the bulbs of Fritillaria ussuriensis Maxim and their anti-inflammatory activities.Phytochemistry202422511417210.1016/j.phytochem.2024.11417238834130
    [Google Scholar]
  40. KimJ.S. KimJ.H. Updated molecular phylogenetic analysis, dating and biogeographical history of the lily family (Liliaceae: Liliales).Bot. J. Linn. Soc.2018187457959310.1093/botlinnean/boy031
    [Google Scholar]
  41. QuA. WuQ. SuJ. ZhangY. PanJ. ZhengJ. A review on the composition and biosynthesis of alkaloids in medicinal Fritillaria species.Agronomy2022128184410.3390/agronomy12081844
    [Google Scholar]
  42. BiswasM.K. NatarajanS. BiswasD. HowladerJ. ParkJ-I. NouI-S. Lily database: A comprehensive genomic resource for the Liliaceae family.Horticulturae20231012310.3390/horticulturae10010023
    [Google Scholar]
  43. ZhangY. HanH. LiD. Integrated transcriptomic and metabolomic analysis reveals the molecular basis of tissue-specific accumulation of bioactive steroidal alkaloids in Fritillaria unibracteata. Front. Pharmacol.202415142803710.3389/fphar.2024.142803739135808
    [Google Scholar]
  44. SharmaB. SethR. ThakurS. ParmarR. MasandM. DeviA. SinghG. DhyaniP. ChoudharyS. SharmaR.K. Genome-wide transcriptional analysis unveils the molecular basis of organ-specific expression of isosteroidal alkaloids biosynthesis in critically endangered Fritillaria roylei Hook.Phytochemistry202118711277210.1016/j.phytochem.2021.11277233873018
    [Google Scholar]
  45. LiuJ. ZhuZ. WangL. YuanQ. ZhuH. ShengX. ZhangK. LiangB. JinH. WangS. WengW. WangH. SuiN. Regulation of steroidal alkaloid biosynthesis in bulbs of Fritillaria thunbergii Miq. by shading and potassium application: Integrating transcriptomics and metabolomics analyses.Biology202514663310.3390/biology1406063340563884
    [Google Scholar]
  46. ChengX. LiD. JiangZ. QuC. YanH. WuQ. Metabolite profiling and transcriptomic analyses demonstrate the effects of biocontrol agents on alkaloid accumulation in Fritillaria thunbergii.BMC Plant Biol.202323143510.1186/s12870‑023‑04459‑637723471
    [Google Scholar]
  47. LiaoH. QuanH. HuangB. Integrated transcriptomic and metabolomic analysis reveals the molecular basis of steroidal alkaloid biosynthesis in Fritillaria unibracteata.Phytochemistry202321411383110.1016/j.phytochem.2023.11383137598994
    [Google Scholar]
  48. KumarP. KumarV. SharmaS. Fritillaria steroidal alkaloids and their multi-target therapeutic mechanisms: Insights from network pharmacology.Naunyn Schmiedebergs Arch. Pharmacol.202439382678
    [Google Scholar]
  49. KimH.K. VerpoorteR. Sample preparation for plant metabolomics.Phytochem. Anal.201021141310.1002/pca.118819904733
    [Google Scholar]
  50. WallaceE.D. SumnerL.W. Comparison of GC-MS and NMR platforms for alkaloid metabolomics.Metabolites202111210733673148
    [Google Scholar]
  51. KrishnamurthyV. KlineP.C. Innovations in cryogenically cooled NMR probes.Magn. Reson. Chem.2019574243252
    [Google Scholar]
  52. GlishG.L. VachetR.W. The basics of mass spectrometry in structural biology.Nat. Chem. Biol.2018144206214
    [Google Scholar]
  53. KindT. FiehnO. Advances in structure elucidation of small molecules using MS/MS.Bioanal. Rev.20201228710610.1007/s12566‑010‑0015‑9
    [Google Scholar]
  54. WolfenderJ.L. MartiG. ThomasA. BertrandS. Current approaches and challenges for the metabolite profiling of complex natural extracts.J. Chromatogr. A2019160013015025464997
    [Google Scholar]
  55. TantilloD.J. Recent advances in computational natural product chemistry.Nat. Prod. Rep.2018356710719
    [Google Scholar]
  56. DührkopK. FleischauerM. LudwigM. SIRIUS 4: A rapid tool for structure elucidation from tandem mass spectra.Nat. Methods201916429930210.1038/s41592‑019‑0344‑830886413
    [Google Scholar]
  57. CichewiczR.H. Bioassays for assessing natural product activity.Nat. Prod. Rep.2021382209229
    [Google Scholar]
  58. XiaoP. XingS. The steroidal alkaloids of Liliaceae: Pharmacology and analytical approaches.Fitoterapia2020141104489
    [Google Scholar]
  59. Ghasemzadeh RahbardarM. HosseinzadehH. Evaluation of COX and LOX inhibitory activities of plant-derived compounds.Biomed. Pharmacother.2020129110495
    [Google Scholar]
  60. HsuF.L. LiuC.P. LeeM.H. α-Glucosidase inhibitors from medicinal plants.J. Nat. Prod.2021843745754
    [Google Scholar]
  61. HeJ. ChenX. LiC. Steroidal alkaloids from Fritillaria species: Chemistry and bioactivity.J. Ethnopharmacol.2018210233256
    [Google Scholar]
  62. ZhangL. ZhouY. ZhangH. Inhibitory effect of alkaloids from Fritillaria on α-glucosidase.Fitoterapia2019136104162
    [Google Scholar]
  63. KimH.G. JuM.S. HaS.K. Anti-inflammatory effects of plant steroidal alkaloids in RAW 264.7 cells.Int. Immunopharmacol.201970417423
    [Google Scholar]
  64. ZhaoH. WangX. WangY. Hepatoprotective activity of Liliaceae alkaloids in HepG2 cells.J. Agric. Food Chem.202068451270112710
    [Google Scholar]
  65. YanY. WangH. LiuX. Neuroprotective effects of Fritillaria-derived alkaloids in SH-SY5Y cells.Brain Res.20181681425010.1002/nep3.37
    [Google Scholar]
  66. PariL. RajarajeswariN. Antidiabetic activity of plant alkaloids in streptozotocin-induced diabetic rats.J. Ethnopharmacol.2019244112127
    [Google Scholar]
  67. XuY. ChenY. ZhangZ. Antitumor activity of Fritillaria alkaloids in xenograft mouse models.Cancer Lett.2020479748210.1016/j.canlet.2020.04.00232305558
    [Google Scholar]
  68. WechslerB. Colchicine and Behcet’s disease: An efficacious treatment finally recognized!.Rev. Med. Interne200223435535610.1016/S0248‑8663(02)00569‑611980310
    [Google Scholar]
  69. KhanH. TariqS.A. KhanM.A. Biological and phytochemical studies on corms of Colchicum luteum Baker.J. Med. Plants Res.201153270317035
    [Google Scholar]
  70. BoraP.S. PuriS. SinghP.P. SharmaU. Biochemometric-guided isolation of new Isosteroidal alkaloids from Fritillaria cirrhosa D.Don (Liliaceae, syn. Fritillaria roylei Hook) as acetylcholinesterase inhibitors.Fitoterapia202518010627910.1016/j.fitote.2024.10627939481613
    [Google Scholar]
  71. RamadainiT. SumiwiS. FebrinaE. The anti-diabetic effects of medicinal plants belonging to the Liliaceae family: Potential alpha glucosidase inhibitors.Drug Des. Devel. Ther.2024183595361610.2147/DDDT.S46410039156483
    [Google Scholar]
  72. JeonS. LeeH. LeeJ.H. LeeK. HongD. ParkS.D. ShimJ.J. LeeJ.L. LeeJ. JooJ.C. The effects of Lilium lancifolium Thunb. on the alleviation of joint pain: A randomized, double-blind, placebo-controlled clinical trial.Life2024149113610.3390/life1409113639337919
    [Google Scholar]
  73. PatockaJ. NavratilovaZ. YokozawaT. Bioactivity of Lilium candidum L: a mini review.Biomed. J. Sci. Tech. Res.2019185138591386210.26717/BJSTR.2019.18.003204
    [Google Scholar]
  74. SahooA. JenaA.K. PandaM. Experimental and clinical trial investigations of phyto-extracts, phyto-chemicals and phyto-formulations against oral lichen planus: A systematic review.J. Ethnopharmacol.202229811559110.1016/j.jep.2022.11559135963418
    [Google Scholar]
  75. ZaccaiM. YarmolinskyL. KhalfinB. BudovskyA. GorelickJ. DahanA. Ben-ShabatS. Medicinal properties of Lilium candidum L. and its phytochemicals.Plants20209895910.3390/plants908095932751398
    [Google Scholar]
  76. JuncanA.M. MoisăD.G. SantiniA. MorgovanC. RusL.L. Vonica-ȚincuA.L. LoghinF. Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals.Molecules20212615442910.3390/molecules2615442934361586
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838409685250804055456
Loading
/content/journals/ctm/10.2174/0122150838409685250804055456
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test