Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

Hypercholesterolemia is a commonly inherited metabolic condition that can result in ischemic heart disease. Due to the undesirable side effects associated with commercially accessible statin drugs, herbal plants are emerging as a preferable alternative for managing and controlling hypercholesterolemia. Substantially, Traditional Chinese Medicine (TCM) and Ayurveda formulations have been reported to play a primary part in the hypercholesterolemia therapy. The inhibition of HMG-CoA Reductase (HMGCR) is significant since it is the key enzyme for cholesterol production, which is crucial for reducing plasma cholesterol levels.

Objective

The present review aimed to explore in-depth TCM and Ayurveda polyherbal formulations, along with their pharmacological activities, especially on the serum lipid biomarkers, including low-density lipoproteins, triglycerides, total cholesterol, and high-density lipoproteins, and their potential suppression against HMGCR activity. The review highlights the potential usage of polyherbal formulations for the management of hypercholesterolemia that could potentially be effective with minimal side effects.

Conclusion

TCM and Ayurveda are poly pharmacology systems that have been proven to exhibit better effects than single-targeted compounds in hypercholesterolemia. Polyherbal formulation involves interaction of multi-components that possess synergistic effects and able to replace the synthetic anti-hypercholesterolemia agents associated with side effects. It is the need of the hour to evaluate the integration of both TCM and Ayurveda polyherbal formulations as a strategy to maximize their potential and efficacy in hypercholesterolemia treatment since TCM and Ayurveda have been proven to be effective in combating hypercholesterolemia.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838314259240911045731
2026-01-01
2025-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838314259.html?itemId=/content/journals/ctm/10.2174/0122150838314259240911045731&mimeType=html&fmt=ahah

References

  1. RahmawatiN. MustofaF.I. HaryantiS. MujahidR. Medicinal plant utilization for hypercholesterolemia by traditional healers in java island.IOP Conf. Ser. Earth Environ. Sci.2021637101204310.1088/1755‑1315/637/1/012043
    [Google Scholar]
  2. El-NagarD.M. Al-DahmashB.A. AlkahtaniS. KaluA.A. RadyA. Dandelion (taraxacum officinale) seeds extract attenuates hypercholesterolemia in swiss albino mice.J. King Saud Univ. Sci.202234710219810.1016/j.jksus.2022.102198
    [Google Scholar]
  3. GuoJ. BeiW. HuY. TangC. HeW. LiuX. HuangL. CaoY. HuX. ZhongX. CaoL. A new tcm formula ftz lowers serum cholesterol by regulating hmg-coa reductase and cyp7a1 in hyperlipidemic rats.J. Ethnopharmacol.2011135229930710.1016/j.jep.2011.03.01221396994
    [Google Scholar]
  4. WangC.K. Health benefits of onion bioactives on hypercholesterolemia, cardiovascular diseases, and bone mineral density.Food Front.20201210710810.1002/fft2.18
    [Google Scholar]
  5. WrightR.S. RayK.K. RaalF.J. KallendD.G. JarosM. KoenigW. LeiterL.A. LandmesserU. SchwartzG.G. FriedmanA. WijngaardP.L.J. Garcia CondeL. KasteleinJ.J.P. Pooled patient-level analysis of inclisiran trials in patients with familial hypercholesterolemia or atherosclerosis.J. Am. Coll. Cardiol.20217791182119310.1016/j.jacc.2020.12.05833663735
    [Google Scholar]
  6. Udhaya KumarS. Thirumal KumarD. BithiaR. SankarS. MageshR. SidennaM. George Priya DossC. ZayedH. Analysis of differentially expressed genes and molecular pathways in familial hypercholesterolemia involved in atherosclerosis: A systematic and bioinformatics approach.Front. Genet.20201173410.3389/fgene.2020.0073432760426
    [Google Scholar]
  7. KumarP. Aafreen, kumar s, kumar m. comparison between hypolipidemic effect of lagenaria siceraria and lovastatin in hypercholesterolemic rats. paripex -.Indian J. Sci. Res.2019821324
    [Google Scholar]
  8. BenjaminE.J. MuntnerP. AlonsoA. BittencourtM.S. CallawayC.W. CarsonA.P. ChamberlainA.M. ChangA.R. ChengS. DasS.R. DellingF.N. DjousseL. ElkindM.S.V. FergusonJ.F. FornageM. JordanL.C. KhanS.S. KisselaB.M. KnutsonK.L. KwanT.W. LacklandD.T. LewisT.T. LichtmanJ.H. LongeneckerC.T. LoopM.S. LutseyP.L. MartinS.S. MatsushitaK. MoranA.E. MussolinoM.E. O’FlahertyM. PandeyA. PerakA.M. RosamondW.D. RothG.A. SampsonU.K.A. SatouG.M. SchroederE.B. ShahS.H. SpartanoN.L. StokesA. TirschwellD.L. TsaoC.W. TurakhiaM.P. VanWagnerL.B. WilkinsJ.T. WongS.S. ViraniS.S. Heart disease and stroke statistics—2019 update: A report from the american heart association.Circulation201913910e56e52810.1161/CIR.000000000000065930700139
    [Google Scholar]
  9. CraigM. NagaS. Biochemistry, CholesterolTreasure Island, FLStatPearls Publishing2022
    [Google Scholar]
  10. LuoJ. YangH. SongB.L. Mechanisms and regulation of cholesterol homeostasis.Nat. Rev. Mol. Cell Biol.202021422524510.1038/s41580‑019‑0190‑731848472
    [Google Scholar]
  11. ChenH. QiX. FaulknerR.A. SchumacherM.M. DonnellyL.M. DeBose-BoydR.A. LiX. Regulated degradation of hmg coa reductase requires conformational changes in sterol-sensing domain.Nat. Commun.2022131427310.1038/s41467‑022‑32025‑535879350
    [Google Scholar]
  12. HartantiL. YonasS.M.K. MustamuJ.J. WijayaS. SetiawanH.K. SoegiantoL. Influence of extraction methods of bay leaves (syzygium polyanthum) on antioxidant and hmg-coa reductase inhibitory activity.Heliyon201954e0148510.1016/j.heliyon.2019.e0148531008409
    [Google Scholar]
  13. FlorescuC. RotaruL.T. VarutR.M. GrigorasiG. KosticiR. CiobanuD. CimpoesuD. Determination of the inhibitory capacity on hmg-coa reductase enzyme by statins using molecular docking method.Revista de Chimie201869483783910.37358/RC.18.4.6210
    [Google Scholar]
  14. HuoX. LuF. QiaoL. LiG. ZhangY. A component formula of chinese medicine for hypercholesterolemia based on virtual screening and biology network.Evid. Based Complement. Alternat. Med.201820181185497210.1155/2018/185497230050582
    [Google Scholar]
  15. ShiJ. LiR. LiuY. LuH. YuL. ZhangF. Shuangyu tiaozhi granule attenuates hypercholesterolemia through the reduction of cholesterol synthesis in rat fed a high cholesterol diet.BioMed Res. Int.2019201911110.1155/2019/480592630937311
    [Google Scholar]
  16. AbeysekeraW.P.K.M. ArachchigeS.P.G. RatnasooriyaW.D. Bark extracts of ceylon cinnamon possess antilipidemic activities and bind bile acids in vitro .Evid. Based Complement. Alternat. Med.201720171734721910.1155/2017/734721928808476
    [Google Scholar]
  17. MahdaviA. BagherniyaM. FakheranO. ReinerŽ. XuS. SahebkarA. Medicinal plants and bioactive natural compounds as inhibitors of hmg-coa reductase: A literature review.Biofactors202046690692610.1002/biof.168433053603
    [Google Scholar]
  18. Mehmet Akdoğan Ali Bilgili Başak Hanedan HanedanB. Protective effects of tribulus terrestris, avena sativa, and white ginseng powder on bone mineral density in hypercholesterolemic rats.J. Pharm. Pharmacol.20197628629210.17265/2328‑2150/2019.06.002
    [Google Scholar]
  19. PulipatiV.P. DavidsonM.H. How i treat statin-associated side effects in an outpatient setting.Future Cardiol.20211771249126010.2217/fca‑2020‑015333464124
    [Google Scholar]
  20. SiddiquiN.A. IshaqueI. RahatY. AkhtarN. TehreemU. JavedR. AliR. Adverse effects of hmg coa reductase inhibitor and garlic on renal function in patients with diabetic dyslipidemia.Ann. Abbasi Shaheed Hosp. Karachi Med. Dent. Coll.2021262717510.58397/ashkmdc.v26i2.473
    [Google Scholar]
  21. PastoriD. PaniA. Di RoccoA. MenichelliD. GazzanigaG. FarcomeniA. D’ErasmoL. AngelicoF. Del BenM. BarattaF. Statin liver safety in non-alcoholic fatty liver disease: A systematic review and metanalysis.Br. J. Clin. Pharmacol.202288244145110.1111/bcp.1494334133035
    [Google Scholar]
  22. DingL. RenS. SongY. ZangC. LiuY. GuoH. YangW. GuanH. LiuJ. Modulation of gut microbiota and fecal metabolites by corn silk among high-fat diet-induced hypercholesterolemia mice.Front. Nutr.2022993561210.3389/fnut.2022.93561235978956
    [Google Scholar]
  23. VaughnA.R. PourangA. ClarkA.K. BurneyW. SivamaniR.K. Dietary supplementation with turmeric polyherbal formulation decreases facial redness: A randomized double-blind controlled pilot study.J. Integr. Med.2019171202310.1016/j.joim.2018.11.00430527287
    [Google Scholar]
  24. MadićV. PetrovićA. JuškovićM. JugovićD. DjordjevićL. StojanovićG. VasiljevićP. Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes.J. Ethnopharmacol.202126511321010.1016/j.jep.2020.11321032795501
    [Google Scholar]
  25. DhamaleJ. JV.S. A comparative study to analyze the effect of kshara and sneha on hypercholesterolemia - a kriyatmak approach.Journal of Ayurveda and Integrated Medical Sciences (JAIMS)20205210.21760/jaims.5.2.6
    [Google Scholar]
  26. SivamaruthiB.S. BharathiM. KesikaP. SuganthyN. ChaiyasutC. The administration of probiotics against hypercholesterolemia: A systematic review.Appl. Sci. (Basel)20211115691310.3390/app11156913
    [Google Scholar]
  27. VenkateshP. Kumar SahuR. MohantyC. Effect of nitya virechana in hypercholesterolemia -a case report.J. Ayurveda Integr. Med.Sci.202276189193
    [Google Scholar]
  28. QiaoL. ChenW. Atheroprotective effects and molecular targets of bioactive compounds from traditional chinese medicine.Pharmacol. Res.201813521222910.1016/j.phrs.2018.07.01230107203
    [Google Scholar]
  29. ZhangY. KishiH. KobayashiS. Add-on therapy with traditional chinese medicine: An efficacious approach for lipid metabolism disorders.Pharmacol. Res.201813420021110.1016/j.phrs.2018.06.00429935947
    [Google Scholar]
  30. LiuX. WangQ. SongG. ZhangG. YeZ. WilliamsonE.M. The classification and application of toxic chinese materia medica. Phytother. Res.201428333434710.1002/ptr.500623722570
    [Google Scholar]
  31. KumarN.V. RamakrishnaB. SureshM. Medicinal herbs existence in the usage of polyherbal formulation-a review. anveshana’s int. J. Pharm. Life Sci.20216416
    [Google Scholar]
  32. JonesL.K. TilberryS. GregorC. YaegerL.H. HuY. SturmA.C. SeatonT.L. WaltzT.J. RahmA.K. GoldbergA. BrownsonR.C. GiddingS.S. WilliamsM.S. GionfriddoM.R. Implementation strategies to improve statin utilization in individuals with hypercholesterolemia: A systematic review and meta-analysis.Implement. Sci.20211614010.1186/s13012‑021‑01108‑033849601
    [Google Scholar]
  33. DombalisS. NashA. The effect of statins in children and adolescents with familial hypercholesterolemia: A systematic review.J. Pediatr. Health Care202135329230310.1016/j.pedhc.2020.11.00733342622
    [Google Scholar]
  34. Abdul-RahmanT. BukhariS.M.A. HerreraE.C. AwuahW.A. LawrenceJ. de AndradeH. PatelN. ShahR. ShaikhR. CaprilesC.A.A. UlusanS. AhmadS. CorrieroA.C. MaresA.C. GoelA. HajraA. BandyopadhyayD. GuptaR. Lipid lowering therapy: An era beyond statins.Curr. Probl. Cardiol.2022471210134210.1016/j.cpcardiol.2022.10134235918009
    [Google Scholar]
  35. RamH. JaipalN. CharanJ. KashyapP. KumarS. TripathiR. SinghB.P. SiddaiahC.N. HashemA. TabassumB. Abd AllahE.F. Phytoconstituents of an ethanolic pod extract of prosopis cineraria triggers the inhibition of hmg-coa reductase and the regression of atherosclerotic plaque in hypercholesterolemic rabbits.Lipids Health Dis.2020191610.1186/s12944‑020‑1188‑z31931807
    [Google Scholar]
  36. JiangS.Y. LiH. TangJ.J. WangJ. LuoJ. LiuB. WangJ.K. ShiX.J. CuiH.W. TangJ. YangF. QiW. QiuW.W. SongB.L. Discovery of a potent hmg-coa reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol.Nat. Commun.201891513810.1038/s41467‑018‑07590‑330510211
    [Google Scholar]
  37. PangJ. ChanD.C. WattsG.F. The knowns and unknowns of contemporary statin therapy for familial hypercholesterolemia.Curr. Atheroscler. Rep.202022116410.1007/s11883‑020‑00884‑232870376
    [Google Scholar]
  38. PangestikaI. OksalE. Tengku MuhammadT.S. AmirH. SyamsumirD.F. WahidM.E.A. AndrianiY. Inhibitory effects of tangeretin and trans-ethyl caffeate on the hmg-coa reductase activity: Potential agents for reducing cholesterol levels.Saudi J. Biol. Sci.20202781947196010.1016/j.sjbs.2020.06.01032714018
    [Google Scholar]
  39. DiasS. ParedesS. RibeiroL. Drugs involved in dyslipidemia and obesity treatment: Focus on adipose tissue.Int. J. Endocrinol.2018201812110.1155/2018/263741829593789
    [Google Scholar]
  40. XieL. ZhuG. ShangJ. ChenX. ZhangC. JiX. ZhangQ. WeiY. An overview on the biological activity and anti-cancer mechanism of lovastatin.Cell. Signal.20218711012210.1016/j.cellsig.2021.11012234438015
    [Google Scholar]
  41. BaraleC. FrascaroliC. SenkeevR. CavalotF. RussoI. Simvastatin effects on inflammation and platelet activation markers in hypercholesterolemia.BioMed Res. Int.2018201811110.1155/2018/650870930402489
    [Google Scholar]
  42. MarkowskaA. AntoszczakM. MarkowskaJ. HuczyńskiA. Statins: Hmg-coa reductase inhibitors as potential anticancer agents against malignant neoplasms in women.Pharmaceuticals (Basel)2020131242210.3390/ph1312042233255609
    [Google Scholar]
  43. Saeedi SaraviS.S. Saeedi SaraviS.S. ArefidoustA. DehpourA.R. The beneficial effects of hmg-coa reductase inhibitors in the processes of neurodegeneration.Metab. Brain Dis.201732494996510.1007/s11011‑017‑0021‑528578514
    [Google Scholar]
  44. ShresthaS.K. Statin drug therapy may increase covid-19 infection.Nepalese Medical Journal20203132632710.3126/nmj.v3i1.28256
    [Google Scholar]
  45. MachF. RayK.K. WiklundO. CorsiniA. CatapanoA.L. BruckertE. De BackerG. HegeleR.A. HovinghG.K. JacobsonT.A. KraussR.M. LaufsU. LeiterL.A. MärzW. NordestgaardB.G. RaalF.J. RodenM. SantosR.D. SteinE.A. StroesE.S. ThompsonP.D. TokgözoğluL. VladutiuG.D. GencerB. StockJ.K. GinsbergH.N. ChapmanM.J. Adverse effects of statin therapy: Perception vs. the evidence – focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract.Eur. Heart J.201839272526253910.1093/eurheartj/ehy18229718253
    [Google Scholar]
  46. VargheseG.K. AbrahamR. ChandranN.N. HabtemariamS. Identification of lead molecules in garcinia mangostana l. against pancreatic cholesterol esterase activity: An in silico approach.Interdiscip. Sci.201911217017910.1007/s12539‑017‑0252‑528741279
    [Google Scholar]
  47. LateefT. NaeemS. QureshiS.A. In-silico studies of hmg-co a reductase inhibitors present in fruits of withania coagulans dunal (solanaceae).Trop. J. Pharm. Res.202019230531210.4314/tjpr.v19i2.13
    [Google Scholar]
  48. LeoneG. ConsumiM. FranziC. TamasiG. LamponiS. DonatiA. MagnaniA. RossiC. BonechiC. Development of liposomal formulations to potentiate natural lovastatin inhibitory activity towards 3-hydroxy-3-methyl-glutaryl coenzyme a (hmg-coa) reductase.J. Drug Deliv. Sci. Technol.20184310711210.1016/j.jddst.2017.09.019
    [Google Scholar]
  49. XiongZ. CaoX. WenQ. ChenZ. ChengZ. HuangX. ZhangY. LongC. ZhangY. HuangZ. An overview of the bioactivity of monacolin k / lovastatin.Food Chem. Toxicol.201913111058510.1016/j.fct.2019.11058531207306
    [Google Scholar]
  50. JuA. LiY. QuZ. LiQ. Impact of the herbal breviscapine on the pharmacokinetics of simvastatin in rats: The involvement of cyp3a4.Drug Res. (Stuttg.)201767527127410.1055/s‑0042‑11817028288489
    [Google Scholar]
  51. FrydrychowiczC. PasiekaB. PiererM. MuellerW. PetrosS. WeidhaseL. Colchicine triggered severe rhabdomyolysis after long-term low-dose simvastatin therapy: A case report.J. Med. Case Reports2017111810.1186/s13256‑016‑1169‑z28049514
    [Google Scholar]
  52. KogawaA.C. PiresA.E.D.T. SalgadoH.R.N. Atorvastatin: A review of analytical methods for pharmaceutical quality control and monitoring.J. AOAC Int.2019102380180910.5740/jaoacint.18‑020030563586
    [Google Scholar]
  53. Gómez-DomínguezE. GisbertJ.P. Moreno-MonteagudoJ.A. García-BueyL. Moreno-OteroR. A pilot study of atorvastatin treatment in dyslipemid, non-alcoholic fatty liver patients.Aliment. Pharmacol. Ther.200623111643164710.1111/j.1365‑2036.2006.02926.x16696815
    [Google Scholar]
  54. BowmanC.M. MaF. MaoJ. ChenY. Examination of physiologically-based pharmacokinetic models of rosuvastatin.CPT Pharmacometrics Syst. Pharmacol.202110151710.1002/psp4.1257133220025
    [Google Scholar]
  55. LambY.N. Rosuvastatin/ezetimibe: A review in hypercholesterolemia.Am. J. Cardiovasc. Drugs202020438139210.1007/s40256‑020‑00421‑132648167
    [Google Scholar]
  56. AsadM. AsdaqS.M.B. MohzariY. AlrashedA. AlajamiH.N. AljohaniA.O. MushtawiA.A.A. AlajmiA.N. AlajmiH.N. ImranM. OrfaliR. Pharmacokinetic and pharmacodynamic interaction of rosuvastatin calcium with guggulipid extract in rats.Saudi J. Biol. Sci.20212863490349610.1016/j.sjbs.2021.03.01534121889
    [Google Scholar]
  57. RomaniM. HoferD.C. KatsyubaE. AuwerxJ. Niacin: An old lipid drug in a new nad+ dress.J. Lipid Res.201960474174610.1194/jlr.S09200730782960
    [Google Scholar]
  58. HwangY-H Fibrate and niacin.Stroke Revisited: Dyslipidemia in StrokeSpringer: Singapore202110311010.1007/978‑981‑16‑3923‑4_9
    [Google Scholar]
  59. ZoddaD. GiammonaR. SchifillitiS. Treatment strategy for dyslipidemia in cardiovascular disease prevention: Focus on old and new drugs.Pharmacy (Basel)2018611010.3390/pharmacy601001029361723
    [Google Scholar]
  60. AhangariN. Ghayour MobarhanM. SahebkarA. PasdarA. Molecular aspects of hypercholesterolemia treatment: Current perspectives and hopes.Ann. Med.201850430331110.1080/07853890.2018.145779529578362
    [Google Scholar]
  61. FengY. LiQ. OuG. YangM. DuL. Bile acid sequestrants: A review of mechanism and design.J. Pharm. Pharmacol.202173785586110.1093/jpp/rgab00233885783
    [Google Scholar]
  62. HeřmánkováE. ŽákA. PolákováL. HobzováR. HromádkaR. ŠircJ. Polymeric bile acid sequestrants: Review of design, in vitro binding activities, and hypocholesterolemic effects.Eur. J. Med. Chem.201814430031710.1016/j.ejmech.2017.12.01529275230
    [Google Scholar]
  63. LinC.W. LinS.X. KankalaR.K. BusaP. DengJ.P. LueS.I. LiuC.L. WengC.F. LeeC.H. Surface-functionalized layered double hydroxide nanocontainers as bile acid sequestrants for lowering hyperlipidemia.Int. J. Pharm.202059011992110.1016/j.ijpharm.2020.11992133027632
    [Google Scholar]
  64. ThobaniA. HassenL. MehtaL.S. AgarwalaA. Management of hypercholesterolemia in pregnant women with atherosclerotic cardiovascular disease.Curr. Atheroscler. Rep.202123105810.1007/s11883‑021‑00957‑w34345940
    [Google Scholar]
  65. IbrahimB.M.M. SalamaA.A.A. YassinN.A. MahmoudS.S. Gamal El-DinA.A. ShaffieN.A. Potential effects of glimepiride and a herbal mixture on hyperglycaemia, hypercholesterolaemia and oxidative stress.Plant Arch.202020222422248
    [Google Scholar]
  66. IyerD. K patil u. structural elucidation of isolated phytochemicals from selected medicinal plants with antihyperlipidemic activity and development of polyherbal formulation with densitometric analysis of isolated phytoconstituents.Indian J. Pharm. Educ. Res.202054231632910.5530/ijper.54.2s.89
    [Google Scholar]
  67. ParkJ.Y. KwonY.W. KimS.A. ParkS.D. KimC.H. KimJ.H. LeeJ.H. Polyherbal formula sc-e3 inhibits rheumatoid arthritis activity in a mouse model of type-ii collagen-induced arthritis.J. Integr. Med.202119326527310.1016/j.joim.2020.12.00133349609
    [Google Scholar]
  68. HeshamiN. MohammadaliS. KomakiA. TayebiniaH. KarimiJ. Abbasi OshaghiE. HashemniaM. KhodadadiI. Favorable effects of dill tablets and ocimum basilicum l. extract on learning, memory, and hippocampal fatty acid composition in hypercholesterolemic rats.Iran. J. Basic Med. Sci.202124330031110.22038/ijbms.2021.49013.1123033995941
    [Google Scholar]
  69. MaheshwarV. Phytochemicals effective in lowering low-density lipoproteins.J. Biol. Eng. Res. Rev.2020711623
    [Google Scholar]
  70. MohamadpourM. ShahmirP. AsadiM. AsadiS. AmraeiM. Investigating the effect of saffron petal extract on antioxidant activity and inflammatory markers in hypercholesterolemic rats.Entomol Appl Sci Let.2020731322
    [Google Scholar]
  71. KimH-K. The inhibiton effects of hypercholesterolemia and platelet in fermented and non-fermented preparation of garlic.J. Agric. Food Sci.2019114110
    [Google Scholar]
  72. SrinivasanK. Nutraceutical activities of turmeric (curcuma longa) and its bioactive constituent curcumin.Science of Spices and Culinary Herbs - Latest Laboratory, Pre-clinical, and Clinical Studies20191557310.2174/9781681087511119010005
    [Google Scholar]
  73. MelaniB. VikasariS.N. Potential of ginger (zingiber officinale), as anti-hypercholesterolemia to prevent metabolic syndrome: Systematic literature review.Journal of Science and Technology Research for Pharmacy202212677110.15294/jstrp.v1i2.49573
    [Google Scholar]
  74. ChoudharyM. BanoS. TomarU.K. Biannual seed yield, viability and germination in commiphora wightii (arnott) bhandari.Proceedings of the 1st International Electronic Conference on Plant Science, 1–15 December 2020, Basel, Switzerland202010.3390/IECPS2020‑08889
    [Google Scholar]
  75. SabarathinamS. VijayakumarT.M. Isomers of guggulsterone in hyperlipidemia.Obes. Med.20212210032610.1016/j.obmed.2021.100326
    [Google Scholar]
  76. ProticO. BonfigliA.R. AntonicelliR. Nutraceutical combinations in hypercholesterolemia: Evidence from randomized, placebo-controlled clinical trials.Nutrients2021139312810.3390/nu1309312834579005
    [Google Scholar]
  77. SinghV.K. SoniN. Efficacy and advancement of terminalia arjuna in indian herbal drug research: A review.Trends Appl. Sci. Res.201914423324210.3923/tasr.2019.233.242
    [Google Scholar]
  78. JamalA. Embracing nature’s therapeutic potential: Herbal medicine.Int. J. Multidiscip. Sci.2023211712610.47709/ijmdsa.v2i1.2620
    [Google Scholar]
  79. MukhopadhyayS. HollaB. BhargavH. RamakrishnaK.K. ChikkannaU. VaramballyS. GangadharB.N. Integrative medicine as “medicine”: A perspective.Integr. Med. Res.202211869410.1089/imr.2022.0054
    [Google Scholar]
  80. ZhouX. SetoS.W. ChangD. KiatH. Razmovski-NaumovskiV. ChanK. BensoussanA. Synergistic effects of chinese herbal medicine: A comprehensive review of methodology and current research.Front. Pharmacol.2016720110.3389/fphar.2016.0020127462269
    [Google Scholar]
  81. ShiP. LinX. YaoH. A comprehensive review of recent studies on pharmacokinetics of traditional chinese medicines (2014–2017) and perspectives.Drug Metab. Rev.201850216119210.1080/03602532.2017.141742429258334
    [Google Scholar]
  82. TangL.Q. WeiW. ChenL.M. LiuS. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats.J. Ethnopharmacol.2006108110911510.1016/j.jep.2006.04.01916759828
    [Google Scholar]
  83. KimM. KimY. Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet.Nutr. Res. Pract.20104319119510.4162/nrp.2010.4.3.19120607063
    [Google Scholar]
  84. ChenY. ChenX. LuoG. ZhangX. LuF. QiaoL. HeW. LiG. ZhangY. Discovery of potential inhibitors of squalene synthase from traditional chinese medicine based on virtual screening and in vitro evaluation of lipid-lowering effect.Molecules2018235104010.3390/molecules2305104029710800
    [Google Scholar]
  85. HuangJ. WangY. YingC. LiuL. LouZ. Effects of mulberry leaf on experimental hyperlipidemia rats induced by high‑fat diet.Exp. Ther. Med.201816254755610.3892/etm.2018.625430116313
    [Google Scholar]
  86. YangX. HeT. HanS. ZhangX. SunY. XingY. ShangH. The role of traditional chinese medicine in the regulation of oxidative stress in treating coronary heart disease.Oxid. Med. Cell. Longev.2019201911310.1155/2019/323142430918578
    [Google Scholar]
  87. El-TantawyW.H. TemrazA. Natural products for controlling hyperlipidemia: Review.Arch. Physiol. Biochem.2019125212813510.1080/13813455.2018.144131529457523
    [Google Scholar]
  88. SultanaF. AroraB. AroraS. K. sindhu r, sultana f. comprehensive review on ayurvedic formulations and herbal medicines for treatment of rheumatoid arthritis.J. Univ. Shanghai Sci. Technol.202123777279010.51201/JUSST/21/07218
    [Google Scholar]
  89. Manglakant Jha Atul Kumar SinghP.K. KumarA. Role of ayurveda in public health: A critical review.International Journal of Research in AYUSH and Pharmaceutical Sciences202251259559910.47070/ijraps.v5i12.123
    [Google Scholar]
  90. OsuochaK.U. IwuekeA.V. ChukwuE.C. Phytochemical profiling, body weight effect and anti-hypercholesterolemia potentials of cnidoscolus aconitifolius leaf extracts in male albino rat.J. Pharmacogn. Phytother.2020122192710.5897/JPP2016.0436
    [Google Scholar]
  91. Kumar GiriR. Kumar KanungoS. Kumar PatroS. SahooM. PandaD.S. Hypolipidemic effect of prepared polyherbal formulations in wistar albino rats.Research Journal of Pharmacy and Technology20211484314432010.52711/0974‑360X.2021.00749
    [Google Scholar]
  92. AkhaniS.P. GotmareS.R A comparative study of ashwagandha (withania somnifera) root powder and arjuna (terminalia arjuna) bark powder the herbs of medicinal importance in ayurveda on total serum cholesterol in-vitro.International Journal of Science and Research Archive20227238538910.30574/ijsra.2022.7.2.0298
    [Google Scholar]
  93. SeetharamanM. KrishnanG. SchneiderR.H. The future of medicine: Frontiers in integrative health and medicine.Medicina (Kaunas)20215712130310.3390/medicina5712130334946248
    [Google Scholar]
  94. GyawaliD. VohraR. Orme-JohnsonD. RamaratnamS. SchneiderR.H. A systematic review and meta-analysis of ayurvedic herbal preparations for hypercholesterolemia.Medicina (Kaunas)202157654610.3390/medicina5706054634071454
    [Google Scholar]
  95. ShaikJ. KhanZ. Antihyperlipidemic activity of commiphora mukul against atherogenic diet-induced hyperlipidemia in experimental rats.Asian J. Pharm. Clin. Res.201811638610.22159/ajpcr.2018.v11i6.24800
    [Google Scholar]
  96. ChoudharyS. KauravH. ChaudharyG. Wheatgrass (triticum aestivum linn.): A potential substituteof human bloodin traditional system of medicine.Asian J. Pharm. Clin. Res.2021146434710.22159/ajpcr.2021.v14i6.41575
    [Google Scholar]
  97. DevS.K. ChoudhuryP.K. SrivastavaR. SharmaM. Antimicrobial, anti-inflammatory and wound healing activity of polyherbal formulation.Biomed. Pharmacother.201911155556710.1016/j.biopha.2018.12.07530597309
    [Google Scholar]
  98. ShaikhA.S. ThomasA.B. ChitlangeS.S. Herb–drug interaction studies of herbs used in treatment of cardiovascular disorders—a narrative review of preclinical and clinical studies.Phytother. Res.20203451008102610.1002/ptr.658531908085
    [Google Scholar]
  99. KaroleS. ShrivastavaS. ThomasS. SoniB. KhanS. DubeyJ. DubeyS.P. KhanN. JainD.K. Polyherbal formulation concept for synergic action: A review.J. Drug Deliv. Ther.201991-s45346610.22270/jddt.v9i1‑s.2339
    [Google Scholar]
  100. PandeV.B. ChandelS.S. SoniV. Synergistic and safe antidiabetic effect of polyherbal formulation: Comprehensive overview.Int. J. Life Sci. Pharma Res.2021112515710.22376/ijpbs/lpr.2021.11.2.P51‑57
    [Google Scholar]
  101. KhoshnoodS. HeidaryM. AsadiA. SoleimaniS. MotaharM. SavariM. SakiM. AbdiM. A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against staphylococcus aureus. Biomed. Pharmacother.20191091809181810.1016/j.biopha.2018.10.13130551435
    [Google Scholar]
  102. BanerjeeS. BhattacharjeeP. KarA. MukherjeeP.K. Lc–ms/ms analysis and network pharmacology of trigonella foenum-graecum – a plant from ayurveda against hyperlipidemia and hyperglycemia with combination synergy.Phytomedicine20196015294410.1016/j.phymed.2019.15294431178235
    [Google Scholar]
  103. Devanathadesikan SeshadriV. VijayaraghavanP. KimY.O. KimH.J. Ahmed Al-GhamdiA. ElshikhM.S. Al-DosaryM.A. AlsubaieQ.D. in vitro antioxidant and cytotoxic activities of polyherbal extracts from vetiveria zizanioides, trichosanthes cucumerina, and mollugo cerviana on hela and mcf-7 cell lines.Saudi J. Biol. Sci.20202761475148110.1016/j.sjbs.2020.04.00532489283
    [Google Scholar]
  104. HussainS.A. HameedA. NazirY. NazT. WuY. SuleriaH.A.R. SongY. Microencapsulation and the characterization of polyherbal formulation (phf) rich in natural polyphenolic compounds.Nutrients201810784310.3390/nu1007084329958444
    [Google Scholar]
  105. YuJ-J. SuJ. YanM-Q. LouZ-H. LyuG-Y. [correlation between lipid-lowering efficacy and components of pericarpium citri reticulatae.].Zhongguo Zhongyao Zazhi201944153335334231602892
    [Google Scholar]
  106. PatočkaJ. NavrátilováZ. OvandoM. Biologically active compounds of knotweed (reynoutria spp.).Vojen. Zdrav. Listy2017861173110.31482/mmsl.2017.004
    [Google Scholar]
  107. ZhangZ. ZhangD. DuB. ChenZ. Hyperoside inhibits the effects induced by oxidized low-density lipoprotein in vascular smooth muscle cells via oxldl-lox-1-erk pathway.Mol. Cell. Biochem.20174331-216917610.1007/s11010‑017‑3025‑x28434118
    [Google Scholar]
  108. VariyaB.C. BakraniaA.K. ChenY. HanJ. PatelS.S. Suppression of abdominal fat and anti-hyperlipidemic potential of emblica officinalis: Upregulation of ppars and identification of active moiety.Biomed. Pharmacother.20181081274128110.1016/j.biopha.2018.09.15830372828
    [Google Scholar]
  109. JinZ. BorjihanG. ZhaoR. SunZ. HammondG.B. UryuT. Antihyperlipidemic compounds from the fruit of piper longum l.Phytother. Res.20092381194119610.1002/ptr.263019172581
    [Google Scholar]
  110. MerigaB. ParimB. ChunduriV.R. NaikR.R. NemaniH. SureshP. GanapathyS. UddandraoV.V.S. Antiobesity potential of piperonal: Promising modulation of body composition, lipid profiles and obesogenic marker expression in hfd-induced obese rats.Nutr. Metab. (Lond.)20171417210.1186/s12986‑017‑0228‑929176994
    [Google Scholar]
  111. MaruthappanV. ShreeK.S. Hypolipidemic activity of haritaki (terminalia chebula) in atherogenic diet induced hyperlipidemic rats.J. Adv. Pharm. Technol. Res.20101222923510.4103/2231‑4040.7226422247850
    [Google Scholar]
  112. BaoL.D. WangY. RenX.H. MaR.L. LvH.J. AgulaB. Hypolipidemic effect of safflower yellow and primary mechanism analysis.Genet. Mol. Res.20151426270627810.4238/2015.June.9.1426125829
    [Google Scholar]
  113. KaoE.S. YangM.Y. HungC.H. HuangC.N. WangC.J. Polyphenolic extract from hibiscus sabdariffa reduces body fat by inhibiting hepatic lipogenesis and preadipocyte adipogenesis.Food Funct.20167117118210.1039/C5FO00714C26489044
    [Google Scholar]
  114. ShailaH.P. UdupaS.L. UdupaA.L. Hypolipidemic activity of three indigenous drugs in experimentally induced atherosclerosis.Int. J. Cardiol.199867211912410.1016/S0167‑5273(98)00281‑29891944
    [Google Scholar]
  115. NiyomchanA. ChatgatW. ChatawateeB. KeereekochT. JaisamutP. ChusriS. KunworarathN. Supplementation with the traditional thai polyherbal medicine nawatab ameliorates lipid profiles in high-fat diet-induced hyperlipidemic rats.Evid. Based Complement. Alternat. Med.2022202211110.1155/2022/857475636452138
    [Google Scholar]
  116. HanL-K. KimuraY. KawashimaM. TakakuT. TaniyamaT. HayashiT. ZhengY-N. OkudaH. Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor.Int. J. Obes.200125101459146410.1038/sj.ijo.080174711673766
    [Google Scholar]
  117. GuoY. WuG. SuX. YangH. ZhangJ. Antiobesity action of a daidzein derivative on male obese mice induced by a high-fat diet.Nutr. Res.200929965666310.1016/j.nutres.2009.09.00519854381
    [Google Scholar]
  118. RazaviB.M. HosseinzadehH. A review of the effects of nigella sativa l. and its constituent, thymoquinone, in metabolic syndrome.J. Endocrinol. Invest.201437111031104010.1007/s40618‑014‑0150‑125125023
    [Google Scholar]
  119. NiknamR. KianiH. MousaviZ.E. MousaviM. Extraction, detection, and characterization of various chemical components of trigonella foenum-graecum l. (fenugreek) known as a valuable seed in agriculture.FenugreekSingaporeSpringer202118921710.1007/978‑981‑16‑1197‑1_9
    [Google Scholar]
  120. SrinivasaU.M. NaiduM.M. Fenugreek (trigonella foenum-graecum l.) seed: Promising source of nutraceutical.Studies in Natural Products Chemistry20217114118410.1016/B978‑0‑323‑91095‑8.00014‑3
    [Google Scholar]
  121. MajdalawiehA.F. YousefS.M. Abu-YousefI.A. Thymoquinone, a major constituent in nigella sativa seeds, is a potential preventative and treatment option for atherosclerosis.Eur. J. Pharmacol.202190917442010.1016/j.ejphar.2021.17442034391767
    [Google Scholar]
  122. KhanF. SarkerM.M.R. MingL.C. MohamedI.N. ZhaoC. SheikhB.Y. TsongH.F. RashidM.A. Comprehensive review on phytochemicals, pharmacological and clinical potentials of gymnema sylvestre. Front. Pharmacol.201910122310.3389/fphar.2019.0122331736747
    [Google Scholar]
  123. KumarP. Kumar TripathiA. MishraJ. DashA.K. Herbal and polyherbal formulation-an approach of indian traditional medicinal system.Volatiles & Essent Oils.20218665016510
    [Google Scholar]
  124. WangZ. ZhaoS. TaoS. HouG. ZhaoF. TanS. MengQ. dioscorea spp.: Bioactive compounds and potential for the treatment of inflammatory and metabolic diseases.Molecules2023286287810.3390/molecules2806287836985850
    [Google Scholar]
  125. YinG. LiangH. SunW. ZhangS. FengY. LiangP. ChenS. LiuX. PanW. ZhangF. Shuangyu tiaozhi decoction alleviates non-alcoholic fatty liver disease by improving lipid deposition, insulin resistance, and inflammation in vitro and in vivo. Front. Pharmacol.202213101674510.3389/fphar.2022.101674536506575
    [Google Scholar]
  126. Ba TuyenP. HuyenT.T. HangD.T.T. Thi Van AnhP. A novel herbal medicine for dyslipidemia: Assessments in experimental models.Evid. Based Complement. Alternat. Med.202120211510.1155/2021/552974433976702
    [Google Scholar]
  127. JaisamutP. TohlangC. WannaS. ThanakunA. SrisuwanT. LimsuwanS. RattanachaiW. SuwannachotJ. ChusriS. Clinical evaluation of a novel tablet formulation of traditional thai polyherbal medicine named nawametho in comparison with its decoction in the treatment of hyperlipidemia.Evid. Based Complement. Alternat. Med.2022202211010.1155/2022/253026635966727
    [Google Scholar]
  128. RajeshamV.V. BhikshapathiD.V.R.N. Anti hyperlipidemic potential of polyherbal formulation in wistar albino rats.Int. J. Pharm. Sci. Drug Res.20181014414910.25004/IJPSDR.2018.100307
    [Google Scholar]
  129. DahanukarS.A. KulkarniR.A. RegeN.N. Pharmacology of medicinal plants and natural products.Indian J. Pharmacol.20003281118
    [Google Scholar]
  130. NaseemA. AkhtarS. ManzoorM.F. SameenA. LaylaA. AfzalK. KarrarE. RahamanA. IsmailT. AhmadN. SiddeegA. Effect of herbal formulation intake on health indices in albino wistar rat model.Food Sci. Nutr.20219144144810.1002/fsn3.200933473305
    [Google Scholar]
  131. de las HerasN. Valero-MuñozM. Martín-FernándezB. BallesterosS. López-FarréA. Ruiz-RosoB. LaheraV. Molecular factors involved in the hypolipidemic- and insulin-sensitizing effects of a ginger ( zingiber officinale roscoe) extract in rats fed a high-fat diet.Appl. Physiol. Nutr. Metab.201742220921510.1139/apnm‑2016‑037428125276
    [Google Scholar]
  132. AwanK.A. ButtM.S. AshfaqF. MunirH. SuleriaH.A.R. Prophylactic potential of conventional and supercritical garlic extracts to alleviate diet related malfunctions.Recent Pat. Food Nutr. Agric.2019101344710.2174/221279841066618072410382730039769
    [Google Scholar]
  133. Reddy DachaniS NelsonK. Lipid lowering activity of a polyherbal formulation on triton wr-1339 (tyloxapol) induced hyperlipidemia in wistar rats.Indo Am. J. Pharm. Res.2018810531059
    [Google Scholar]
  134. KhanalH. JoshiR.K. UpadhyayA. A review of an ayurvedic polyherbal formulation mustadi kwatha.J. Drug Deliv. Ther.2020105-s26727210.22270/jddt.v10i5‑s.4448
    [Google Scholar]
  135. VarsakiyaJ. DineshD. KathadD. ScholarM.D. I role of ayurvedic remedies in management of dyslipidemia-a case report.IJA-CARE.2022611422
    [Google Scholar]
  136. AryaG. PandeyP. TewariP. A review-effect of mustadi kwath in madhumeha.World J. Pharm. Res.20211010510910.20959/wjpr202110‑21103
    [Google Scholar]
  137. WasekarS.G. BelgeR. Anti-hyperlipidemic and anti-oxidant activity of shuladavanala rasa (2) w.s.r to hrutshula.World J. Pharm. Res.20198566575
    [Google Scholar]
  138. KanwarA. Kumar SharmaA. DhakedP. BhattA. ScholarP.G. A review on arogyavardhini vati: A herbo-mineral formulation.World J. Pharm. Res.20151120120710.20959/wjpr20229‑24592
    [Google Scholar]
  139. AmanagiS. Guise Prakash KhapardeP. JanuaryS. AmanagiN. Review on vata gajendra singha rasa: Kharaliya rasayana.World J. Pharm. Res.2021101445045610.20959/wjpr202114‑22285
    [Google Scholar]
  140. MalikA. MehmoodM.H. AkhtarM.S. HaiderG. GilaniA.H. Studies on antihyperlipidemic and endothelium modulatory activities of polyherbal formulation (pol4) and its ingredients in high fat diet-fed rats.Pak. J. Pharm. Sci.2017301Suppl.29530128625957
    [Google Scholar]
  141. HasheminasabF.S. TajadiniH. SetayeshM. An evidence-based study on pharmacological treatments of non-alcoholic fatty liver disease based on traditional persian medicine.Curr. Tradit. Med.20206318820210.2174/2215083805666190902114137
    [Google Scholar]
  142. MehmoodM.H. MalikA. Shoaib AkhtarM. HaiderG. Hassan GilaniA. Antihyperglycaemic, antihyperlipidaemic, and antihypertensive effect of a polyherbal formulation in alloxan-induced diabetic rats.Farmacia202068588289010.31925/farmacia.2020.5.15
    [Google Scholar]
  143. TanishaV.S. Amelioration of hyperglycemia and hyperlipidemia in a high-fat diet-fed mice by supplementation of a developed optimized polyherbal formulation.3 Biotech.2022121025110.1007/s13205‑022‑03309‑w
    [Google Scholar]
  144. TanishaV.S. VenkategowdaS. MajumdarM. Response surface methodology based development of an optimized polyherbal formulation and evaluation of its anti-diabetic and anti-obesity potential in high-fat diet-induced obese mice.J. Tradit. Complement. Med.2024141708110.1016/j.jtcme.2023.07.00238223811
    [Google Scholar]
  145. JansenC. BakerJ.D. KodairaE. AngL. BacaniA.J. AldanJ.T. ShimodaL.M.N. SalamehM. Small-HowardA.L. StokesA.J. TurnerH. AdraC.N. Medicine in motion: Opportunities, challenges and data analytics-based solutions for traditional medicine integration into western medical practice.J. Ethnopharmacol.202126711347710.1016/j.jep.2020.11347733098971
    [Google Scholar]
  146. BhopeS. NagoreD. KuberV. GuptaP. PatilM. Design and development of a stable polyherbal formulation based on the results of compatibility studies.Pharmacognosy Res.20113212212910.4103/0974‑8490.8196021772756
    [Google Scholar]
  147. DarlaR. KeshettiS. Design, formulation and evaluation of a polyherbal gel for its wound.Medicine (Baltimore)201310226232
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838314259240911045731
Loading
/content/journals/ctm/10.2174/0122150838314259240911045731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test