Skip to content
2000
image of Polyherbal Formulation Approaches for Managing Hypercholesterolemia: Insights from Traditional Chinese Medicine and Ayurveda

Abstract

Background

Hypercholesterolemia is a commonly inherited metabolic condition that can result in ischemic heart disease. Due to the undesirable side effects associated with commercially accessible statin drugs, herbal plants are emerging as a preferable alternative for managing and controlling hypercholesterolemia. Substantially, Traditional Chinese Medicine (TCM) and Ayurveda formulations have been reported to play a primary part in the hypercholesterolemia therapy. The inhibition of HMG-CoA Reductase (HMGCR) is significant since it is the key enzyme for cholesterol production, which is crucial for reducing plasma cholesterol levels.

Objective

The present review aimed to explore in-depth TCM and Ayurveda polyherbal formulations, along with their pharmacological activities, especially on the serum lipid biomarkers, including low-density lipoproteins, triglycerides, total cholesterol, and high-density lipoproteins, and their potential suppression against HMG-CoA reductase activity. The review highlights the potential usage of polyherbal formulations for the management of hypercholesterolemia that could potentially be effective with minimal side effects.

Conclusion

TCM and Ayurveda are poly pharmacology systems that have been proven to exhibit better effects than single-targeted compounds in hypercholesterolemia. Polyherbal formulation involves interaction of multi-components that possess synergistic effects and able to replace the synthetic anti-hypercholesterolemia agents associated with side effects. It is the need of the hour to evaluate the integration of both TCM and Ayurveda polyherbal formulations as a strategy to maximize their potential and efficacy in hypercholesterolemia treatment since TCM and Ayurveda have been proven to be effective in combating hypercholesterolemia.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838314259240911045731
2025-08-28
2025-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ctm/10.2174/0122150838314259240911045731/CTM-12-E22150838314259.html?itemId=/content/journals/ctm/10.2174/0122150838314259240911045731&mimeType=html&fmt=ahah

References

  1. Rahmawati N. Mustofa F.I. Haryanti S. Mujahid R. Medicinal plant utilization for hypercholesterolemia by traditional healers in java island. IOP Conf. Ser. Earth Environ. Sci. 2021 637 1 012043 10.1088/1755‑1315/637/1/012043
    [Google Scholar]
  2. El-Nagar D.M. Al-Dahmash B.A. Alkahtani S. Kalu A.A. Rady A. Dandelion (taraxacum officinale) seeds extract attenuates hypercholesterolemia in swiss albino mice. J. King Saud Univ. Sci. 2022 34 7 102198 10.1016/j.jksus.2022.102198
    [Google Scholar]
  3. Guo J. Bei W. Hu Y. Tang C. He W. Liu X. Huang L. Cao Y. Hu X. Zhong X. Cao L. A new tcm formula ftz lowers serum cholesterol by regulating hmg-coa reductase and cyp7a1 in hyperlipidemic rats. J. Ethnopharmacol. 2011 135 2 299 307 10.1016/j.jep.2011.03.012 21396994
    [Google Scholar]
  4. Wang C.K. Health benefits of onion bioactives on hypercholesterolemia, cardiovascular diseases, and bone mineral density. Food Front. 2020 1 2 107 108 10.1002/fft2.18
    [Google Scholar]
  5. Wright R.S. Ray K.K. Raal F.J. Kallend D.G. Jaros M. Koenig W. Leiter L.A. Landmesser U. Schwartz G.G. Friedman A. Wijngaard P.L.J. Garcia Conde L. Kastelein J.J.P. Pooled patient-level analysis of inclisiran trials in patients with familial hypercholesterolemia or atherosclerosis. J. Am. Coll. Cardiol. 2021 77 9 1182 1193 10.1016/j.jacc.2020.12.058 33663735
    [Google Scholar]
  6. Udhaya Kumar S. Thirumal Kumar D. Bithia R. Sankar S. Magesh R. Sidenna M. George Priya Doss C. Zayed H. Analysis of differentially expressed genes and molecular pathways in familial hypercholesterolemia involved in atherosclerosis: A systematic and bioinformatics approach. Front. Genet. 2020 11 734 10.3389/fgene.2020.00734 32760426
    [Google Scholar]
  7. Kumar P. Aafreen, kumar s, kumar m. comparison between hypolipidemic effect of lagenaria siceraria and lovastatin in hypercholesterolemic rats. paripex -. Indian J. Sci. Res. 2019 8 2 13 24
    [Google Scholar]
  8. Benjamin E.J. Muntner P. Alonso A. Bittencourt M.S. Callaway C.W. Carson A.P. Chamberlain A.M. Chang A.R. Cheng S. Das S.R. Delling F.N. Djousse L. Elkind M.S.V. Ferguson J.F. Fornage M. Jordan L.C. Khan S.S. Kissela B.M. Knutson K.L. Kwan T.W. Lackland D.T. Lewis T.T. Lichtman J.H. Longenecker C.T. Loop M.S. Lutsey P.L. Martin S.S. Matsushita K. Moran A.E. Mussolino M.E. O’Flaherty M. Pandey A. Perak A.M. Rosamond W.D. Roth G.A. Sampson U.K.A. Satou G.M. Schroeder E.B. Shah S.H. Spartano N.L. Stokes A. Tirschwell D.L. Tsao C.W. Turakhia M.P. VanWagner L.B. Wilkins J.T. Wong S.S. Virani S.S. Heart disease and stroke statistics—2019 update: A report from the american heart association. Circulation 2019 139 10 e56 e528 10.1161/CIR.0000000000000659 30700139
    [Google Scholar]
  9. Craig M. Naga S. Biochemistry, Cholesterol Treasure Island, FL StatPearls Publishing 2022
    [Google Scholar]
  10. Luo J. Yang H. Song B.L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020 21 4 225 245 10.1038/s41580‑019‑0190‑7 31848472
    [Google Scholar]
  11. Chen H. Qi X. Faulkner R.A. Schumacher M.M. Donnelly L.M. DeBose-Boyd R.A. Li X. Regulated degradation of hmg coa reductase requires conformational changes in sterol-sensing domain. Nat. Commun. 2022 13 1 4273 10.1038/s41467‑022‑32025‑5 35879350
    [Google Scholar]
  12. Hartanti L. Yonas S.M.K. Mustamu J.J. Wijaya S. Setiawan H.K. Soegianto L. Influence of extraction methods of bay leaves (syzygium polyanthum) on antioxidant and hmg-coa reductase inhibitory activity. Heliyon 2019 5 4 e01485 10.1016/j.heliyon.2019.e01485 31008409
    [Google Scholar]
  13. Florescu C. Rotaru L.T. Varut R.M. Grigorasi G. Kostici R. Ciobanu D. Cimpoesu D. Determination of the inhibitory capacity on hmg-coa reductase enzyme by statins using molecular docking method. Revista de Chimie 2018 69 4 837 839 10.37358/RC.18.4.6210
    [Google Scholar]
  14. Huo X. Lu F. Qiao L. Li G. Zhang Y. A component formula of chinese medicine for hypercholesterolemia based on virtual screening and biology network. Evid. Based Complement. Alternat. Med. 2018 2018 1 1854972 10.1155/2018/1854972 30050582
    [Google Scholar]
  15. Shi J. Li R. Liu Y. Lu H. Yu L. Zhang F. Shuangyu tiaozhi granule attenuates hypercholesterolemia through the reduction of cholesterol synthesis in rat fed a high cholesterol diet. BioMed Res. Int. 2019 2019 1 11 10.1155/2019/4805926 30937311
    [Google Scholar]
  16. Abeysekera W.P.K.M. Arachchige S.P.G. Ratnasooriya W.D. Bark extracts of ceylon cinnamon possess antilipidemic activities and bind bile acids in vitro. Evid. Based Complement. Alternat. Med. 2017 2017 1 7347219 10.1155/2017/7347219 28808476
    [Google Scholar]
  17. Mahdavi A. Bagherniya M. Fakheran O. Reiner Ž. Xu S. Sahebkar A. Medicinal plants and bioactive natural compounds as inhibitors of hmg-coa reductase: A literature review. Biofactors 2020 46 6 906 926 10.1002/biof.1684 33053603
    [Google Scholar]
  18. Mehmet Akdoğan Ali Bilgili Başak Hanedan Hanedan B. Protective effects of tribulus terrestris, avena sativa, and white ginseng powder on bone mineral density in hypercholesterolemic rats. J. Pharm. Pharmacol. 2019 7 6 286 292 10.17265/2328‑2150/2019.06.002
    [Google Scholar]
  19. Pulipati V.P. Davidson M.H. How i treat statin-associated side effects in an outpatient setting. Future Cardiol. 2021 17 7 1249 1260 10.2217/fca‑2020‑0153 33464124
    [Google Scholar]
  20. Siddiqui N.A. Ishaque I. Rahat Y. Akhtar N. Tehreem U. Javed R. Ali R. Adverse effects of hmg coa reductase inhibitor and garlic on renal function in patients with diabetic dyslipidemia. Ann. Abbasi Shaheed Hosp. Karachi Med. Dent. Coll. 2021 26 2 71 75 10.58397/ashkmdc.v26i2.473
    [Google Scholar]
  21. Pastori D. Pani A. Di Rocco A. Menichelli D. Gazzaniga G. Farcomeni A. D’Erasmo L. Angelico F. Del Ben M. Baratta F. Statin liver safety in non-alcoholic fatty liver disease: A systematic review and metanalysis. Br. J. Clin. Pharmacol. 2022 88 2 441 451 10.1111/bcp.14943 34133035
    [Google Scholar]
  22. Ding L. Ren S. Song Y. Zang C. Liu Y. Guo H. Yang W. Guan H. Liu J. Modulation of gut microbiota and fecal metabolites by corn silk among high-fat diet-induced hypercholesterolemia mice. Front. Nutr. 2022 9 935612 10.3389/fnut.2022.935612 35978956
    [Google Scholar]
  23. Vaughn A.R. Pourang A. Clark A.K. Burney W. Sivamani R.K. Dietary supplementation with turmeric polyherbal formulation decreases facial redness: A randomized double-blind controlled pilot study. J. Integr. Med. 2019 17 1 20 23 10.1016/j.joim.2018.11.004 30527287
    [Google Scholar]
  24. Madić V. Petrović A. Jušković M. Jugović D. Djordjević L. Stojanović G. Vasiljević P. Polyherbal mixture ameliorates hyperglycemia, hyperlipidemia and histopathological changes of pancreas, kidney and liver in a rat model of type 1 diabetes. J. Ethnopharmacol. 2021 265 113210 10.1016/j.jep.2020.113210 32795501
    [Google Scholar]
  25. Dhamale J. J V.S. A comparative study to analyze the effect of kshara and sneha on hypercholesterolemia - a kriyatmak approach. Journal of Ayurveda and Integrated Medical Sciences (JAIMS) 2020 5 2 10.21760/jaims.5.2.6
    [Google Scholar]
  26. Sivamaruthi B.S. Bharathi M. Kesika P. Suganthy N. Chaiyasut C. The administration of probiotics against hypercholesterolemia: A systematic review. Appl. Sci. (Basel) 2021 11 15 6913 10.3390/app11156913
    [Google Scholar]
  27. Venkatesh P. Kumar Sahu R. Mohanty C. Effect of nitya virechana in hypercholesterolemia -a case report. J. Ayurveda Integr. Med.Sci. 2022 7 6 189 193
    [Google Scholar]
  28. Qiao L. Chen W. Atheroprotective effects and molecular targets of bioactive compounds from traditional chinese medicine. Pharmacol. Res. 2018 135 212 229 10.1016/j.phrs.2018.07.012 30107203
    [Google Scholar]
  29. Zhang Y. Kishi H. Kobayashi S. Add-on therapy with traditional chinese medicine: An efficacious approach for lipid metabolism disorders. Pharmacol. Res. 2018 134 200 211 10.1016/j.phrs.2018.06.004 29935947
    [Google Scholar]
  30. Liu X. Wang Q. Song G. Zhang G. Ye Z. Williamson E.M. The classification and application of toxic chinese materia medica. Phytother. Res. 2014 28 3 334 347 10.1002/ptr.5006 23722570
    [Google Scholar]
  31. Kumar N.V. Ramakrishna B. Suresh M. Medicinal herbs existence in the usage of polyherbal formulation-a review. anveshana’s int. J. Pharm. Life Sci. 2021 6 4 1 6
    [Google Scholar]
  32. Jones L.K. Tilberry S. Gregor C. Yaeger L.H. Hu Y. Sturm A.C. Seaton T.L. Waltz T.J. Rahm A.K. Goldberg A. Brownson R.C. Gidding S.S. Williams M.S. Gionfriddo M.R. Implementation strategies to improve statin utilization in individuals with hypercholesterolemia: A systematic review and meta-analysis. Implement. Sci. 2021 16 1 40 10.1186/s13012‑021‑01108‑0 33849601
    [Google Scholar]
  33. Dombalis S. Nash A. The effect of statins in children and adolescents with familial hypercholesterolemia: A systematic review. J. Pediatr. Health Care 2021 35 3 292 303 10.1016/j.pedhc.2020.11.007 33342622
    [Google Scholar]
  34. Abdul-Rahman T. Bukhari S.M.A. Herrera E.C. Awuah W.A. Lawrence J. de Andrade H. Patel N. Shah R. Shaikh R. Capriles C.A.A. Ulusan S. Ahmad S. Corriero A.C. Mares A.C. Goel A. Hajra A. Bandyopadhyay D. Gupta R. Lipid lowering therapy: An era beyond statins. Curr. Probl. Cardiol. 2022 47 12 101342 10.1016/j.cpcardiol.2022.101342 35918009
    [Google Scholar]
  35. Ram H. Jaipal N. Charan J. Kashyap P. Kumar S. Tripathi R. Singh B.P. Siddaiah C.N. Hashem A. Tabassum B. Abd Allah E.F. Phytoconstituents of an ethanolic pod extract of prosopis cineraria triggers the inhibition of hmg-coa reductase and the regression of atherosclerotic plaque in hypercholesterolemic rabbits. Lipids Health Dis. 2020 19 1 6 10.1186/s12944‑020‑1188‑z 31931807
    [Google Scholar]
  36. Jiang S.Y. Li H. Tang J.J. Wang J. Luo J. Liu B. Wang J.K. Shi X.J. Cui H.W. Tang J. Yang F. Qi W. Qiu W.W. Song B.L. Discovery of a potent hmg-coa reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nat. Commun. 2018 9 1 5138 10.1038/s41467‑018‑07590‑3 30510211
    [Google Scholar]
  37. Pang J. Chan D.C. Watts G.F. The knowns and unknowns of contemporary statin therapy for familial hypercholesterolemia. Curr. Atheroscler. Rep. 2020 22 11 64 10.1007/s11883‑020‑00884‑2 32870376
    [Google Scholar]
  38. Pangestika I. Oksal E. Tengku Muhammad T.S. Amir H. Syamsumir D.F. Wahid M.E.A. Andriani Y. Inhibitory effects of tangeretin and trans-ethyl caffeate on the hmg-coa reductase activity: Potential agents for reducing cholesterol levels. Saudi J. Biol. Sci. 2020 27 8 1947 1960 10.1016/j.sjbs.2020.06.010 32714018
    [Google Scholar]
  39. Dias S. Paredes S. Ribeiro L. Drugs involved in dyslipidemia and obesity treatment: Focus on adipose tissue. Int. J. Endocrinol. 2018 2018 1 21 10.1155/2018/2637418 29593789
    [Google Scholar]
  40. Xie L. Zhu G. Shang J. Chen X. Zhang C. Ji X. Zhang Q. Wei Y. An overview on the biological activity and anti-cancer mechanism of lovastatin. Cell. Signal. 2021 87 110122 10.1016/j.cellsig.2021.110122 34438015
    [Google Scholar]
  41. Barale C. Frascaroli C. Senkeev R. Cavalot F. Russo I. Simvastatin effects on inflammation and platelet activation markers in hypercholesterolemia. BioMed Res. Int. 2018 2018 1 11 10.1155/2018/6508709 30402489
    [Google Scholar]
  42. Markowska A. Antoszczak M. Markowska J. Huczyński A. Statins: Hmg-coa reductase inhibitors as potential anticancer agents against malignant neoplasms in women. Pharmaceuticals (Basel) 2020 13 12 422 10.3390/ph13120422 33255609
    [Google Scholar]
  43. Saeedi Saravi S.S. Saeedi Saravi S.S. Arefidoust A. Dehpour A.R. The beneficial effects of hmg-coa reductase inhibitors in the processes of neurodegeneration. Metab. Brain Dis. 2017 32 4 949 965 10.1007/s11011‑017‑0021‑5 28578514
    [Google Scholar]
  44. Shrestha S.K. Statin drug therapy may increase covid-19 infection. Nepalese Medical Journal 2020 3 1 326 327 10.3126/nmj.v3i1.28256
    [Google Scholar]
  45. Mach F. Ray K.K. Wiklund O. Corsini A. Catapano A.L. Bruckert E. De Backer G. Hegele R.A. Hovingh G.K. Jacobson T.A. Krauss R.M. Laufs U. Leiter L.A. März W. Nordestgaard B.G. Raal F.J. Roden M. Santos R.D. Stein E.A. Stroes E.S. Thompson P.D. Tokgözoğlu L. Vladutiu G.D. Gencer B. Stock J.K. Ginsberg H.N. Chapman M.J. Adverse effects of statin therapy: Perception vs. the evidence – focus on glucose homeostasis, cognitive, renal and hepatic function, haemorrhagic stroke and cataract. Eur. Heart J. 2018 39 27 2526 2539 10.1093/eurheartj/ehy182 29718253
    [Google Scholar]
  46. Varghese G.K. Abraham R. Chandran N.N. Habtemariam S. Identification of lead molecules in garcinia mangostana l. against pancreatic cholesterol esterase activity: An in silico approach. Interdiscip. Sci. 2019 11 2 170 179 10.1007/s12539‑017‑0252‑5 28741279
    [Google Scholar]
  47. Lateef T. Naeem S. Qureshi S.A. In-silico studies of hmg-co a reductase inhibitors present in fruits of withania coagulans dunal (solanaceae). Trop. J. Pharm. Res. 2020 19 2 305 312 10.4314/tjpr.v19i2.13
    [Google Scholar]
  48. Leone G. Consumi M. Franzi C. Tamasi G. Lamponi S. Donati A. Magnani A. Rossi C. Bonechi C. Development of liposomal formulations to potentiate natural lovastatin inhibitory activity towards 3-hydroxy-3-methyl-glutaryl coenzyme a (hmg-coa) reductase. J. Drug Deliv. Sci. Technol. 2018 43 107 112 10.1016/j.jddst.2017.09.019
    [Google Scholar]
  49. Xiong Z. Cao X. Wen Q. Chen Z. Cheng Z. Huang X. Zhang Y. Long C. Zhang Y. Huang Z. An overview of the bioactivity of monacolin k / lovastatin. Food Chem. Toxicol. 2019 131 110585 10.1016/j.fct.2019.110585 31207306
    [Google Scholar]
  50. Ju A. Li Y. Qu Z. Li Q. Impact of the herbal breviscapine on the pharmacokinetics of simvastatin in rats: The involvement of cyp3a4. Drug Res. (Stuttg.) 2017 67 5 271 274 10.1055/s‑0042‑118170 28288489
    [Google Scholar]
  51. Frydrychowicz C. Pasieka B. Pierer M. Mueller W. Petros S. Weidhase L. Colchicine triggered severe rhabdomyolysis after long-term low-dose simvastatin therapy: A case report. J. Med. Case Reports 2017 11 1 8 10.1186/s13256‑016‑1169‑z 28049514
    [Google Scholar]
  52. Kogawa A.C. Pires A.E.D.T. Salgado H.R.N. Atorvastatin: A review of analytical methods for pharmaceutical quality control and monitoring. J. AOAC Int. 2019 102 3 801 809 10.5740/jaoacint.18‑0200 30563586
    [Google Scholar]
  53. Gómez-Domínguez E. Gisbert J.P. Moreno-Monteagudo J.A. García-Buey L. Moreno-Otero R. A pilot study of atorvastatin treatment in dyslipemid, non-alcoholic fatty liver patients. Aliment. Pharmacol. Ther. 2006 23 11 1643 1647 10.1111/j.1365‑2036.2006.02926.x 16696815
    [Google Scholar]
  54. Bowman C.M. Ma F. Mao J. Chen Y. Examination of physiologically-based pharmacokinetic models of rosuvastatin. CPT Pharmacometrics Syst. Pharmacol. 2021 10 1 5 17 10.1002/psp4.12571 33220025
    [Google Scholar]
  55. Lamb Y.N. Rosuvastatin/ezetimibe: A review in hypercholesterolemia. Am. J. Cardiovasc. Drugs 2020 20 4 381 392 10.1007/s40256‑020‑00421‑1 32648167
    [Google Scholar]
  56. Asad M. Asdaq S.M.B. Mohzari Y. Alrashed A. Alajami H.N. Aljohani A.O. Mushtawi A.A.A. Alajmi A.N. Alajmi H.N. Imran M. Orfali R. Pharmacokinetic and pharmacodynamic interaction of rosuvastatin calcium with guggulipid extract in rats. Saudi J. Biol. Sci. 2021 28 6 3490 3496 10.1016/j.sjbs.2021.03.015 34121889
    [Google Scholar]
  57. Romani M. Hofer D.C. Katsyuba E. Auwerx J. Niacin: An old lipid drug in a new nad+ dress. J. Lipid Res. 2019 60 4 741 746 10.1194/jlr.S092007 30782960
    [Google Scholar]
  58. Hwang Y-H Fibrate and niacin. Stroke Revisited: Dyslipidemia in Stroke Springer: Singapore 2021 10.1007/978‑981‑16‑3923‑4_9
    [Google Scholar]
  59. Zodda D. Giammona R. Schifilliti S. Treatment strategy for dyslipidemia in cardiovascular disease prevention: Focus on old and new drugs. Pharmacy (Basel) 2018 6 1 10 10.3390/pharmacy6010010 29361723
    [Google Scholar]
  60. Ahangari N. Ghayour Mobarhan M. Sahebkar A. Pasdar A. Molecular aspects of hypercholesterolemia treatment: Current perspectives and hopes. Ann. Med. 2018 50 4 303 311 10.1080/07853890.2018.1457795 29578362
    [Google Scholar]
  61. Feng Y. Li Q. Ou G. Yang M. Du L. Bile acid sequestrants: A review of mechanism and design. J. Pharm. Pharmacol. 2021 73 7 855 861 10.1093/jpp/rgab002 33885783
    [Google Scholar]
  62. Heřmánková E. Žák A. Poláková L. Hobzová R. Hromádka R. Širc J. Polymeric bile acid sequestrants: Review of design, in vitro binding activities, and hypocholesterolemic effects. Eur. J. Med. Chem. 2018 144 300 317 10.1016/j.ejmech.2017.12.015 29275230
    [Google Scholar]
  63. Lin C.W. Lin S.X. Kankala R.K. Busa P. Deng J.P. Lue S.I. Liu C.L. Weng C.F. Lee C.H. Surface-functionalized layered double hydroxide nanocontainers as bile acid sequestrants for lowering hyperlipidemia. Int. J. Pharm. 2020 590 119921 10.1016/j.ijpharm.2020.119921 33027632
    [Google Scholar]
  64. Thobani A. Hassen L. Mehta L.S. Agarwala A. Management of hypercholesterolemia in pregnant women with atherosclerotic cardiovascular disease. Curr. Atheroscler. Rep. 2021 23 10 58 10.1007/s11883‑021‑00957‑w 34345940
    [Google Scholar]
  65. Ibrahim B.M.M. Salama A.A.A. Yassin N.A. Mahmoud S.S. Gamal El-Din A.A. Shaffie N.A. Potential effects of glimepiride and a herbal mixture on hyperglycaemia, hypercholesterolaemia and oxidative stress. Plant Arch. 2020 20 2 2242 2248
    [Google Scholar]
  66. Iyer D. K patil u. structural elucidation of isolated phytochemicals from selected medicinal plants with antihyperlipidemic activity and development of polyherbal formulation with densitometric analysis of isolated phytoconstituents. Indian J. Pharm. Educ. Res. 2020 54 2 316 329 10.5530/ijper.54.2s.89
    [Google Scholar]
  67. Park J.Y. Kwon Y.W. Kim S.A. Park S.D. Kim C.H. Kim J.H. Lee J.H. Polyherbal formula sc-e3 inhibits rheumatoid arthritis activity in a mouse model of type-ii collagen-induced arthritis. J. Integr. Med. 2021 19 3 265 273 10.1016/j.joim.2020.12.001 33349609
    [Google Scholar]
  68. Heshami N. Mohammadali S. Komaki A. Tayebinia H. Karimi J. Abbasi Oshaghi E. Hashemnia M. Khodadadi I. Favorable effects of dill tablets and ocimum basilicum l. extract on learning, memory, and hippocampal fatty acid composition in hypercholesterolemic rats. Iran. J. Basic Med. Sci. 2021 24 3 300 311 10.22038/ijbms.2021.49013.11230 33995941
    [Google Scholar]
  69. Maheshwar V. Phytochemicals effective in lowering low-density lipoproteins. J. Biol. Eng. Res. Rev. 2020 7 1 16 23
    [Google Scholar]
  70. Mohamadpour M. Shahmir P. Asadi M. Asadi S. Amraei M. Investigating the effect of saffron petal extract on antioxidant activity and inflammatory markers in hypercholesterolemic rats. Entomol Appl Sci Let. 2020 7 3 13 22
    [Google Scholar]
  71. Kim H-K. The inhibiton effects of hypercholesterolemia and platelet in fermented and non-fermented preparation of garlic. J. Agric. Food Sci. 2019 11 4 1 10
    [Google Scholar]
  72. Srinivasan K. Nutraceutical activities of turmeric (curcuma longa) and its bioactive constituent curcumin. Science of Spices and Culinary Herbs - Latest Laboratory, Pre-clinical, and Clinical Studies 2019 1 55 73 10.2174/9781681087511119010005
    [Google Scholar]
  73. Melani B. Vikasari S.N. Potential of ginger (zingiber officinale), as anti-hypercholesterolemia to prevent metabolic syndrome: Systematic literature review. Journal of Science and Technology Research for Pharmacy 2022 1 2 67 71 10.15294/jstrp.v1i2.49573
    [Google Scholar]
  74. Choudhary M. Bano S. Tomar U.K. Biannual seed yield, viability and germination in commiphora wightii (arnott) bhandari. Proceedings of the 1st International Electronic Conference on Plant Science, 1–15 December 2020, Basel, Switzerland 2020 10.3390/IECPS2020‑08889
    [Google Scholar]
  75. Sabarathinam S. Vijayakumar T.M. Isomers of guggulsterone in hyperlipidemia. Obes. Med. 2021 22 100326 10.1016/j.obmed.2021.100326
    [Google Scholar]
  76. Protic O. Bonfigli A.R. Antonicelli R. Nutraceutical combinations in hypercholesterolemia: Evidence from randomized, placebo-controlled clinical trials. Nutrients 2021 13 9 3128 10.3390/nu13093128 34579005
    [Google Scholar]
  77. Singh V.K. Soni N. Efficacy and advancement of terminalia arjuna in indian herbal drug research: A review. Trends Appl. Sci. Res. 2019 14 4 233 242 10.3923/tasr.2019.233.242
    [Google Scholar]
  78. Jamal A. International journal of multidisciplinary sciences and arts embracing nature’s therapeutic potential: Herbal medicine. Int. J. Multidiscip. Sci. 2023 2 117 126 10.47709/ijmdsa.vxix.xxxx
    [Google Scholar]
  79. Mukhopadhyay S. Holla B. Bhargav H. Ramakrishna K.K. Chikkanna U. Varambally S. Gangadhar B.N. Integrative medicine as “medicine”: A perspective. Integr. Med. Res. 2022 1 1 86 94 10.1089/imr.2022.0054
    [Google Scholar]
  80. Zhou X. Seto S.W. Chang D. Kiat H. Razmovski-Naumovski V. Chan K. Bensoussan A. Synergistic effects of chinese herbal medicine: A comprehensive review of methodology and current research. Front. Pharmacol. 2016 7 201 10.3389/fphar.2016.00201 27462269
    [Google Scholar]
  81. Shi P. Lin X. Yao H. A comprehensive review of recent studies on pharmacokinetics of traditional chinese medicines (2014–2017) and perspectives. Drug Metab. Rev. 2018 50 2 161 192 10.1080/03602532.2017.1417424 29258334
    [Google Scholar]
  82. Tang L.Q. Wei W. Chen L.M. Liu S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J. Ethnopharmacol. 2006 108 1 109 115 10.1016/j.jep.2006.04.019 16759828
    [Google Scholar]
  83. Kim M. Kim Y. Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr. Res. Pract. 2010 4 3 191 195 10.4162/nrp.2010.4.3.191 20607063
    [Google Scholar]
  84. Chen Y. Chen X. Luo G. Zhang X. Lu F. Qiao L. He W. Li G. Zhang Y. Discovery of potential inhibitors of squalene synthase from traditional chinese medicine based on virtual screening and in vitro evaluation of lipid-lowering effect. Molecules 2018 23 5 1040 10.3390/molecules23051040 29710800
    [Google Scholar]
  85. Huang J. Wang Y. Ying C. Liu L. Lou Z. Effects of mulberry leaf on experimental hyperlipidemia rats induced by high‑fat diet. Exp. Ther. Med. 2018 16 2 547 556 10.3892/etm.2018.6254 30116313
    [Google Scholar]
  86. Yang X. He T. Han S. Zhang X. Sun Y. Xing Y. Shang H. The role of traditional chinese medicine in the regulation of oxidative stress in treating coronary heart disease. Oxid. Med. Cell. Longev. 2019 2019 1 13 10.1155/2019/3231424 30918578
    [Google Scholar]
  87. El-Tantawy W.H. Temraz A. Natural products for controlling hyperlipidemia: Review. Arch. Physiol. Biochem. 2019 125 2 128 135 10.1080/13813455.2018.1441315 29457523
    [Google Scholar]
  88. Sultana F. Arora B. Arora S. K. sindhu r, sultana f. comprehensive review on ayurvedic formulations and herbal medicines for treatment of rheumatoid arthritis. J. Univ. Shanghai Sci. Technol. 2021 23 7 772 790 10.51201/JUSST/21/07218
    [Google Scholar]
  89. Manglakant Jha Atul Kumar Singh P.K. Kumar A. Role of ayurveda in public health: A critical review. International Journal of Research in AYUSH and Pharmaceutical Sciences 2022 5 12 595 599 10.47070/ijraps.v5i12.123
    [Google Scholar]
  90. Osuocha K.U. Iwueke A.V. Chukwu E.C. Phytochemical profiling, body weight effect and anti-hypercholesterolemia potentials of cnidoscolus aconitifolius leaf extracts in male albino rat. J. Pharmacogn. Phytother. 2020 12 2 19 27 10.5897/JPP2016.0436
    [Google Scholar]
  91. Kumar Giri R. Kumar Kanungo S. Kumar Patro S. Sahoo M. Panda D.S. Hypolipidemic effect of prepared polyherbal formulations in wistar albino rats. Research Journal of Pharmacy and Technology 2021 14 8 4314 4320 10.52711/0974‑360X.2021.00749
    [Google Scholar]
  92. Akhani S.P. Gotmare S.R A comparative study of ashwagandha (withania somnifera) root powder and arjuna (terminalia arjuna) bark powder the herbs of medicinal importance in ayurveda on total serum cholesterol in-vitro. International Journal of Science and Research Archive 2022 7 2 385 389 10.30574/ijsra.2022.7.2.0298
    [Google Scholar]
  93. Seetharaman M. Krishnan G. Schneider R.H. The future of medicine: Frontiers in integrative health and medicine. Medicina (Kaunas) 2021 57 12 1303 10.3390/medicina57121303 34946248
    [Google Scholar]
  94. Gyawali D. Vohra R. Orme-Johnson D. Ramaratnam S. Schneider R.H. A systematic review and meta-analysis of ayurvedic herbal preparations for hypercholesterolemia. Medicina (Kaunas) 2021 57 6 546 10.3390/medicina57060546 34071454
    [Google Scholar]
  95. Shaik J. Khan Z. Antihyperlipidemic activity of commiphora mukul against atherogenic diet-induced hyperlipidemia in experimental rats. Asian J. Pharm. Clin. Res. 2018 11 6 386 10.22159/ajpcr.2018.v11i6.24800
    [Google Scholar]
  96. Choudhary S. Kaurav H. Chaudhary G. Wheatgrass (triticum aestivum linn.): A potential substituteof human bloodin traditional system of medicine. Asian J. Pharm. Clin. Res. 2021 14 6 43 47 10.22159/ajpcr.2021.v14i6.41575
    [Google Scholar]
  97. Dev S.K. Choudhury P.K. Srivastava R. Sharma M. Antimicrobial, anti-inflammatory and wound healing activity of polyherbal formulation. Biomed. Pharmacother. 2019 111 555 567 10.1016/j.biopha.2018.12.075 30597309
    [Google Scholar]
  98. Shaikh A.S. Thomas A.B. Chitlange S.S. Herb–drug interaction studies of herbs used in treatment of cardiovascular disorders—a narrative review of preclinical and clinical studies. Phytother. Res. 2020 34 5 1008 1026 10.1002/ptr.6585 31908085
    [Google Scholar]
  99. Karole S. Shrivastava S. Thomas S. Soni B. Khan S. Dubey J. Dubey S.P. Khan N. Jain D.K. Polyherbal formulation concept for synergic action: A review. J. Drug Deliv. Ther. 2019 9 1-s 453 466 10.22270/jddt.v9i1‑s.2339
    [Google Scholar]
  100. Pande V.B. Chandel S.S. Soni V. Synergistic and safe antidiabetic effect of polyherbal formulation: Comprehensive overview. Int. J. Life Sci. Pharma Res. 2021 11 2 51 57 10.22376/ijpbs/lpr.2021.11.2.P51‑57
    [Google Scholar]
  101. Khoshnood S. Heidary M. Asadi A. Soleimani S. Motahar M. Savari M. Saki M. Abdi M. A review on mechanism of action, resistance, synergism, and clinical implications of mupirocin against staphylococcus aureus. Biomed. Pharmacother. 2019 109 1809 1818 10.1016/j.biopha.2018.10.131 30551435
    [Google Scholar]
  102. Banerjee S. Bhattacharjee P. Kar A. Mukherjee P.K. Lc–ms/ms analysis and network pharmacology of trigonella foenum-graecum – a plant from ayurveda against hyperlipidemia and hyperglycemia with combination synergy. Phytomedicine 2019 60 152944 10.1016/j.phymed.2019.152944 31178235
    [Google Scholar]
  103. Devanathadesikan Seshadri V. Vijayaraghavan P. Kim Y.O. Kim H.J. Ahmed Al-Ghamdi A. Elshikh M.S. Al-Dosary M.A. Alsubaie Q.D. in vitro antioxidant and cytotoxic activities of polyherbal extracts from vetiveria zizanioides, trichosanthes cucumerina, and mollugo cerviana on hela and mcf-7 cell lines. Saudi J. Biol. Sci. 2020 27 6 1475 1481 10.1016/j.sjbs.2020.04.005 32489283
    [Google Scholar]
  104. Hussain S.A. Hameed A. Nazir Y. Naz T. Wu Y. Suleria H.A.R. Song Y. Microencapsulation and the characterization of polyherbal formulation (phf) rich in natural polyphenolic compounds. Nutrients 2018 10 7 843 10.3390/nu10070843 29958444
    [Google Scholar]
  105. Yu J-J. Su J. Yan M-Q. Lou Z-H. Lyu G-Y. [correlation between lipid-lowering efficacy and components of pericarpium citri reticulatae.]. Zhongguo Zhongyao Zazhi 2019 44 15 3335 3342 31602892
    [Google Scholar]
  106. Patočka J. Navrátilová Z. Ovando M. Biologically active compounds of knotweed (reynoutria spp.). Vojen. Zdrav. Listy 2017 86 1 17 31 10.31482/mmsl.2017.004
    [Google Scholar]
  107. Zhang Z. Zhang D. Du B. Chen Z. Hyperoside inhibits the effects induced by oxidized low-density lipoprotein in vascular smooth muscle cells via oxldl-lox-1-erk pathway. Mol. Cell. Biochem. 2017 433 1-2 169 176 10.1007/s11010‑017‑3025‑x 28434118
    [Google Scholar]
  108. Variya B.C. Bakrania A.K. Chen Y. Han J. Patel S.S. Suppression of abdominal fat and anti-hyperlipidemic potential of emblica officinalis: Upregulation of ppars and identification of active moiety. Biomed. Pharmacother. 2018 108 1274 1281 10.1016/j.biopha.2018.09.158 30372828
    [Google Scholar]
  109. Jin Z. Borjihan G. Zhao R. Sun Z. Hammond G.B. Uryu T. Antihyperlipidemic compounds from the fruit of piper longum l. Phytother. Res. 2009 23 8 1194 1196 10.1002/ptr.2630 19172581
    [Google Scholar]
  110. Meriga B. Parim B. Chunduri V.R. Naik R.R. Nemani H. Suresh P. Ganapathy S. Uddandrao V.V.S. Antiobesity potential of piperonal: Promising modulation of body composition, lipid profiles and obesogenic marker expression in hfd-induced obese rats. Nutr. Metab. (Lond.) 2017 14 1 72 10.1186/s12986‑017‑0228‑9 29176994
    [Google Scholar]
  111. Maruthappan V. Shree K.S. Hypolipidemic activity of haritaki (terminalia chebula) in atherogenic diet induced hyperlipidemic rats. J. Adv. Pharm. Technol. Res. 2010 1 2 229 235 10.4103/2231‑4040.72264 22247850
    [Google Scholar]
  112. Bao L.D. Wang Y. Ren X.H. Ma R.L. Lv H.J. Agula B. Hypolipidemic effect of safflower yellow and primary mechanism analysis. Genet. Mol. Res. 2015 14 2 6270 6278 10.4238/2015.June.9.14 26125829
    [Google Scholar]
  113. Kao E.S. Yang M.Y. Hung C.H. Huang C.N. Wang C.J. Polyphenolic extract from hibiscus sabdariffa reduces body fat by inhibiting hepatic lipogenesis and preadipocyte adipogenesis. Food Funct. 2016 7 1 171 182 10.1039/C5FO00714C 26489044
    [Google Scholar]
  114. Shaila H.P. Udupa S.L. Udupa A.L. Hypolipidemic activity of three indigenous drugs in experimentally induced atherosclerosis. Int. J. Cardiol. 1998 67 2 119 124 10.1016/S0167‑5273(98)00281‑2 9891944
    [Google Scholar]
  115. Niyomchan A. Chatgat W. Chatawatee B. Keereekoch T. Jaisamut P. Chusri S. Kunworarath N. Supplementation with the traditional thai polyherbal medicine nawatab ameliorates lipid profiles in high-fat diet-induced hyperlipidemic rats. Evid. Based Complement. Alternat. Med. 2022 2022 1 11 10.1155/2022/8574756 36452138
    [Google Scholar]
  116. Han L-K. Kimura Y. Kawashima M. Takaku T. Taniyama T. Hayashi T. Zheng Y-N. Okuda H. Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor. Int. J. Obes. 2001 25 10 1459 1464 10.1038/sj.ijo.0801747 11673766
    [Google Scholar]
  117. Guo Y. Wu G. Su X. Yang H. Zhang J. Antiobesity action of a daidzein derivative on male obese mice induced by a high-fat diet. Nutr. Res. 2009 29 9 656 663 10.1016/j.nutres.2009.09.005 19854381
    [Google Scholar]
  118. Razavi B.M. Hosseinzadeh H. A review of the effects of nigella sativa l. and its constituent, thymoquinone, in metabolic syndrome. J. Endocrinol. Invest. 2014 37 11 1031 1040 10.1007/s40618‑014‑0150‑1 25125023
    [Google Scholar]
  119. Niknam R. Kiani H. Mousavi Z.E. Mousavi M. Extraction, detection, and characterization of various chemical components of trigonella foenum-graecum l. (fenugreek) known as a valuable seed in agriculture. Fenugreek Singapore Springer 2021 189 217 10.1007/978‑981‑16‑1197‑1_9
    [Google Scholar]
  120. Srinivasa U.M. Naidu M.M. Fenugreek (trigonella foenum-graecum l.) seed: Promising source of nutraceutical. Studies in Natural Products Chemistry 2021 71 141 184 10.1016/B978‑0‑323‑91095‑8.00014‑3
    [Google Scholar]
  121. Majdalawieh A.F. Yousef S.M. Abu-Yousef I.A. Thymoquinone, a major constituent in nigella sativa seeds, is a potential preventative and treatment option for atherosclerosis. Eur. J. Pharmacol. 2021 909 174420 10.1016/j.ejphar.2021.174420 34391767
    [Google Scholar]
  122. Khan F. Sarker M.M.R. Ming L.C. Mohamed I.N. Zhao C. Sheikh B.Y. Tsong H.F. Rashid M.A. Comprehensive review on phytochemicals, pharmacological and clinical potentials of gymnema sylvestre. Front. Pharmacol. 2019 10 1223 10.3389/fphar.2019.01223 31736747
    [Google Scholar]
  123. Kumar P. Kumar Tripathi A. Mishra J. Dash A.K. Herbal and polyherbal formulation-an approach of indian traditional medicinal system. Volatiles & Essent Oils. 2021 8 6 6501 6510
    [Google Scholar]
  124. Wang Z. Zhao S. Tao S. Hou G. Zhao F. Tan S. Meng Q. dioscorea spp.: Bioactive compounds and potential for the treatment of inflammatory and metabolic diseases. Molecules 2023 28 6 2878 10.3390/molecules28062878 36985850
    [Google Scholar]
  125. Yin G. Liang H. Sun W. Zhang S. Feng Y. Liang P. Chen S. Liu X. Pan W. Zhang F. Shuangyu tiaozhi decoction alleviates non-alcoholic fatty liver disease by improving lipid deposition, insulin resistance, and inflammation in vitro and in vivo. Front. Pharmacol. 2022 13 1016745 10.3389/fphar.2022.1016745 36506575
    [Google Scholar]
  126. Ba Tuyen P. Huyen T.T. Hang D.T.T. Thi Van Anh P. A novel herbal medicine for dyslipidemia: Assessments in experimental models. Evid. Based Complement. Alternat. Med. 2021 2021 1 5 10.1155/2021/5529744 33976702
    [Google Scholar]
  127. Jaisamut P. Tohlang C. Wanna S. Thanakun A. Srisuwan T. Limsuwan S. Rattanachai W. Suwannachot J. Chusri S. Clinical evaluation of a novel tablet formulation of traditional thai polyherbal medicine named nawametho in comparison with its decoction in the treatment of hyperlipidemia. Evid. Based Complement. Alternat. Med. 2022 2022 1 10 10.1155/2022/2530266 35966727
    [Google Scholar]
  128. Rajesham V.V. Bhikshapathi D.V.R.N. Anti hyperlipidemic potential of polyherbal formulation in wistar albino rats. Int. J. Pharm. Sci. Drug Res. 2018 10 144 149 10.25004/IJPSDR.2018.100307
    [Google Scholar]
  129. Dahanukar S.A. Kulkarni R.A. Rege N.N. Pharmacology of medicinal plants and natural products. Indian J. Pharmacol. 2000 32 81 118
    [Google Scholar]
  130. Naseem A. Akhtar S. Manzoor M.F. Sameen A. Layla A. Afzal K. Karrar E. Rahaman A. Ismail T. Ahmad N. Siddeeg A. Effect of herbal formulation intake on health indices in albino wistar rat model. Food Sci. Nutr. 2021 9 1 441 448 10.1002/fsn3.2009 33473305
    [Google Scholar]
  131. de las Heras N. Valero-Muñoz M. Martín-Fernández B. Ballesteros S. López-Farré A. Ruiz-Roso B. Lahera V. Molecular factors involved in the hypolipidemic- and insulin-sensitizing effects of a ginger ( zingiber officinale roscoe) extract in rats fed a high-fat diet. Appl. Physiol. Nutr. Metab. 2017 42 2 209 215 10.1139/apnm‑2016‑0374 28125276
    [Google Scholar]
  132. Awan K.A. Butt M.S. Ashfaq F. Munir H. Suleria H.A.R. Prophylactic potential of conventional and supercritical garlic extracts to alleviate diet related malfunctions. Recent Pat. Food Nutr. Agric. 2019 10 1 34 47 10.2174/2212798410666180724103827 30039769
    [Google Scholar]
  133. Reddy Dachani S Nelson K. Lipid lowering activity of a polyherbal formulation on triton wr-1339 (tyloxapol) induced hyperlipidemia in wistar rats. Indo Am. J. Pharm. Res. 2018 8 1053 1059
    [Google Scholar]
  134. Khanal H. Joshi R.K. Upadhyay A. A review of an ayurvedic polyherbal formulation mustadi kwatha. J. Drug Deliv. Ther. 2020 10 5-s 267 272 10.22270/jddt.v10i5‑s.4448
    [Google Scholar]
  135. Varsakiya J. Dinesh D. Kathad D. Scholar M.D. I role of ayurvedic remedies in management of dyslipidemia-a case report. IJA-CARE. 2022 6 1 14 22
    [Google Scholar]
  136. Arya G. Pandey P. Tewari P. A review-effect of mustadi kwath in madhumeha. World J. Pharm. Res. 2021 10 105 109 10.20959/wjpr202110‑21103
    [Google Scholar]
  137. Wasekar S.G. Belge R. Anti-hyperlipidemic and anti-oxidant activity of shuladavanala rasa (2) w.s.r to hrutshula. World J. Pharm. Res. 2019 8 566 575
    [Google Scholar]
  138. Kanwar A. Kumar Sharma A. Dhaked P. Bhatt A. Scholar P.G. A review on arogyavardhini vati: A herbo-mineral formulation. World J. Pharm. Res. 2015 11 201 207 10.20959/wjpr20229‑24592
    [Google Scholar]
  139. Amanagi S. Guise Prakash Khaparde P. January S. Amanagi N. Review on vata gajendra singha rasa: Kharaliya rasayana. World J. Pharm. Res. 2021 10 14 450 456 10.20959/wjpr202114‑22285
    [Google Scholar]
  140. Malik A. Mehmood M.H. Akhtar M.S. Haider G. Gilani A.H. Studies on antihyperlipidemic and endothelium modulatory activities of polyherbal formulation (pol4) and its ingredients in high fat diet-fed rats. Pak. J. Pharm. Sci. 2017 30 1 Suppl. 295 301 28625957
    [Google Scholar]
  141. Hasheminasab F.S. Tajadini H. Setayesh M. An evidence-based study on pharmacological treatments of non-alcoholic fatty liver disease based on traditional persian medicine. Curr. Tradit. Med. 2020 6 3 188 202 10.2174/2215083805666190902114137
    [Google Scholar]
  142. Mehmood M.H. Malik A. Shoaib Akhtar M. Haider G. Hassan Gilani A. Antihyperglycaemic, antihyperlipidaemic, and antihypertensive effect of a polyherbal formulation in alloxan-induced diabetic rats. Farmacia 2020 68 5 882 890 10.31925/farmacia.2020.5.15
    [Google Scholar]
  143. Tanisha V.S. Amelioration of hyperglycemia and hyperlipidemia in a high-fat diet-fed mice by supplementation of a developed optimized polyherbal formulation. 3 Biotech. 2022 12 10 251 10.1007/s13205‑022‑03309‑w
    [Google Scholar]
  144. Tanisha V.S. Venkategowda S. Majumdar M. Response surface methodology based development of an optimized polyherbal formulation and evaluation of its anti-diabetic and anti-obesity potential in high-fat diet-induced obese mice. J. Tradit. Complement. Med. 2024 14 1 70 81 10.1016/j.jtcme.2023.07.002 38223811
    [Google Scholar]
  145. Jansen C. Baker J.D. Kodaira E. Ang L. Bacani A.J. Aldan J.T. Shimoda L.M.N. Salameh M. Small-Howard A.L. Stokes A.J. Turner H. Adra C.N. Medicine in motion: Opportunities, challenges and data analytics-based solutions for traditional medicine integration into western medical practice. J. Ethnopharmacol. 2021 267 113477 10.1016/j.jep.2020.113477 33098971
    [Google Scholar]
  146. Bhope S. Nagore D. Kuber V. Gupta P. Patil M. Design and development of a stable polyherbal formulation based on the results of compatibility studies. Pharmacognosy Res. 2011 3 2 122 129 10.4103/0974‑8490.81960 21772756
    [Google Scholar]
  147. Darla R. Keshetti S. Design, formulation and evaluation of a polyherbal gel for its wound. Medicine (Baltimore) 2013 10 226 232
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838314259240911045731
Loading
/content/journals/ctm/10.2174/0122150838314259240911045731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test