Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Medicinal plants are claimed to be a safer and more powerful treatment option for many ailments. Plants of the genus , which biosynthesize numerous bioactive compounds, majorly flavonoids, pyrones, alkaloids, coumarins, and terpenoids, have demonstrated a variety of health benefits, including antimalarial, cytotoxic, antimicrobial, antituberculosis, and anti-inflammation properties. Due to the significant applications in traditional medicine of several communities and secondary metabolites already isolated, this study presents the ethnopharmacological, phytochemical and therapeutic potential of species of the genus . A total of 177 new bioactive compounds with diverse chemical structures have been reported from the genus. The data set revealed that the genus is a source of cytotoxic substances, which have the potential to be used in the treatment of diseases resulting from cellular mutations. Further phytochemical and biological assessments may lead to the development of new pharmacologically active compounds.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838283812240126102737
2024-02-26
2025-11-07
Loading full text...

Full text loading...

References

  1. RayA. JenaS. SahooA. Chemical composition, antioxidant, anti-inflammatory and anticancer activities of bark essential oil of Cryptocarya amygdalina from India.J. Essent. Oil-Bear. Plants202124361763110.1080/0972060X.2021.1950051
    [Google Scholar]
  2. LiuY. RakotondraibeL.H. BrodieP.J. Antimalarial 5, 6-dihydro-α-pyrones from Cryptocarya rigidifolia: Related bicyclic tetrahydro-α-pyrones are artifacts1.J. Nat. Prod.20157861330133810.1021/acs.jnatprod.5b00187 26042470
    [Google Scholar]
  3. KurniadewiF. Cytotoxic chalcones from some indonesian cryptocarya.AIP Conf Proc20171862103008510.1063/1.4991189
    [Google Scholar]
  4. ViktorováJ. KumarR. ŘehořováK. Antimicrobial activity of extracts of two native fruits of Chile: Arrayan (Luma apiculata) and Peumo (Cryptocarya alba).Antibiotics20209844410.3390/antibiotics9080444 32722434
    [Google Scholar]
  5. ChouT.H. ChenJ.J. PengC.F. ChengM.J. ChenI.S. New flavanones from the leaves of Cryptocarya chinensis and their antituberculosis activity.Chem. Biodivers.20118112015202410.1002/cbdv.201000367 22083914
    [Google Scholar]
  6. FengR. GuoZ.K. YanC.M. LiE.G. TanR.X. GeH.M. Anti-inflammatory flavonoids from Cryptocarya chingii.Phytochemistry2012769810510.1016/j.phytochem.2012.01.007 22277737
    [Google Scholar]
  7. NgF. Taxonomic notes on Bornean Cryptocarya R. Br. (Lauraceae).Gard. Bull.20055716368
    [Google Scholar]
  8. DrewesS.E. HornM.H. MaviS. Cryptocarya liebertiana and Ocotea bullata-Their phytochemical relationship.Phytochemistry199744343744010.1016/S0031‑9422(96)00464‑5 9190084
    [Google Scholar]
  9. OgundajoA.L. AdeniranL.A. AshafaA.O. Medicinal properties of Ocotea bullata stem bark extracts: Phytochemical constituents, antioxidant and anti-inflammatory activity, cytotoxicity and inhibition of carbohydrate-metabolizing enzymes.J. Integr. Med.201816213214010.1016/j.joim.2018.02.007 29526237
    [Google Scholar]
  10. TimmermannB.N. ValcicS. LiuY-L. MontenegroG. Notes: Flavonols from Cryptocarya alba.Z. Naturforsch. C J. Biosci.19955011-1289889910.1515/znc‑1995‑11‑1223
    [Google Scholar]
  11. DiGeorgioS.E. Bioactive components in kombucha tea, Cryptocarya massoy (Oken) Kosterm, and Rollinia emarginata Schlecht.Purdue University1999
    [Google Scholar]
  12. WidiyastutiY. SholikhahI.Y.M. HaryantiS. Cytotoxic activities of methanolic and chloroform extract of Cryptocarya massoy (Oken) Kosterm. Bark on MCF-7 human breast cancer cell line.Health Sci. J. Indonesia201891576210.22435/hsji.v9i1.482
    [Google Scholar]
  13. HylandB.P.M. Australian tropical rain forest trees.An Interactive System.MelbourneCSIRO19932
    [Google Scholar]
  14. BrophyJJ ForsterPI GoldsackRJ Coconut Laurels: The leaf essential oils from four endemic Australian Cryptocarya species: C. bellendenkerana, C. cocosoides, C. cunninghamii and C. lividula (Lauraceae). Nat Prod Commun20161121934578X160110023010.1177/1934578X1601100230
    [Google Scholar]
  15. RayA. JenaS. SahooA. KamilaP.K. NayakS. PandaP.C. Chemical composition and antioxidant activity of the leaf essential oil of cryptocarya amygdalina.Chem. Nat. Compd.20215761150115210.1007/s10600‑021‑03574‑w
    [Google Scholar]
  16. TelascreaM. de Araújo CC, Marques MOM, Facanali R, de Moraes PLR, Cavalheiro AJ. Essential oil from leaves of cryptocarya mandioccana meisner (Lauraceae): Composition and intraspecific chemical variability.Biochem. Syst. Ecol.200735422223210.1016/j.bse.2006.09.015
    [Google Scholar]
  17. Di CosmoD. Insecticidal effect of cryptocarya alba essential oil on the housefly, Musca domestica L.Bol Latinoam Caribe Plantas Med2015142113117
    [Google Scholar]
  18. BrophyJ.J. GoldsackR.J. ForsterP.I. The leaf essential oil of cryptocarya cunninghamii meissner (Lauraceae).J. Essent. Oil Res.1998101737510.1080/10412905.1998.9700842
    [Google Scholar]
  19. TriatmokoB. HertianiT. YuswantoA. Sitotoksisitas minyak mesoyi (Cryptocarya massoy) terhadap sel vero (Cytotoxicity of Mesoyi Oil (Cryptocarya massoy) on vero cell lines).JPK201642263266
    [Google Scholar]
  20. Schmeda-HirschmannG. RazmilicI. GutierrezM.I. LoyolaJ.I. Proximate composition and biological activity of food plants gathered by chilean Amerindians.Econ. Bot.199953217718710.1007/BF02866496
    [Google Scholar]
  21. Schmeda-HirschmannG. LoyolaJ.I. SierraJ. RetamalR. RodriguezJ. Hypotensive effect and enzyme inhibition activity of mapuche medicinal plant extracts.Phytother. Res.19926418418810.1002/ptr.2650060404
    [Google Scholar]
  22. VeenaM. Analgesic activity of Cryptocarya stocksii plant by hot plate method.Int. J. Herb. Med.2016413941
    [Google Scholar]
  23. HuangH-W. Antiproliferative effects of methanolic extracts of Cryptocarya concinna Hance roots on oral cancer Ca9-22 and CAL 27 cell lines involving apoptosis, ROS induction, and mitochondrial depolarization.ScientificWorldJournal2014201418046210.1155/2014/180462
    [Google Scholar]
  24. ChangH.W. TangJ.Y. YenC.Y. Synergistic anti-oral cancer effects of UVC and methanolic extracts of Cryptocarya concinna roots via apoptosis, oxidative stress and DNA damage.Int. J. Radiat. Biol.201692526327210.3109/09553002.2016.1145753 26887975
    [Google Scholar]
  25. NasrullahA. ZahariA. MohamadJ. AwangK. Antiplasmodial alkaloids from the bark of Cryptocarya nigra (Lauraceae).Molecules20131878009801710.3390/molecules18078009 23884132
    [Google Scholar]
  26. MacielA.J. LacerdaC.P. DanielliL.J. BordignonS.A.L. FuentefriaA.M. ApelM.A. Antichemotactic and antifungal action of the essential oils from cryptocarya aschersoniana, schinus terebinthifolia, and cinnamomum amoenum.Chem. Biodivers.2019168e190020410.1002/cbdv.201900204 31298500
    [Google Scholar]
  27. SamantaA. DasG. DasS.K. Roles of flavonoids in plants.Carbon201110061235
    [Google Scholar]
  28. BrunettiC. Di FerdinandoM. FiniA. PollastriS. TattiniM. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans.Int. J. Mol. Sci.20131423540355510.3390/ijms14023540 23434657
    [Google Scholar]
  29. ShakeriA. SahebkarA. JavadiB. Melissa officinalis L. - A review of its traditional uses, phytochemistry and pharmacology.J. Ethnopharmacol.201618820422810.1016/j.jep.2016.05.010 27167460
    [Google Scholar]
  30. ChouT.H. ChenJ.J. LeeS.J. ChiangM.Y. YangC.W. ChenI.S. Cytotoxic flavonoids from the leaves of Cryptocarya chinensis.J. Nat. Prod.20107391470147510.1021/np100014j 20704331
    [Google Scholar]
  31. LinH.R. ChouT.H. HuangD.W. ChenI.S. Cryptochinones from Cryptocarya chinensis act as farnesoid X receptor agonists.Bioorg. Med. Chem. Lett.201424174181418610.1016/j.bmcl.2014.07.045 25127166
    [Google Scholar]
  32. DumontetV. GaspardC. Van HungN. New cytotoxic flavonoids from Cryptocarya infectoria.Tetrahedron200157296189619610.1016/S0040‑4020(01)00596‑8
    [Google Scholar]
  33. GovindachariT.R. ParthasarathyP.C. DesaiH.K. ShanbhagM.N. Structure of cryptocaryone.Tetrahedron197329193091309410.1016/S0040‑4020(01)93448‑9
    [Google Scholar]
  34. ChenY.C. YangC.W. ChanT.F. Cryptocaryone promotes ros-dependent antiproliferation and apoptosis in ovarian cancer cells.Cells202211464165910.3390/cells11040641 35203294
    [Google Scholar]
  35. ChenY.C. KungF.L. TsaiI.L. ChouT.H. ChenI.S. GuhJ.H. Cryptocaryone, a natural dihydrochalcone, induces apoptosis in human androgen independent prostate cancer cells by death receptor clustering in lipid raft and nonraft compartments.J. Urol.201018362409241810.1016/j.juro.2010.01.065 20403609
    [Google Scholar]
  36. ChangH.S. TangJ.Y. YenC.Y. Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells involving apoptosis, oxidative stress, and DNA damage.BMC Complement. Altern. Med.20161619410.1186/s12906‑016‑1073‑5 26955958
    [Google Scholar]
  37. FujiokaH. NakaharaK. OkiT. HiranoK. HayashiT. KitaY. The first asymmetric total syntheses of both enantiomers of cryptocaryone.Tetrahedron Lett.201051151945194610.1016/j.tetlet.2010.01.101
    [Google Scholar]
  38. ChenY-C. ChenI-S. GuhJ-H. Cryptocaryone, isolated from Cryptocarya infectoria, induces apoptosis through extrinsic pathways: The involvement of death receptor clustering and FADD/caspase-8 activation cascades.Clin. Cancer Res.20071322C42C2
    [Google Scholar]
  39. UsmanH. HakimE.H. HarlimT. Cytotoxic chalcones and flavanones from the tree bark of Cryptocarya costata.Z. Naturforsch. C J. Biosci.2006613-418418810.1515/znc‑2006‑3‑405 16729574
    [Google Scholar]
  40. AllardP.M. DauE.T.H. EydouxC. Alkylated flavanones from the bark of Cryptocarya chartacea as dengue virus NS5 polymerase inhibitors.J. Nat. Prod.201174112446245310.1021/np200715v 22050318
    [Google Scholar]
  41. FengR. WangT. WeiW. TanR.X. GeH.M. Cytotoxic constitutents from Cryptocarya maclurei.Phytochemistry20139014715310.1016/j.phytochem.2013.01.009 23489577
    [Google Scholar]
  42. HuangW. ZhangW.J. ChengY.Q. Cytotoxic and antimicrobial flavonoids from Cryptocarya concinna.Planta Med.2014801192593010.1055/s‑0034‑1368613 25029174
    [Google Scholar]
  43. KurniadewiF. JuliawatyL.D. SyahY.M. Phenolic compounds from Cryptocarya konishii: Their cytotoxic and tyrosine kinase inhibitory properties.J. Nat. Med.201064212112510.1007/s11418‑009‑0368‑y 20091134
    [Google Scholar]
  44. HeQ. FanY. LiuY. Cryptoyunnanones A–H, complex flavanones from Cryptocarya yunnanensis.J. Nat. Prod.20218482209221610.1021/acs.jnatprod.1c00287 34282909
    [Google Scholar]
  45. SuY. SongW. HeQ. Two novel flavonoids and cytotoxicity evaluation from cryptocarya yunnanensis.Chem. Biodivers.2022196e20220022410.1002/cbdv.202200224 35567314
    [Google Scholar]
  46. DumontetV. HungN.V. AdelineM.T. Cytotoxic flavonoids and α-pyrones from cryptocarya o bovata.J. Nat. Prod.200467585886210.1021/np030510h 15165150
    [Google Scholar]
  47. KurniadewiF. Kurzichalcolactone A and B, two chalcone derivatives from indonesian cryptocarya.J. Phys. Conf. Ser.2019140205508110.1088/1742‑6596/1402/5/055081
    [Google Scholar]
  48. SaidiN. 6, 7, 8-Trimethoxycoumarin from cryptocarya bracteolata.Acta Crystallogr. E Crystallogr. Commun.2007639o3692o3693
    [Google Scholar]
  49. SaidiN. AwangK. YahyaM. A new coumarin from the bark of cryptocarya bracteolata.Chem. Nat. Compd.202056580380510.1007/s10600‑020‑03156‑2
    [Google Scholar]
  50. Schäberle TF. Biosynthesis of α-pyrones.Beilstein J. Org. Chem.201612157158810.3762/bjoc.12.56 27340449
    [Google Scholar]
  51. CavalheiroA.J. YoshidaM. 6-[ω-arylalkenyl]-5,6-dihydro-α-pyrones from Cryptocarya moschata (Lauraceae).Phytochemistry200053781181910.1016/S0031‑9422(99)00532‑4 10783987
    [Google Scholar]
  52. WangX.N. KuangX.D. WangY. α-Pyrones with glucose uptake-stimulatory activity from the twigs of cryptocarya wrayi.Fitoterapia202215810514410.1016/j.fitote.2022.105144 35149120
    [Google Scholar]
  53. JuliawatyL.D. Ra’idahP.N. AbdurrahmanS. 5,6-Dihydro-α-pyrones from the leaves of cryptocarya pulchinervia (Lauraceae).J. Nat. Med.202074358459010.1007/s11418‑020‑01397‑7 32207026
    [Google Scholar]
  54. OyamaM. MoriK. ShimogomiA. Three new 5, 6-dihydro-α-pyrones isolated from Cryptocarya nitens.Heterocycles20189691583159110.3987/COM‑18‑13960
    [Google Scholar]
  55. JuliawatyL.D. KitajimaM. TakayamaH. AchmadS.A. AimiN. A 6-substituted-5,6-dihydro-2-pyrone from Cryptocarya strictifolia.Phytochemistry200054898999310.1016/S0031‑9422(00)00077‑7 11014303
    [Google Scholar]
  56. HeQ. LiS. FanY. Complex flavanones from cryptocarya metcalfiana and structural revision of oboflavanone A.J. Nat. Prod.20228561617162510.1021/acs.jnatprod.2c00279 35635020
    [Google Scholar]
  57. GrkovicT. BleesJ.S. ColburnN.H. Cryptocaryols A-H, α-pyrone-containing 1,3-polyols from Cryptocarya sp. implicated in stabilizing the tumor suppressor Pdcd4.J. Nat. Prod.20117451015102010.1021/np100918z 21539301
    [Google Scholar]
  58. HamzaM.F. ShaikbS. MoodleyR. Phytochemical, elemental and biotechnological study of Cryptocarya latifolia.Afr. J. Tradit. Complement. Altern. Med.2016134748010.21010/ajtcam.v13i4.11 28852722
    [Google Scholar]
  59. AdejokeH.T. A review on classes, extraction, purification and pharmaceutical importance of plants alkaloid.J Med Chem Sci201924130139
    [Google Scholar]
  60. SuzukiY. SaitoY. GotoM. (−)-Neocaryachine, an antiproliferative pavine alkaloid from Cryptocarya laevigata, induces DNA double-strand breaks.J. Nat. Prod.201780122022410.1021/acs.jnatprod.6b01153 28099003
    [Google Scholar]
  61. LinF.W. WuP.L. WuT.S. Alkaloids from the leaves of Cryptocarya chinensis Hemsl.Chem. Pharm. Bull.200149101292129410.1248/cpb.49.1292 11605656
    [Google Scholar]
  62. WuT.S. LinF.W. Alkaloids of the wood of Cryptocarya chinensis.J. Nat. Prod.200164111404140710.1021/np010258i 11720521
    [Google Scholar]
  63. WuT-S SuC-R LeeK-H Cytotoxic and anti-HIV phenanthroindolizidine alkaloids from Cryptocarya chinensis. Nat Prod Commun2012761934578X120070060810.1177/1934578X1200700608
    [Google Scholar]
  64. LiuY.L. WangY. HeX.R. Two new isoquinoline alkaloids from Cryptocarya wrayi and their biological activities.Fitoterapia202215610508610.1016/j.fitote.2021.105086 34798164
    [Google Scholar]
  65. Wan OthmanW.N.N. SivasothyY. LiewS.Y. Alkaloids from cryptocarya densiflora blume (Lauraceae) and their cholinesterase inhibitory activity.Phytochem. Lett.20172123023610.1016/j.phytol.2017.07.002
    [Google Scholar]
  66. AwangK. HadiA.H.A. SaidiN. MukhtarM.R. MoritaH. LitaudonM. New phenantrene alkaloids from cryptocarya crassinervia.Fitoterapia200879430831010.1016/j.fitote.2007.11.025 18313862
    [Google Scholar]
  67. ToribioA. BonfilsA. DelannayE. Novel s eco -dibenzopyrrocoline alkaloid from Cryptocarya o ubatchensis.Org. Lett.20068173825382810.1021/ol061435f 16898827
    [Google Scholar]
  68. TsurumiF. MiuraY. NakanoM. Spiro[3.5]nonenyl meroterpenoid lactones, cryptolaevilactones G-L, an ionone derivative, and total synthesis of cryptolaevilactone m from cryptocarya laevigata.J. Nat. Prod.20198292368237810.1021/acs.jnatprod.8b00732 31442048
    [Google Scholar]
  69. YangB.Y. ShiY.M. LuoJ.G. KongL.Y. Two new arylalkenyl α, β -unsaturated δ -lactones with cytotoxic activity from the leaves and twigs of Cryptocarya concinna.Nat. Prod. Res.201731121409141310.1080/14786419.2016.1255886 27830587
    [Google Scholar]
  70. YangB.Y. KongL.Y. WangX.B. Nitric oxide inhibitory activity and absolute configurations of arylalkenyl α,β-unsaturated δ/γ-lactones from cryptocarya concinna.J. Nat. Prod.201679119620310.1021/acs.jnatprod.5b00839 26741483
    [Google Scholar]
  71. FanY. LiuY. YouY.X. Cytotoxic arylalkenyl α,β-unsaturated δ-lactones from cryptocarya brachythyrsa.Fitoterapia201913610416710.1016/j.fitote.2019.05.006 31071435
    [Google Scholar]
  72. DavisR.A. DemirkiranO. SykesM.L. 7′,8′-Dihydroobolactone, a typanocidal α-pyrone from the rainforest tree Cryptocarya obovata.Bioorg. Med. Chem. Lett.201020144057405910.1016/j.bmcl.2010.05.091 20558060
    [Google Scholar]
  73. CharfY.Y. WuC-H. WuS-J. WuT-S. The constituents and synthesis of cryptamygin‐A from the stem bark of cryptocarya amygadalina.J. Chin. Chem. Soc.200249226326810.1002/jccs.200200041
    [Google Scholar]
  74. SaidiN. New phenyl propanoids from cryptocarya bracteolata. Nat Prod Commun20161161934578X160110062910.1177/1934578X1601100629
    [Google Scholar]
  75. Castro-SaavedraS. Fuentes-BarrosG. TirapeguiC. Phytochemical analysis of alkaloids from the chilean endemic tree Cryptocarya alba.J. Chil. Chem. Soc.20166133076308010.4067/S0717‑97072016000300014
    [Google Scholar]
  76. Wan OthmanW.N.N. LiewS.Y. KhawK.Y. MurugaiyahV. LitaudonM. AwangK. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae).Bioorg. Med. Chem.201624184464446910.1016/j.bmc.2016.07.043 27492195
    [Google Scholar]
  77. HeQ. FanY. LiuY. Cytotoxic α-pyrone derivatives from Cryptocarya yunnanensis.Nat. Prod. Res.202236491892410.1080/14786419.2020.1849205 33207963
    [Google Scholar]
  78. XiongR. JiangJ. ChenY. Cytotoxic lignans from Cryptocarya impressinervia.Nat. Prod. Res.20213561019102310.1080/14786419.2019.1611808 31238722
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838283812240126102737
Loading
/content/journals/ctm/10.2174/0122150838283812240126102737
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test