Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

The Cucurbitaceae family has been well-known since ancient times for its use in daily food preparations. Various traditional medicinal systems have also recognized its therapeutic importance. Its significance has also been established by modern techniques.

Objective

The current review aims to emphasize the glycosides of the Cucurbitaceae family in terms of their source, structures, extraction media, and bioactivities in various therapeutic areas like anti-inflammatory, anti-bacterial, anti-cancerous, anti-diabetic, and cardiac models. Glycosides of Cucurbitaceae have been studied extensively. However, considering the vastness of the diversity among this family; there are still various avenues in which further research work is needed.

Methods

For the present review, we used Elsevier-ScienceDirect, SpringerLink, PubMed, ArticlesPlus, Semantic Scholar, and Google Scholar to conduct a literature search.

Results

Cucurbitaceae is enriched with secondary metabolites, mainly glycosides. The occurrence of glycoside with its species, along with plant parts, is crucial and elaborately covered. It also captures the extraction system. The structure of selected glycosides is represented along with respective references. Various studies elaborate on the pharmacological significance of the extracts in diverse therapeutic areas.

Conclusion

This review provides extensive aspects about the glycosides of the family Cucurbitaceae and will help in further exploration of extraction, isolation, and bioactivity studies of this important class of compounds from one of the largest families, ., Cucurbitaceae. It reiterates the need for further exploration in standardization along with extensive safety and efficacy studies.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838293392231227065022
2025-01-01
2025-08-19
The full text of this item is not currently available.

References

  1. SalehiB. QuispeC. Sharifi-RadJ. Antioxidant potential of family Cucurbitaceae with special emphasis on Cucurbita genus: A key to alleviate oxidative stress‐mediated disorders.Phytother. Res.20213573533355710.1002/ptr.7045 33590924
    [Google Scholar]
  2. BusuiocA.C. BotezatuA.V.D. FurduiB. Comparative study of the chemical compositions and antioxidant activities of fresh juices from Romanian Cucurbitaceae varieties.Molecules20202522546810.3390/molecules25225468 33238389
    [Google Scholar]
  3. MishraT. KondepatiA.K. PasumarthiS.D. ChilanaG.S. DevabhaktuniS. SinghP.K. Phytotherapeutic antioxidants.Asian J. Med. Sci.20201129610010.3126/ajms.v11i2.26465
    [Google Scholar]
  4. RajasreeR. SibiP. FrancisF. WilliamH. Phytochemicals of Cucurbitaceae family—A review.Int. J. Pharmacogn. Phytochem. Res.20168113123
    [Google Scholar]
  5. SalehiB Sharifi-Rad , Capanoglu , et al. Cucurbita plants: From farm to industry.Appl. Sci.2019916338710.3390/app9163387
    [Google Scholar]
  6. RolnikA. KowalskaI. SoluchA. StochmalA. OlasB. Comparative phytochemical, antioxidant and haemostatic studies of preparations from selected vegetables from Cucurbitaceae family.Molecules20202518432610.3390/molecules25184326 32967295
    [Google Scholar]
  7. SenonerT. DichtlW. Oxidative stress in cardiovascular diseases: Still a therapeutic target?Nutrients2019119209010.3390/nu11092090 31487802
    [Google Scholar]
  8. ChauhanN.S. PorteS. JoshiV. ShahK. Plants’ steroidal saponins - A review on its pharmacology properties and analytical techniques.World J. Tradit. Chin. Med.20228335038510.4103/2311‑8571.353503
    [Google Scholar]
  9. SharmaK. KaurR. KumarS. Saponins: A concise review on food related aspects, applications and health implications.Food Chem. Adv.2023210019110.1016/j.focha.2023.100191
    [Google Scholar]
  10. RoopashreeK. NaikD. Saponins: Properties, applications and as insecticides: A review.Biosci. Trends20198114
    [Google Scholar]
  11. NwaforF.I. OrabuezeI.C. Role of phytochemistry in plant classification: Phytochemotaxonomy.Phytochemistry.Apple Academic Press201826
    [Google Scholar]
  12. ArceuszA. RadeckaI. WesolowskiM. Identification of diversity in elements content in medicinal plants belonging to different plant families.Food Chem.20101201525810.1016/j.foodchem.2009.09.068
    [Google Scholar]
  13. FrodinD.G. History and concepts of big plant genera.Taxon200453375377610.2307/4135449
    [Google Scholar]
  14. HollmanA. Plants and cardiac glycosides.Heart198554325826110.1136/hrt.54.3.258 4041297
    [Google Scholar]
  15. KytidouK. ArtolaM. OverkleeftH.S. AertsJ.M.F.G. Plant glycosides and glycosidases: A treasure-trove for therapeutics.Front Plant Sci20201135710.3389/fpls.2020.00357 32318081
    [Google Scholar]
  16. Muñoz-LabradorA. Hernandez-HernandezO. MorenoF.J. A review of the state of sweeteners science: the natural versus artificial non-caloric sweeteners debate. Stevia rebaudiana and Siraitia grosvenorii into the spotlight.Crit. Rev. Biotechnol.202312310.1080/07388551.2023.2254929
    [Google Scholar]
  17. FrancisG. KeremZ. MakkarH.P.S. BeckerK. The biological action of saponins in animal systems: A review.Br. J. Nutr.200288658760510.1079/BJN2002725 12493081
    [Google Scholar]
  18. SpargS.G. LightM.E. van StadenJ. Biological activities and distribution of plant saponins.J. Ethnopharmacol.2004942-321924310.1016/j.jep.2004.05.016 15325725
    [Google Scholar]
  19. MaJ. YangH. ChenY. FengX. WuC. LongF. Purified saponins in Momordica charantia treated with high hydrostatic pressure and ionic liquid-based aqueous biphasic systems.Foods20221113193010.3390/foods11131930 35804746
    [Google Scholar]
  20. NhiemN.X. KiemP.V. MinhC.V. Cucurbitane‐type triterpene glycosides from the fruits of Momordica charantia.Magn. Reson. Chem.201048539239610.1002/mrc.2582 20225243
    [Google Scholar]
  21. JeffreyC. A review of the Cucurbitaceae.Bot. J. Linn. Soc.198081323324710.1111/j.1095‑8339.1980.tb01676.x
    [Google Scholar]
  22. RolnikA. OlasB.J.N. Vegetables from the Cucurbitaceae family and their products: Positive effect on human health.Nutrition202078110788
    [Google Scholar]
  23. JamunaS. KarthikaK. PaulsamySJ J R B. Phytochemical and pharmacological properties of certain medicinally important species of Cucurbitaceae family–a review.J. Biol. Res.2015518351849
    [Google Scholar]
  24. RamalheteC. GonçalvesB.M.F. BarbosaF. DuarteN. FerreiraM.J.U. Momordica balsamina: Phytochemistry and pharmacological potential of a gifted species.Phytochem. Rev.202221261764610.1007/s11101‑022‑09802‑7 35153639
    [Google Scholar]
  25. AhmedA. SaleemM.A. SaeedF. Gynostemma pentaphyllum an immortal herb with promising therapeutic potential: A comprehensive review on its phytochemistry and pharmacological perspective.Int. J. Food Prop.202326180883210.1080/10942912.2023.2185566
    [Google Scholar]
  26. DeokateU. KhadabadiS. Pharmacology and phytochemistry of Coccinia indica.J. Pharmacogn. Phytother.2011315515910.5897/JPP11.005
    [Google Scholar]
  27. NguyenN.H. HaT.K.Q. YangJ.L. PhamH.T.T. OhW.K. Triterpenoids from the genus Gynostemma: Chemistry and pharmacological activities.J. Ethnopharmacol.202126811357410.1016/j.jep.2020.113574 33186700
    [Google Scholar]
  28. IwamotoM. OkabeH. YamauchiT. Studies on the constituents of momordica cochinchinensis spreng. II. Isolation and characterization of the root saponins, Momordins I, II and III.Chem. Pharm. Bull.19853311710.1248/cpb.33.1
    [Google Scholar]
  29. CuiW.Y. JinY. LiuH. Dammarane-type saponins from Gynostemma pentaphyllum and their cytotoxicities.Nat. Prod. Res.202135224433444110.1080/14786419.2020.1723093 32037885
    [Google Scholar]
  30. NagaoT. TanakaR. OkabeH. YamauchiT. Studies on the constituents of Thladiantha dubia Bunge. II. Structures of dubiosides D, E and F, neutral saponins of quillaic acid isolated from the tuber.Chem. Pharm. Bull.199038237838110.1248/cpb.38.378
    [Google Scholar]
  31. NagaoT. OkabeH. MihashiK. YamauchiT. Studies on the constituents of Thladiantha dubia BUNGE. I. The structures of dubiosides A, B and C, the quillaic acid glucuronide saponins isolated from the tuber.Chem. Pharm. Bull.198937492592910.1248/cpb.37.925
    [Google Scholar]
  32. OkabeH. MiyaharaY. YamauchiT. MiyaharaK. KawasakiT. Studies on the constituents of Momordica charantia L. I. Isolation and characterization of momordicosides A and B, glycosides of a pentahydroxy-cucurbitane triterpene.Chem. Pharm. Bull.19802892753276210.1248/cpb.28.2753
    [Google Scholar]
  33. MiyaharaY. OkabeH. YamauchiT. Studies on the constituents of Momordica charantia L. II. Isolation and characterization of minor seed glycosides, momordicosides C, D and E.Chem. Pharm. Bull.19812961561156610.1248/cpb.29.1561
    [Google Scholar]
  34. OkabeH. MiyaharaY. YamauchiT. Structures of momordicosides F1, F2, G, I, K and L, novel cucurbitacins in the fruits of Momordica charantia L. J.Tetrahedron Lett.198223778010.1016/S0040‑4039(00)97537‑3
    [Google Scholar]
  35. TanM.J. YeJ.M. TurnerN. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway.Chem. Biol.200815326327310.1016/j.chembiol.2008.01.013 18355726
    [Google Scholar]
  36. NagaiM. IzawaK. NagumoS. SakuraiN. InoueT. Two glycosides of a novel dammarane alcohol from Gynostemma pentaphyllum.Chem. Pharm. Bull.198129377978310.1248/cpb.29.779
    [Google Scholar]
  37. ChenJ.C. ChiuM.H. NieR.L. CordellG.A. QiuS.X. Cucurbitacins and cucurbitane glycosides: structures and biological activities.Nat. Prod. Rep.200522338639910.1039/b418841c 16010347
    [Google Scholar]
  38. ChuD. YaseenA. WangL. Two new cucurbitane glycosides from the fruits of siraitia grosvenori.Chem. Pharm. Bull.201967772172410.1248/cpb.c19‑00210 30982796
    [Google Scholar]
  39. De TommasiN. De SimoneF. SperanzaG. PizzaC. Studies on the constituents of Cyclanthera pedata (Caigua) seeds: Isolation and characterization of six new cucurbitacin glycosides.J. Agric. Food Chem.19964482020202510.1021/jf950532c
    [Google Scholar]
  40. SuzukiY.A. MurataY. InuiH. SugiuraM. NakanoY. Triterpene glycosides of Siraitia grosvenori inhibit rat intestinal maltase and suppress the rise in blood glucose level after a single oral administration of maltose in rats.J. Agric. Food Chem.20055382941294610.1021/jf0478105 15826043
    [Google Scholar]
  41. TakasakiM. Anticarcinogenic activity of natural sweeteners, cucurbitane glycosides, from Momordica grosvenori.Cancer Lett.200319813742
    [Google Scholar]
  42. ChekrounE. Antioxidant activity and phytochemical screening of two Cucurbitaceae: Citrullus colocynthis fruits and bryonia dioica roots.Asian Pac. J. Trop. Dis.20155632637
    [Google Scholar]
  43. JiaZ. YangX. A minor, sweet cucurbitane glycoside from Siraitia grosvenorii.Nat. Prod. Commun.2009410.1177/1934578X0900400606
    [Google Scholar]
  44. LiD. IkedaT. MatsuokaN. Cucurbitane glycosides from unripe fruits of Lo Han Kuo (Siraitia grosvenori).Chem. Pharm. Bull.200654101425142810.1248/cpb.54.1425 17015982
    [Google Scholar]
  45. FioriG.M.L. DemarqueD.P. PereiraA.M.S. KleinV.L.G. LopesN.P. Cucurbitane triterpene glycosides from the roots of wilbrandia hibiscoides.Rev. Bras. Farmacogn.202131571571910.1007/s43450‑021‑00172‑3
    [Google Scholar]
  46. HaqueM.E. AlamM.B. HossainM.S. The efficacy of cucurbitane type triterpenoids, glycosides and phenolic compounds isolated from Momordica charantia: A review.Int. J. Pharm. Sci. Res.201121135
    [Google Scholar]
  47. KanchanapoomT. KasaiR. YamasakiK. Cucurbitane, hexanorcucurbitane and octanorcucurbitane glycosides from fruits of Trichosanthes tricuspidata.Phytochemistry200259221522810.1016/S0031‑9422(01)00430‑7 11809458
    [Google Scholar]
  48. KasaiR. MatsumotoK. NieR.L. ZhouJ. TanakaO. Glycosides from Chinese medicinal plant, Hemsleya panacis-scandens, and structure-taste relationship of cucurbitane glycosides.Chem. Pharm. Bull.198836123424310.1248/cpb.36.234 3378287
    [Google Scholar]
  49. XuB. LiZ. ZengT. Bioactives of Momordica charantia as potential anti-diabetic/hypoglycemic agents.Molecules2022277217510.3390/molecules27072175 35408574
    [Google Scholar]
  50. Morales-VelaK. Pérez-SánchezF.C. PadrónJ.M. Márquez-FernándezO. Antiproliferative activity of Cucurbitaceae species extracts from Southeast of Mexico.J Med Plants Stud201981202510.20944/preprints201908.0127.v1
    [Google Scholar]
  51. KimY.C. ChoiD. ZhangC. LiuH. LeeS. Profiling cucurbitacins from diverse watermelons (Citrullus spp.).Hortic. Environ. Biotechnol.201859455756610.1007/s13580‑018‑0066‑3
    [Google Scholar]
  52. MatsumotoK. KasaiR. OhtaniK. TanakaO. Minor cucurbitane-glycosides from fruits of Siraitia grosvenori (Cucurbitaceae).Chem. Pharm. Bull.19903872030203210.1248/cpb.38.2030
    [Google Scholar]
  53. MurakamiT. EmotoA. MatsudaH. YoshikawaM. Medicinal foodstuffs. XXI. Structures of new cucurbitane-type triterpene glycosides, goyaglycosides-a, -b, -c, -d, -e, -f, -g, and -h, and new oleanane-type triterpene saponins, goyasaponins I, II, and III, from the fresh fruit of Japanese Momordica charantia L.Chem. Pharm. Bull.2001491546310.1248/cpb.49.54 11201226
    [Google Scholar]
  54. FujiokaT. IwaseY. OkabeH. MihashiK. YamauchiT. Studies on the constituents of Actinostemma lobatum Maxim. II. Structures of actinostemmosides G and H, new dammarane triterpene glycosides isolated from the herb.Chem. Pharm. Bull.19873593870387310.1248/cpb.35.3870
    [Google Scholar]
  55. OkabeH. NagaoT. HachiyamaS. YamauchiT. Studies on the constituents of Luffa operculata Cogn. II. Isolation and structure elucidation of saponins in the herb.Chem. Pharm. Bull.198937489590010.1248/cpb.37.895
    [Google Scholar]
  56. ZhangZ. ZhangW. JiY.P. ZhaoY. WangC.G. HuJ.F. Gynostemosides A-E, megastigmane glycosides from Gynostemma pentaphyllum.Phytochemistry2010715-669370010.1016/j.phytochem.2009.12.017 20097393
    [Google Scholar]
  57. YinF. HuL. PanR. Novel dammarane-type glycosides from Gynostemma pentaphyllum.Chem. Pharm. Bull.200452121440144410.1248/cpb.52.1440 15577241
    [Google Scholar]
  58. HarborneJ.B. The flavonoids In: Advances in research since 1980.2013
    [Google Scholar]
  59. YusoffI.M. ChuaL.S. TaherZ.M. Valorization of fruit waste from Cucurbitaceae family: Profiling of phytoconstituent of Benincasa hispida and Citrullus lanatus rinds using ultrasound-assisted extraction.Food Biosci.20235110219010.1016/j.fbio.2022.102190
    [Google Scholar]
  60. MukailaY.O. AjaoA.A. AjaoA.A. A review of the ethnopharmacological significance of Momordica foetida Schumach. (Cucurbitaceae: Cucurbitales).Egypt J Basic Appl Sci2023101455410.1080/2314808X.2022.2149014
    [Google Scholar]
  61. FapohundaS.O. AdewumiA.A. JegedeD.O. Cucurbitaceae-the family that nourishes and heals.MicroMedicine20186859310.5281/zenodo.1436798
    [Google Scholar]
  62. AnJ.P. DangL.H. HaT.K.Q. Flavone glycosides from Sicyos angulatus and their inhibitory effects on hepatic lipid accumulation.Phytochemistry2019157536310.1016/j.phytochem.2018.10.013 30368219
    [Google Scholar]
  63. Abu-ReidahI.M. Arráez-RománD. Quirantes-PinéR. Fernández-ArroyoS. Segura-CarreteroA. Fernández-GutiérrezA. HPLC–ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract.Food Res. Int.201246110811710.1016/j.foodres.2011.11.026
    [Google Scholar]
  64. Abu-ReidahI.M. Arráez-RománD. Segura-CarreteroA. Fernández-GutiérrezA. Profiling of phenolic and other polar constituents from hydro-methanolic extract of watermelon (Citrullus lanatus) by means of accurate-mass spectrometry (HPLC-ESI-QTOF-MS).Food Res. Int.201351135436210.1016/j.foodres.2012.12.033
    [Google Scholar]
  65. Krauze-BaranowskaM. CisowskiW. Flavone C-glycosides from Bryonia alba and B. dioica.Phytochemistry199539372772910.1016/0031‑9422(95)00069‑J
    [Google Scholar]
  66. DelazarA. Flavone C-glycosides and cucurbitacin glycosides from Citrullus colocynthis.Daru200614109114
    [Google Scholar]
  67. NinomiyaM. ItohT. FujitaS. HashizumeT. KoketsuM. Phenolic glycosides from young fruits of Citrullus lanatus.Phytochem. Lett.20204013513810.1016/j.phytol.2020.09.014
    [Google Scholar]
  68. AminH M Medical pharmacology2008
    [Google Scholar]
  69. BERTRAM G KATZUNG, K 9 edn (EGC).
  70. CampbellJ. CohallD. Pharmacodynamics-A Pharmacognosy Perspective.Pharmacognosy.Academic Press2017513527
    [Google Scholar]
  71. BuxtonI.L.J.G. L J G. Gilman’s the pharmacologic basis of therapeutics, t. E. N. Y. M.-H. In: Pharmacokinetics and pharmacodynamics.2006152
    [Google Scholar]
  72. HusainG.M. KhanM.A. UroojM. KazmiM.H. Pharmacodynamic evaluation: Herbal medicine.Drug Discovery Evaluation.Methods in Clinical Pharmacology202048349710.1007/978‑3‑319‑68864‑0_52
    [Google Scholar]
  73. KothariV. In vitro antibacterial activity in seed extracts of phoenix sylvestris roxb (Palmae), and tricosanthes dioica L (Cucurbitaceae).Curr. Trends Biotechnol. Pharm.20115993997
    [Google Scholar]
  74. MozanielS.O. WanessaA.C. FernandaW.F.B. MarilenaE.A. GracialdaC.F. RaulN.C.J. Phytochemical profile and biological activities of Momordica charantia L. (Cucurbitaceae): A review.Afr. J. Biotechnol.2018172782984610.5897/AJB2017.16374
    [Google Scholar]
  75. SoodA. KaurP. GuptaR. Phytochemical screening and antimicrobial assay of various seeds extract of cucurbitaceae family.Int. J. Appl. Biol. Pharm. Technol.2012
    [Google Scholar]
  76. BalasubramanianG. SarathiM. KumarS.R. HameedA.S.S. Screening the antiviral activity of Indian medicinal plants against white spot syndrome virus in shrimp.Aquaculture20072631-4151910.1016/j.aquaculture.2006.09.037
    [Google Scholar]
  77. Raghavan AnilakumarK. KumarG.P. IlaiyarajaN. Nutritional, pharmacological and medicinal properties of Momordica charantia.Int. J. Food Sci. Nutr.201541758310.11648/j.ijnfs.20150401.21
    [Google Scholar]
  78. BhagyalakshmiM. DevarajaS. Viral, Parasitic, Bacterial, and Fungal Infections.Elsevier202320922010.1016/B978‑0‑323‑85730‑7.00017‑5
    [Google Scholar]
  79. RamanA. LauC. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae).Phytomedicine19962434936210.1016/S0944‑7113(96)80080‑8 23194773
    [Google Scholar]
  80. DesaiS. TatkeP. ManeT. GabheS. Isolation, characterization and quantitative HPLC-DAD analysis of components of charantin from fruits of Momordica charantia.Food Chem.202134512871710.1016/j.foodchem.2020.128717 33307430
    [Google Scholar]
  81. Acosta-PatiñoJ.L. Jiménez-BalderasE. Juárez-OropezaM.A. Díaz-ZagoyaJ.C. Hypoglycemic action of Cucurbita ficifolia on type 2 diabetic patients with moderately high blood glucose levels.J. Ethnopharmacol.20017719910110.1016/S0378‑8741(01)00272‑0 11483384
    [Google Scholar]
  82. Huerta-ReyesM. Tavera-HernándezR. Alvarado-SansinineaJ.J. Jiménez-EstradaM. Selected species of the Cucurbitaceae family used in Mexico for the treatment of diabetes mellitus.Molecules20222711344010.3390/molecules27113440 35684376
    [Google Scholar]
  83. SutradharB.K. An evaluation of antihyperglycemic and antinociceptive effects of crude methanol extract of Coccinia grandis (L.) J. Voigt.(Cucurbitaceae) leaves in Swiss albino mice.Adv Nat Appl Sci2011515
    [Google Scholar]
  84. EseyinO.A. SattarM.A. RathoreH.A. A review of the pharmacological and biological activities of the aerial parts of Telfairia occidentalis Hook. f.(Cucurbitaceae).Trop. J. Pharm. Res.2014131761176910.4314/tjpr.v13i10.28
    [Google Scholar]
  85. AdedapoA. AdewuyiT. SofidiyaM.J. R d B T. Phytochemistry, anti-inflammatory and analgesic activities of the aqueous leaf extract of Lagenaria breviflora (Cucurbitaceae) in laboratory animals.Rev. Biol. Trop.2013611281290
    [Google Scholar]
  86. SaeedM. KhanM.S. AmirK. Lagenaria siceraria fruit: A review of its phytochemistry, pharmacology, and promising traditional uses.Front. Nutr.2022992736110.3389/fnut.2022.927361 36185670
    [Google Scholar]
  87. SahaP. SenS.K. BalaA. MazumderU.K. HaldarP.K. Evaluation of anticancer activity of lagenaria siceraria aerial parts.Int. J. Cancer Res.20117324425310.3923/ijcr.2011.244.253
    [Google Scholar]
  88. UkiyaM. AkihisaT. TokudaH. Inhibitory effects of cucurbitane glycosides and other triterpenoids from the fruit of Momordica grosvenori on epstein-barr virus early antigen induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate.J. Agric. Food Chem.200250236710671510.1021/jf0206320 12405766
    [Google Scholar]
  89. SohD. BakangB.T. TchoubounE.N. New cucurbitane type triterpenes from Momordica foetida Schumach. (Cucurbitaceae).Phytochem. Lett.202038909510.1016/j.phytol.2020.05.010
    [Google Scholar]
  90. ZhangX.Q. ShiJ. FengS.X. XueL. TianL.P. Two new phenolic glycosides from the seeds of Citrullus lanatus.Nat. Prod. Res.202034339840410.1080/14786419.2018.1536131 30602316
    [Google Scholar]
  91. ArivoliS. SamuelT. Bioefficacy of citrullus colocynthis (L.) Schrad (Cucurbitaceae) whole plant extracts against anopheles stephensi, aedes aegypti and culex quinquefasciatus (diptera: Culicidae).Int. J. Curr. Res.20113296304
    [Google Scholar]
  92. BiswasS.K. DasJ. ChowdhuryA. Cytotoxicity and antifungal activities of ethanolic and chloroform extracts of Cucumis sativus Linn (Cucurbitaceae) leaves and stems.Res. J. Phytochem.201261253010.3923/rjphyto.2012.25.30
    [Google Scholar]
  93. BeloinN. GbeassorM. AkpaganaK. Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity.J. Ethnopharmacol.2005961-2495510.1016/j.jep.2004.08.009 15588650
    [Google Scholar]
  94. OmosunG. MbaebieB. EdeogaA.O.H. OsuagwuG. Pharmaceutical and therapeutic potential of some wild Cucurbitaceae species from South East Nigeria.Recent Res Sci Technol20092
    [Google Scholar]
  95. RaziaS. KamrunN. SiteshC.B. In-vitro membrane stabilizing, thrombolytic, antioxidant and antimicrobial activities of Bangladeshi origin Coccinia indica (Cucurbitaceae).Afr. J. Pharm. Pharmacol.2018121618819210.5897/AJPP2018.4913
    [Google Scholar]
  96. YuS. YeX. XinW. XuK. LianX.Y. ZhangZ. Fatsioside A, a rare baccharane-type glycoside inhibiting the growth of glioma cells from the fruits of Fatsia japonica.Planta Med.201480431532010.1055/s‑0033‑1360363 24549925
    [Google Scholar]
  97. KadhimE.J. Phytochemical investigation and hepato-protective studies of Iraqi Bryonia dioica (Family Cucurbitaceae).Int. J. Pharm. Pharm. Sci.20146187190
    [Google Scholar]
  98. TorkeyH.M. Abou-YousefH.M. Abdel AzeizA.Z. HodaE.A. Farid. Insecticidal effect of cucurbitacin E glycoside isolated from citrullus colocynthis against aphis craccivora.Aust. J. Basic Appl. Sci.200940604066
    [Google Scholar]
  99. MontoroP. CarboneV. De SimoneF. PizzaC. De TommasiN. Studies on the constituents of Cyclanthera pedata fruits: Isolation and structure elucidation of new flavonoid glycosides and their antioxidant activity.J. Agric. Food Chem.200149115156516010.1021/jf010318q 11714296
    [Google Scholar]
  100. MohanR. BirariR. KarmaseA. JagtapS. BhutaniK.K. Antioxidant activity of a new phenolic glycoside from lagenaria siceraria stand. fruits.Food Chem.2012132124425110.1016/j.foodchem.2011.10.063 26434287
    [Google Scholar]
  101. Hassan KhanMT Iqbal ChoudharyM Atta-ur-Rahman , et al. Tyrosinase inhibition studies of cycloartane and cucurbitane glycosides and their structure–activity relationships.Bioorg. Med. Chem.200614176085608810.1016/j.bmc.2006.05.002 16716596
    [Google Scholar]
  102. ZhaoW. XuD. YanW. WangY. ZhangN. Development and validation of a UPLC‐MS/MS method for the determination of cucurbitacin B in rat plasma and application to a pharmacokinetic study.Biomed. Chromatogr.201630450350710.1002/bmc.3571 26207321
    [Google Scholar]
  103. HunsakunachaiN. NuengchamnongN. JiratchariyakulW. KummalueT. KhemawootP. Pharmacokinetics of cucurbitacin B from Trichosanthes cucumerina L. in rats.BMC Complement. Altern. Med.201919115710.1186/s12906‑019‑2568‑7 31272429
    [Google Scholar]
  104. ZengY. WangJ. HuangQ. Cucurbitacin II a: A review of phytochemistry and pharmacology.Phytother. Res.20213584155417010.1002/ptr.7077 33724593
    [Google Scholar]
  105. WangS. GuanX. ZhongX. Simultaneous determination of cucurbitacin IIa and cucurbitacin IIb of Hemsleya amabilis by HPLC–MS/MS and their pharmacokinetic study in normal and indomethacin‐induced rats.Biomed. Chromatogr.201630101632164010.1002/bmc.3733 27061415
    [Google Scholar]
  106. FioriG.M.L. D’AgateS. RochaA. PereiraA.M.S. Della PasquaO. LopesN.P. Development and validation of a quantification method for cucurbitacins E and I in rat plasma: Application to population pharmacokinetic studies.J. Pharm. Biomed. Anal.20171449910510.1016/j.jpba.2017.02.021 28274497
    [Google Scholar]
  107. BaiM. LiH.L. HeJ.C. Development and validation of an LC‐ESI‐MS/MS method for the quantitation of hemslecin A in rhesus monkey plasma and its application in pharmacokinetics.Biomed. Chromatogr.201428338539010.1002/bmc.3032 24132644
    [Google Scholar]
  108. WangZ. ZhuW. GaoM. Simultaneous determination of cucurbitacin B and cucurbitacin E in rat plasma by UHPLC-MS/MS: A pharmacokinetics study after oral administration of cucurbitacin tablets.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171065-1066636910.1016/j.jchromb.2017.09.024 28946127
    [Google Scholar]
  109. BhusariS. RodriguezC. TarkaS.M.Jr Comparative In vitro metabolism of purified mogrosides derived from monk fruit extracts.Regul. Toxicol. Pharmacol.202112010485610.1016/j.yrtph.2020.104856 33387567
    [Google Scholar]
  110. MurataY. OgawaT. SuzukiY.A. Digestion and absorption of Siraitia grosvenori triterpenoids in the rat.Biosci. Biotechnol. Biochem.201074367367610.1271/bbb.90832 20208371
    [Google Scholar]
  111. XuF. LiD.P. HuangZ.C. Exploring in vitro, in vivo metabolism of mogroside V and distribution of its metabolites in rats by HPLC-ESI-IT-TOF-MSn.J. Pharm. Biomed. Anal.201511541843010.1016/j.jpba.2015.07.024 26280925
    [Google Scholar]
  112. YangX.W. ZhangJ.Y. XuW. Biotransformation of mogroside III by human intestinal bacteria.Beijing Da Xue Xue Bao Yi Xue Ban2007396657662
    [Google Scholar]
  113. YounesM. AquilinaG. EngelK.H. Safety of use of Monk fruit extract as a food additive in different food categories.EFSA J.20191712e0592110.2903/j.efsa.2019.5921 32626208
    [Google Scholar]
  114. ZhangL.J. LiawC-C. HsiaoP-C. Cucurbitane-type glycosides from the fruits of Momordica charantia and their hypoglycaemic and cytotoxic activities.J. Funct. Foods2014656457410.1016/j.jff.2013.11.025
    [Google Scholar]
  115. RíosJ.L. EscandellJ.M. RecioM.C. New insights into the bioactivity of cucurbitacins.Stud Nat Prod Chem20053242946910.1016/S1572‑5995(05)80062‑6
    [Google Scholar]
  116. HsiaoP.C. LiawC.C. HwangS.Y. Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia.J. Agric. Food Chem.201361122979298610.1021/jf3041116 23432055
    [Google Scholar]
  117. ChaudharyR. KumariP. Stability aspects of herbal formulation.WJPLS20228103110
    [Google Scholar]
  118. DewiM.K. ChaerunisaaA.Y. MuhaiminM. JoniI.M. Improved activity of herbal medicines through nanotechnology.Nanomaterials20221222407310.3390/nano12224073 36432358
    [Google Scholar]
  119. RajaniM. KanakiN.S. Bioactive molecules and medicinal plants.Springer200834936910.1007/978‑3‑540‑74603‑4_19
    [Google Scholar]
  120. TejaP.K. MithiyaJ. KateA.S. BairwaK. ChautheS.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview.Phytomedicine20229615389010.1016/j.phymed.2021.153890 35026510
    [Google Scholar]
  121. SaggarS. MirP.A. KumarN. Traditional and herbal medicines: Opportunities and challenges.Pharmacognosy Res.202214210711410.5530/pres.14.2.15
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838293392231227065022
Loading
/content/journals/ctm/10.2174/0122150838293392231227065022
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test