Skip to content
2000
Volume 11, Issue 5
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

The tropical climate in Indonesia can potentially predispose to various diseases caused by mosquitoes, one of which is Dengue Hemorrhagic Fever (DHF). Prevention by eradication of mosquito larvae (with larvicide) and mosquito bites (with repellent) is a strategic countermeasure to control DHF disease vectors. Larvicide and synthetic repellent use also can cause the development of resistance against the larvicide and thereby hurt humans. Therefore, it is necessary to find natural alternatives that are safe and more effective. One plant that has potential as a natural larvicide and repellent is the cat's whisker white-purple variety (). The main secondary metabolite groups in white-purple cat whiskers are flavonoids and phenolics, and both groups are thought to have potential as larvicide and repellent.

Objective

This review aimed to analyze the potential of white-purple cat plants as larvicides and repellents.

Methods

Journal searches in this review came from primary data sources on the internet. Journal searches were conducted using search engines such as Google Scholar, PubMed, and ScienceDirect. In this review, the prediction of the activity of the active compounds in cat's whiskers (sinensetin and rosmarinic acid) as larvicides was also carried out in an study.

Results

The rosmarinic acid and sinensetin contained in cat's whiskers plants have the potential as larvicide and repellent.

Conclusion

Based on the literature search, flavonoid, and phenolic compounds have potential as larvicides and repellent. The larvicide and repellent mechanisms of the two secondary metabolites are of concern because they can cause certain disorders in the central nervous system through skin absorption or breathing.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838280257240328084532
2024-07-23
2026-01-03
Loading full text...

Full text loading...

/deliver/fulltext/ctm/11/5/CTM-11-5-11.html?itemId=/content/journals/ctm/10.2174/0122150838280257240328084532&mimeType=html&fmt=ahah

References

  1. Anonim aInformation on the Situation of Dengue Fever in Indonesia 2017.JakartaIndonesian Ministry of Health2018
    [Google Scholar]
  2. Anonim b. Indonesia Health Profile 2019.JakartaIndonesian Ministry of Health2020
    [Google Scholar]
  3. NurhaifahD. SukesiT.W. Effectiveness of sweet orange peel juice as aedes aegypti mosquito larvicidal.Nation. Public health. J.201593207213
    [Google Scholar]
  4. SharmaV.P. Health hazards of mosquito repellents and safe alternatives.Curr. Sci.2001803341343
    [Google Scholar]
  5. AlmeidaR.M. HanB.A. ReisingerA.J. KagemannC. RosiE.J. High mortality in aquatic predators of mosquito larvae caused by exposure to insect repellent.Biol. Lett.201814102018052610.1098/rsbl.2018.052630381452
    [Google Scholar]
  6. ChenM.E. TsaiM.H. HuangH.T. TsaiC.C. ChenM.J. YangD.S. YangT.Z. WangJ. HuangR.N. Transcriptome profiling reveals the developmental regulation of NaCl-treated Forcipomyia taiwana eggs.BMC Genomi.202122179210.1186/s12864‑021‑08096‑x34732124
    [Google Scholar]
  7. MarinG. ArivoliS. TennysonS. Larvicidal activity of two rutaceae species against the vectors of dengue and filarial fever.J. Exp. Biol. Agric. Sci.20208216617510.18006/2020.8(2).166.175
    [Google Scholar]
  8. FaramayudaF. MarianiT.S. Elfahmi Sukrasno Influence of elicitation and precursors on major secondary metabolite production in cultures of purple Orthosiphon aristatus Blume Miq.Biocatal. Agric. Biotechnol.20224210232410.1016/j.bcab.2022.102324
    [Google Scholar]
  9. FaramayudaF. MarianiT.S. Elfahmi, Sukrasno. Sinensetin contents of purple and white purple variety of Orthosiphon aristatus (Blume) miq.Jordan J. Biol. Sci.202215112713210.54319/jjbs/150117
    [Google Scholar]
  10. RedoT. TriwaniT. AnwarC. SalniS. Larvicidal activity of ketapang leaf fraction (Terminalia catappa L) on Aedes aegypti instar III.Open Access Maced. J. Med. Sci.20197213526352910.3889/oamjms.2019.76032010370
    [Google Scholar]
  11. Faramayuda F, Julian S, Windyaswari AS, Mariani TS, Elfahmi, Sukrasno. A comparative pharmacognostic study of the two Orthoshipon aristatus (blume) MIQ. Varieties JEBAS. 2021; 9(2): S228-33.10.18006/2021.9(Spl‑2‑ICOPMES_2020).S228.S233
    [Google Scholar]
  12. de WuilldaS.A.C.J. MartinsC.R.C. CostaF.N. Larvicidal activity of secondary plant metabolites in Aedes aegypti control: An overview of the previous 6 years.Nat. Prod. Commun.20191471934578X198628910.1177/1934578X19862893
    [Google Scholar]
  13. MukherjeeD. DasS. BegumF. MalS. RayU. The mosquito immune system and the life of dengue virus: What we know and do not know.Pathogens2019827710.3390/pathogens802007731200426
    [Google Scholar]
  14. TikheC.V. JaimeC.V. DongS. RutkowskiN. DimopoulosG. Trypsin-like inhibitor domain (TIL)-harboring protein is essential for Aedes aegypti reproduction.Int. J. Mol. Sci.20222314773610.3390/ijms2314773635887084
    [Google Scholar]
  15. KnolsB.G.J. PosadaA. SisonM.J. KnolsJ.M.H. PattyN.F.A. JahirA. Rapid elimination of Aedes aegypti and Culex quinquefasciatus mosquitoes from puerco Island, Palawan, Philippines with odor-baited traps.Insects202314973010.3390/insects1409073037754698
    [Google Scholar]
  16. AlanaziA.D. Ben SaidM. ShaterA.F. Al-SabiM.N.S. Acaricidal, larvacidal, and repellent activity of Elettaria cardamomum Essential Oil against Hyalomma anatolicum ticks infesting Saudi Arabian Cattle.Plants2022119122110.3390/plants1109122135567222
    [Google Scholar]
  17. ManhH.D. TuyetO.T. Larvicidal and repellent activity of Mentha arvensis L. essential oil against Aedes aegypti. Insects202011319810.3390/insects1103019832235733
    [Google Scholar]
  18. FaramayudaF. MarianS.T. Elfahmi Sukrasno Micropropagation and secondary metabolites content of white-purple varieties of Orthosiphon aristatus blume miq.Pak. J. Biol. Sci.202124885886710.3923/pjbs.2021.858.86734486353
    [Google Scholar]
  19. WondmkunY.T. MohammedO.A. Severe acute respiratory syndrome-coronavirus-2 (SARS-COV-2) inhibition and other antiviral effects of ethiopian medicinal plants and their compounds.In Silico. & In Vitro Pharmacol2020624
    [Google Scholar]
  20. ChuaL.S. LauC.H. ChewC.Y. IsmailN.I.M. SoontorngunN. Phytochemical profile of Orthosiphon aristatus extracts after storage: Rosmarinic acid and other caffeic acid derivatives.Phytomedicine201839495510.1016/j.phymed.2017.12.01529433683
    [Google Scholar]
  21. CaiX. XiaoC. XueH. XiongH. HangY. XuJ. LuY. A comparative study of the antioxidant and intestinal protective effects of extracts from different parts of Java tea ( Orthosiphon stamineus ).Food Sci. Nutr.20186357958410.1002/fsn3.58429876108
    [Google Scholar]
  22. HunaefiD. SmetanskaI. The effect of tea fermentation on rosmarinic acid and antioxidant properties using selected in vitro sprout culture of Orthosiphon aristatus as a model study.Springerplus20132116710.1186/2193‑1801‑2‑16723667816
    [Google Scholar]
  23. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  24. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules2522524333187049
    [Google Scholar]
  25. Al-MassaraniS. El-ShaibanyA. TabancaN. AliA. EstepA.S. BecnelJ.J. GogerF. DemirciB. El-GamalA. BaserK.H.C. Assessment of selected Saudi and Yemeni plants for mosquitocidal activities against the yellow fever mosquito Aedes aegypti. Saudi Pharm. J.201927793093810.1016/j.jsps.2019.07.00131997899
    [Google Scholar]
  26. BhattacharjeeA. DasP.J. DeyS. NayakA.K. RoyP.K. ChakrabartiS. MarbaniangD. DasS.K. RayS. ChattopadhyayP. MazumderB. Development and optimization of besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 32 full factorial design.Colloids Surf. A Physicochem. Eng. Asp.202058512407110.1016/j.colsurfa.2019.124071
    [Google Scholar]
  27. GautamK. KumarP. PooniaS. Larvicidal activity and GC-MS analysis of flavonoids of Vitex negundo and Andrographis paniculata against two vector mosquitoes Anopheles stephensi and Aedes aegypti.J. Vector Borne Dis.201350317117824220075
    [Google Scholar]
  28. InabaK. EbiharaK. SendaM. YoshinoR. SakumaC. KoiwaiK. TakayaD. WatanabeC. WatanabeA. KawashimaY. FukuzawaK. ImamuraR. KojimaH. OkabeT. UemuraN. KasaiS. KanukaH. NishimuraT. WatanabeK. InoueH. FujikawaY. HonmaT. HirokawaT. SendaT. NiwaR. Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppera-bo in Aedes aegypti.BMC Biol.20222014310.1186/s12915‑022‑01233‑235172816
    [Google Scholar]
  29. PavelaR. MaggiF. IannarelliR. BenelliG. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action.Acta Trop.201919323627110.1016/j.actatropica.2019.01.01930711422
    [Google Scholar]
  30. PerumalsamyH. JangM.J. KimJ.R. KadarkaraiM. AhnY.J. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species.Parasit. Vectors20158123710.1186/s13071‑015‑0848‑825928224
    [Google Scholar]
  31. PessoaL.Z.S. DuarteJ.L. FerreiraR.M.A. OliveiraA.E.M.F.M. CruzR.A.S. FaustinoS.M.M. CarvalhoJ.C.T. FernandesC.P. SoutoR.N.P. AraújoR.S. Nanosuspension of quercetin: Preparation, characterization and effects against Aedes aegypti larvae.Rev. Bras. Farmacogn.201828561862510.1016/j.bjp.2018.07.003
    [Google Scholar]
  32. Ruiz‐Cruz S, Chaparro‐Hernández S, Hernández‐Ruiz KL, Cira‐ Chávez LA, Estrada‐Alvarado MI, GassosOrtega LE, Ornelas‐Paz J de J, Mata MAL, Ruiz‐Cruz S, Chaparro‐Hernández S, Hernández‐ Ruiz KL, Cira‐Chávez LA, Estrada‐Alvarado MI, GassosOrtega LE, Ornelas‐Paz J de J, Mata MAL. Flavonoids: Important Biocompounds in Food. In: Flavonoids - From Biosynthesis to Human Health [Internet]. IntechOpen; 2017 [cited 2023 Aug 17].Available from:https://www.intechopen.com/chapters/54639
    [Google Scholar]
  33. DemirakS.M.Ş. CanpolatE. Plant-based bioinsecticides for mosquito control: Impact on insecticide resistance and disease transmission.Insects202213216210.3390/insects1302016235206735
    [Google Scholar]
  34. KhanM.T.H. OrhanI. ŞenolF.S. KartalM. ŞenerB. DvorskáM. ŠmejkalK. ŠlapetováT. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies.Chem. Biol. Interact.2009181338338910.1016/j.cbi.2009.06.02419596285
    [Google Scholar]
  35. ShengR. LinX. ZhangJ. CholK.S. HuangW. YangB. HeQ. HuY. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.Bioorg. Med. Chem.200917186692669810.1016/j.bmc.2009.07.07219692250
    [Google Scholar]
  36. DelalandeC.H. HashimotoY. MonierP.A. SpokonyR. DibA. KondoT. BohèreJ. NiimiK. LatapieY. InagakiS. DuboisL. ValentiP. PoleselloC. KobayashiS. MoussianB. WhiteK.P. PlazaS. KageyamaY. PayreF. Pri peptides are mediators of ecdysone for the temporal control of development.Nat. Cell Biol.201416111035104410.1038/ncb305225344753
    [Google Scholar]
  37. EnyaS. DaimonT. IgarashiF. KataokaH. UchiboriM. SezutsuH. ShinodaT. NiwaR. The silkworm glutathione S-transferase gene noppera-bo is required for ecdysteroid biosynthesis and larval development.Insect Biochem. Mol. Biol.2015611710.1016/j.ibmb.2015.04.00125881968
    [Google Scholar]
  38. EnyaS. AmekuT. IgarashiF. IgaM. KataokaH. ShinodaT. NiwaR. A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila.Sci. Rep.201441658610.1038/srep0658625300303
    [Google Scholar]
  39. GuerreroA. RosellG. Biorational approaches for insect control by enzymatic inhibition.Curr. Med. Chem.200512446146910.2174/092986705336312615720254
    [Google Scholar]
  40. JindraM. New ways and new hopes for IGR development.J. Pestic. Sci.20214613610.1584/jpestics.M21‑0333746540
    [Google Scholar]
  41. SherbiniE.G. Anthelmintic activity of unripe Mangifera indica L. (Mango) against strongyloides stercolaris.IJMPAM.201314073079
    [Google Scholar]
  42. ManiJ.S. JohnsonJ.B. SteelJ.C. BroszczakD.A. NeilsenP.M. WalshK.B. NaikerM. Natural product-derived phytochemicals as potential agents against coronaviruses: A review.Virus Res.202028419798910.1016/j.virusres.2020.19798932360300
    [Google Scholar]
  43. YangB. LiuH. YangJ. GuptaV.K. JiangY. New insights on bioactivities and biosynthesis of flavonoid glycosides.Trends Food Sci. Technol.20187911612410.1016/j.tifs.2018.07.006
    [Google Scholar]
  44. CheungJ. MahmoodA. KalathurR. LiuL. CarlierP.R. Structure of the G119S mutant acetylcholinesterase of the malaria vector anopheles gambiae reveals basis of insecticide resistance.Structure2018261130136.e210.1016/j.str.2017.11.02129276037
    [Google Scholar]
  45. KitchenD.B. DecornezH. FurrJ.R. BajorathJ. Docking and scoring in virtual screening for drug discovery: methods and applications.Nat. Rev. Drug Discov.200431193594910.1038/nrd154915520816
    [Google Scholar]
  46. de RuyckJ. BrysbaertG. BlosseyR. LensinkM. Molecular docking as a popular tool in drug design, an in silico travel.Adv. Appl. Bioinform. Chem.2016911110.2147/AABC.S10528927390530
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838280257240328084532
Loading
/content/journals/ctm/10.2174/0122150838280257240328084532
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): dengue hemorrhagic fever; in silico study; larvicide; O. aristatus; repellent
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test