Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

An increasing number of scholars are paying attention to “diet and asthma,” with a focus on overall calorie metabolism and related factors, such as obesity and corresponding interventions, dietary restrictions, and calorie consumption (exercise). We proposed this concept of dietary non-allergic factors (DNAF) in 2005. We now discuss the comprehensive and in-depth relationship between DNAF and asthma through macro (epidemiology), meso (clinical randomized controlled trials), and micro (pathophysiological changes) perspectives. Through analysis of the gut-lung axis, we believe that mediators of mast cells may directly originate from undigested fats and proteins in the intestine. Inflammatory cell infiltration of the airways is also closely related to increased intestinal permeability.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838390018250730103851
2025-08-08
2026-01-02
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838390018.html?itemId=/content/journals/ctm/10.2174/0122150838390018250730103851&mimeType=html&fmt=ahah

References

  1. JuliaV. MaciaL. DombrowiczD. The impact of diet on asthma and allergic diseases.Nat Rev Immunol201515530832210.1038/nri383025907459
    [Google Scholar]
  2. ChengJ. PanT. YeG.H. Calorie controlled diet for chronic asthma.Cochrane Database Syst Rev200520053CD00467410.1002/14651858.CD004674.pub216034941
    [Google Scholar]
  3. HanY.Y. FornoE. ShivappaN. WirthM.D. HébertJ.R. CeledónJ.C. The dietary inflammatory index and current wheeze among children and adults in the United States.J Allergy Clin Immunol Pract201863834841.e210.1016/j.jaip.2017.12.02929426751
    [Google Scholar]
  4. HanY.Y. JerschowE. FornoE. HuaS. Mossavar-RahmaniY. PerreiraK.M. Sotres-AlvarezD. AfsharM. PunjabiN.M. ThyagarajanB. ShivappaN. HébertJ.R. KaplanR.C. CeledónJ.C. Dietary patterns, asthma, and lung function in the hispanic community health study/study of latinos.Ann Am Thorac Soc202017329330110.1513/AnnalsATS.201908‑629OC31689128
    [Google Scholar]
  5. WoodL.G. ShivappaN. BerthonB.S. GibsonP.G. HebertJ.R. Dietary inflammatory index is related to asthma risk, lung function and systemic inflammation in asthma.Clin Exp Allergy201545117718310.1111/cea.1232324708388
    [Google Scholar]
  6. ChengJ. ZhangS. ZhouY. Study on blood lipid and serum biochemical changes as risk factors of allergic diseases.J Math Med200013306
    [Google Scholar]
  7. YiallourosP.K. SavvaS.C. KolokotroniO. BehbodB. ZeniouM. EconomouM. ChadjigeorgiouC. KouridesY.A. TornaritisM.J. LamnisosD. MiddletonN. MiltonD.K. Low serum high-density lipoprotein cholesterol in childhood is associated with adolescent asthma.Clin Exp Allergy201242342343210.1111/j.1365‑2222.2011.03940.x22356143
    [Google Scholar]
  8. BerthonB.S. Macdonald-WicksL.K. GibsonP.G. WoodL.G. Investigation of the association between dietary intake, disease severity and airway inflammation in asthma.Respirology201318344745410.1111/resp.1201523145908
    [Google Scholar]
  9. RomieuI. Barraza-VillarrealA. Escamilla-NúñezC. Texcalac-SangradorJ.L. Hernandez-CadenaL. Díaz-SánchezD. De BatlleJ. Del Rio-NavarroB.E. Dietary intake, lung function and airway inflammation in Mexico City school children exposed to air pollutants.Respir Res200910112212210.1186/1465‑9921‑10‑12220003306
    [Google Scholar]
  10. VindingR.K. StokholmJ. ChawesB.L.K. BisgaardH. Blood lipid levels associate with childhood asthma, airway obstruction, bronchial hyperresponsiveness, and aeroallergen sensitization.J Allergy Clin Immunol201613716874.e410.1016/j.jaci.2015.05.03326148797
    [Google Scholar]
  11. YiallourosP.K. SavvaS.C. KolokotroniO. DimaK. ZervaA. KouisP. BousquetJ. MiddletonN. Asthma: the role of low high-density-lipoprotein cholesterol in childhood and adolescence.Int Arch Allergy Immunol20141652919910.1159/00036840525377880
    [Google Scholar]
  12. BarochiaA.V. KalerM. CuentoR.A. GordonE.M. WeirN.A. SampsonM. FontanaJ.R. MacDonaldS. MossJ. ManganielloV. RemaleyA.T. LevineS.J. Serum apolipoprotein A-I and large high-density lipoprotein particles are positively correlated with FEV1 in atopic asthma.Am J Respir Crit Care Med20151919990100010.1164/rccm.201411‑1990OC25692941
    [Google Scholar]
  13. ScichiloneN. RizzoM. BenfanteA. CataniaR. GiglioR.V. NikolicD. MontaltoG. BelliaV. Serum low density lipoprotein subclasses in asthma.Respir Med2013107121866187210.1016/j.rmed.2013.09.00124075885
    [Google Scholar]
  14. WoodL.G. GargM.L. GibsonP.G. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma.J Allergy Clin Immunol201112751133114010.1016/j.jaci.2011.01.03621377715
    [Google Scholar]
  15. LiQ. BainesK. GibsonP. WoodL. Changes in expression of genes regulating airway inflammation following a high-fat mixed meal in asthmatics.Nutrients2016813010.3390/nu801003026751474
    [Google Scholar]
  16. SchulzeA.S. KleinauG. KrakowskyR. RochmannD. DasR. WorthC.L. KrumbholzP. ScheererP. StäubertC. Evolutionary analyses reveal immune cell receptor GPR84 as a conserved receptor for bacteria-derived molecules.iScience2022251010508710.1016/j.isci.2022.10508736164652
    [Google Scholar]
  17. RadzikowskaU. RinaldiA.O. Çelebi SözenerZ. KaraguzelD. WojcikM. CyprykK. AkdisM. AkdisC.A. SokolowskaM. The influence of dietary fatty acids on immune responses.Nutrients20191112299010.3390/nu1112299031817726
    [Google Scholar]
  18. SonS.E. KohJ.M. ImD.S. Activation of free fatty acid receptor 4 (FFA4) ameliorates ovalbumin-induced allergic asthma by suppressing activation of dendritic and mast cells in mice.Int J Mol Sci2022239527010.3390/ijms2309527035563671
    [Google Scholar]
  19. LeeK.R. MidgetteY. ShahR. Fish oil derived omega 3 fatty acids suppress adipose NLRP3 inflammasome signaling in human obesity.J Endocr Soc20193350451510.1210/js.2018‑0022030788452
    [Google Scholar]
  20. RenM. WangY. LinL. LiS. MaQ. α-Linolenic acid screened by molecular docking attenuates inflammation by regulating Th1/Th2 imbalance in ovalbumin-induced mice of allergic rhinitis.Molecules20222718589310.3390/molecules2718589336144628
    [Google Scholar]
  21. ArpaiaN. CampbellC. FanX. DikiyS. van der VeekenJ. deRoosP. LiuH. CrossJ.R. PfefferK. CofferP.J. RudenskyA.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.Nature2013504748045145510.1038/nature1272624226773
    [Google Scholar]
  22. McOristA.L. MillerR.B. BirdA.R. KeoghJ.B. NoakesM. ToppingD.L. ConlonM.A. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch.J Nutr2011141588388910.3945/jn.110.12850421430242
    [Google Scholar]
  23. WangJ. CuiM. SunF. ZhouK. FanB. QiuJ.H. ChenF.Q. HDAC inhibitor sodium butyrate prevents allergic rhinitis and alters lncRNA and mRNA expression profiles in the nasal mucosa of mice.Int J Mol Med20204541150116210.3892/ijmm.2020.448932124940
    [Google Scholar]
  24. YangX. GaoY. WangJ. Progress in the functions of short chain fatty acid.Food Sci20222022116
    [Google Scholar]
  25. LeeS.U. InH.J. KwonM.S. ParkB. JoM. KimM.O. ChoS. LeeS. LeeH.J. KwakY.S. KimS. β-Arrestin 2 mediates G protein-coupled receptor 43 signals to nuclear factor-κB.Biol Pharm Bull201336111754175910.1248/bpb.b13‑0031223985900
    [Google Scholar]
  26. RastogiS. MohantyS. SharmaS. TripathiP. Possible role of gut microbes and host’s immune response in gut–lung homeostasis.Front Immunol20221395433910.3389/fimmu.2022.95433936275735
    [Google Scholar]
  27. ParkJ. KimM. KangS.G. JannaschA.H. CooperB. PattersonJ. KimC.H. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway.Mucosal Immunol201581809310.1038/mi.2014.4424917457
    [Google Scholar]
  28. LiuJ. The role and mechanism of triglyceride in airway inflammation of asthmaSoutbern Medical University2021
    [Google Scholar]
  29. WangH. WuC. Inflammatory reaction and triacylglycerol.Adv Cardiovasc Dis201738492494
    [Google Scholar]
  30. JiangX. YangH. ZhangF. The role of the gut microbial metabolites in autoimmune diseases.Med J Peking Union Med Coll Hosp202213574775210.12290/xhyxzz.2022‑0246
    [Google Scholar]
  31. WuR. LeiW. GongJ. The study of relationship between serum total bile acid level, inflammatory factor, Th17/Treg balance and maternal and infant outcomes in patients with intrahepatic cholestasis during pregnancy.Prog Mod Biomed202121132560256310.13241/j.cnki.pmb.2021.13.034
    [Google Scholar]
  32. ChoiJ.M. BaekS.E. KimJ.O. JeonE.Y. JangE.J. KimC.D. 5-LO-derived LTB4 plays a key role in MCP-1 expression in HMGB1-exposed VSMCs via a BLTR1 signaling axis.Sci Rep20211111110010.1038/s41598‑021‑90636‑234045591
    [Google Scholar]
  33. ZhaoT. ShenL. PanX. Research progress of leukotriene B4 receptor antagonists.Yao Xue Xue Bao20225731333145
    [Google Scholar]
  34. YuC. LiL. Research advancement on arachidonic acid.Acad Period Farm Prod Process2007200741012
    [Google Scholar]
  35. CaiY LiuJ MaN Research status of arachidonic acid-targeted metabonomics in inflammation.Chin J Clin Pharmacol2021371927212723
    [Google Scholar]
  36. ZhuoL. ZhouM. WuZ. Bronchial asthma and arachidonic lipoxyase metabolism and its regulation mechanism.J Wenzhou Med Univ201747383386
    [Google Scholar]
  37. SpencerN.J. KeatingD.J. Role of 5-HT in the enteric nervous system and enteroendocrine cells.Br J Pharmacol2022182347148310.1111/bph.1593035861711
    [Google Scholar]
  38. WangR. MoS. YuanZ. Research progress on the effects of tryptophan metabolites from intestinal microorganisms on host health.Zhongguo Xumu Zazhi2022583712
    [Google Scholar]
  39. GilbertJ.A. BendsenN.T. TremblayA. AstrupA. Effect of proteins from different sources on body composition.Nutr Metab Cardiovasc Dis201121B16B31Suppl. 210.1016/j.numecd.2010.12.00821565478
    [Google Scholar]
  40. BrosnanM.E. BrosnanJ.T. Histidine metabolism and function.J Nutr20201502570S2575SSuppl. 110.1093/jn/nxaa07933000155
    [Google Scholar]
  41. ChengJ. GuiX. LiY. Dietary probiotic supplementation for allergic rhinitis.J US China Med Sci20116115
    [Google Scholar]
  42. LinX. LiJ. MaZ. Therapeutic and anti-allergic effects of probiotics on allergic rhinitis: A meta-analysis.Shandong Daxue Er-Bi-Hou-Yan Xuebao20213537080
    [Google Scholar]
  43. VenterC. PalumboM.P. GlueckD.H. SauderK.A. O’MahonyL. FleischerD.M. Ben-AbdallahM. RinghamB.M. DabeleaD. The maternal diet index in pregnancy is associated with offspring allergic diseases: The Healthy Start study.Allergy202277116217210.1111/all.1494934018205
    [Google Scholar]
  44. FratiF. SalvatoriC. IncorvaiaC. BellucciA. Di CaraG. MarcucciF. EspositoS. The role of the microbiome in asthma: The gut − lung axis.Int J Mol Sci201820112310.3390/ijms2001012330598019
    [Google Scholar]
  45. HufnaglK. Pali-SchöllI. Roth-WalterF. Jensen-JarolimE. Dysbiosis of the gut and lung microbiome has a role in asthma.Semin Immunopathol2020421759310.1007/s00281‑019‑00775‑y32072252
    [Google Scholar]
  46. DichlbergerA. SchlagerS. KovanenP.T. SchneiderW.J. Lipid droplets in activated mast cells – A significant source of triglyceride-derived arachidonic acid for eicosanoid production.Eur J Pharmacol2016785596910.1016/j.ejphar.2015.07.02026164793
    [Google Scholar]
  47. JiangTianci DaiLingling LiPengfei Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis.Biochim Biophys Acta Mol Cell Biol Lipids20211866215885310.1016/j.bbalip.2020.15885333160078
    [Google Scholar]
  48. ZhengS. GuoY. WuZ. ChengJ. Theory of lipid metabolism disorders in rhinitis and asthma (Lipid Droplets).Cell Biochem Biophys2024831253110.1007/s12013‑024‑01469‑539097558
    [Google Scholar]
  49. DeraN. Kosińska-KaczyńskaK. Żeber-LubeckaN. Brawura-Biskupski-SamahaR. MassalskaD. SzymusikI. DeraK. CiebieraM. Impact of early-life microbiota on immune system development and allergic disorders.Biomedicines202513112110.3390/biomedicines1301012139857705
    [Google Scholar]
  50. SzajewskaH. An overview of early-life gut microbiota modulation strategies.Ann Nutr Metab202581Suppl 1283310.1159/00054149239848238
    [Google Scholar]
  51. TafrishiR. AhanchianH. JafariS. PahlevanlooA. KianifarH. KianiM. MoazzenN. sadeghiT. SlyP.D. Development and clinical assessment of a novel probiotic candy in the prevention of respiratory infections in asthmatic children.World Allergy Organ J202518210102310.1016/j.waojou.2024.10102339906528
    [Google Scholar]
  52. ZouW. MaD. SunF. ChenZ. ChenY. LiX. ChenM. LinM. ShiH. WuB. ChenL. LiangZ. LiuJ. Maternal OM-85 administration alleviates offspring allergic airway inflammation by downregulating IL-33/ILC2 axis.Pediatr Allergy Immunol2025362e7004410.1111/pai.7004439927900
    [Google Scholar]
  53. ZhangH. FengY. YangH. LiY. MaZ. LiL. ChenL. ZhaoY. ShanL. XiaY. The interaction between genetic predicted gut microbiome abundance and particulate matter on the risk of incident asthma in adults.Ecotoxicol Environ Saf202529111784810.1016/j.ecoenv.2025.11784839919593
    [Google Scholar]
  54. WasuwanichP. BricknerL.B. RasnakeM.S. WitherellR.J. Poor outcome of rare lactobacillus bacteremia and endocarditis in a patient with frequent consumption of live culture yogurts.J Community Hosp Intern Med Perspect20251519810210.55729/2000‑9666.144839867138
    [Google Scholar]
  55. DragunasG. KosterC.S. de Souza Xavier CostaN. MelgertB.N. MunhozC.D. GosensR. MauadT. Neuroplasticity and neuroimmune interactions in fatal asthma.Allergy202580246247310.1111/all.1637339484998
    [Google Scholar]
  56. WangZ. ZhaoP. YanG. SunA. XuL. LiJ. ZhaiX. LiuX. MeiT. XuanY. NieY. Neuropeptide S and its receptor aggravated asthma via TFEB dependent autophagy in bronchial epithelial cells.Respir Res20252615010.1186/s12931‑025‑03125‑939930427
    [Google Scholar]
  57. HeC. WangQ. GaoJ. ChenH. TongP. Neuro-immune regulation in allergic diseases: Role of neuropeptides.Int Immunopharmacol202514511377110.1016/j.intimp.2024.11377139667047
    [Google Scholar]
  58. CrossonT. BhatS. WangJ.C. SalaunC. FontaineE. RoversiK. HerzogH. RafeiM. BlunckR. TalbotS. Cytokines reprogram airway sensory neurons in asthma.Cell Rep2024431211504510.1016/j.celrep.2024.11504539661516
    [Google Scholar]
  59. Mann-NüttelR. MandalS. ArmbrusterM. PuttaguntaL. ForsytheP. Human pulmonary neuroendocrine cells respond to house dust mite extract with PAR-1 dependent release of CGRP.Allergy2025804976985Apr10.1111/all.1641639601620
    [Google Scholar]
  60. SutradharS. AliH. Mast cell MrgprB2 in neuroimmune interaction in IgE-mediated airway inflammation and its modulation by β-arrestin2.Front Immunol202415147001610.3389/fimmu.2024.147001639483467
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838390018250730103851
Loading
/content/journals/ctm/10.2174/0122150838390018250730103851
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test