Skip to content
2000
Volume 11, Issue 3
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Central Nervous System (CNS) diseases significantly impact human health and quality of life. Currently, drugs used to treat CNS disorders primarily include receptor modulators and neurotransmitter inhibitors, which are associated with considerable side effects. Therefore, there is an urgent need for more effective drugs for clinical treatment. Traditional Chinese Medicines (TCMs) have a wide range of pharmacological effects on the CNS, especially as anti-CNS diseases. TCMs can enhance both non-specific and specific immune functions. Some TCMs can improve the adaptability of the body, enhance the body's resistance to various harmful stimuli, regulate pathological processes, and reverse the disordered function. TCMs and their active ingredients exhibit diverse pharmacological effects, including anti-neuritis, anti-oxidative stress regulation, and inhibition of cell apoptosis, with mechanisms possibly related to the regulation of the CNS function and restoring cell metabolism disorders. Based on literature from recent years, we summarize the neuroprotective effects of TCMs from the perspective of core pathological changes in the CNS and clinical applications. In addition, we integrated the progress of experimental research with regard to the pharmacological effects of TCMs on CNS. Current pharmacological investigations examining TCMs on CNS diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD), were reviewed to provide a reference and new concepts for further developing TCMs.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838278135231212100646
2024-01-09
2026-01-03
Loading full text...

Full text loading...

References

  1. KhanamH. AliA. AsifM. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review.Eur. J. Med. Chem.201612411211141
    [Google Scholar]
  2. WuS. ZhangQ. ZhangF. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity.Nat. Cell Biol.20192181027104010.1038/s41556‑019‑0352‑z 31332347
    [Google Scholar]
  3. ZhuY. ArmstrongJ.L. TchkoniaT. KirklandJ.L. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases.Curr. Opin. Clin. Nutr. Metab. Care201417432432810.1097/MCO.0000000000000065 24848532
    [Google Scholar]
  4. MattsonM.P. MagnusT. Ageing and neuronal vulnerability.Nat. Rev. Neurosci.20067427829410.1038/nrn1886 16552414
    [Google Scholar]
  5. HaoP. JiangF. ChengJ. MaL. ZhangY. ZhaoY. Traditional chinese medicine for cardiovascular disease.J. Am. Coll. Cardiol.201769242952296610.1016/j.jacc.2017.04.041 28619197
    [Google Scholar]
  6. LinP.C. LinC.C. LiC.I. TCM as adjunctive therapy improves risks of respiratory hospitalizations in persons with type 2 diabetes: A retrospective cohort study.Medicine202310212e3331810.1097/MD.0000000000033318 36961191
    [Google Scholar]
  7. HuangH. FangJ. FanX. Advances in molecular mechanisms for traditional chinese medicine actions in regulating tumor immune responses.Front. Pharmacol.202011100910.3389/fphar.2020.01009 32733246
    [Google Scholar]
  8. HuberJ.F. BradleyK. SpieglerB.J. DennisM. Long-term effects of transient cerebellar mutism after cerebellar astrocytoma or medulloblastoma tumor resection in childhood.Childs Nerv. Syst.200622213213810.1007/s00381‑005‑1223‑4 16155765
    [Google Scholar]
  9. LiM. LiH. FangF. DengX. MaS. Astragaloside IV attenuates cognitive impairments induced by transient cerebral ischemia and reperfusion in mice via anti-inflammatory mechanisms.Neurosci. Lett.201763911411910.1016/j.neulet.2016.12.046 28011393
    [Google Scholar]
  10. ZhouL. SongZ. ZhouL. Protective role of astragalus injection in spinal cord ischemia-reperfusion injury in rats.Neurosciences201823211612110.17712/nsj.2018.4.20170391 29664452
    [Google Scholar]
  11. MacDonaldJ.M. DohertyJ. HackettR. FreemanM.R. The c-Jun kinase signaling cascade promotes glial engulfment activity through activation of draper and phagocytic function.Cell Death Differ.20132091140114810.1038/cdd.2013.30 23618811
    [Google Scholar]
  12. PérezM.J. JaraC. QuintanillaR.A. Contribution of tau pathology to mitochondrial impairment in neurodegeneration.Front. Neurosci.20181244110.3389/fnins.2018.00441 30026680
    [Google Scholar]
  13. TranA.P. WarrenP.M. SilverJ. The biology of regeneration failure and success after spinal cord injury.Physiol. Rev.201898288191710.1152/physrev.00017.2017 29513146
    [Google Scholar]
  14. KjellJ. OlsonL. Rat models of spinal cord injury: From pathology to potential therapies.Dis. Model. Mech.20169101125113710.1242/dmm.025833 27736748
    [Google Scholar]
  15. WenD. TanR.Z. ZhaoC.Y. Astragalus mongholicus bunge and panax notoginseng (Burkill) F.H. Chen formula for renal injury in diabetic nephropathy—in vivo and in vitro evidence for autophagy regulation.Front. Pharmacol.20201173210.3389/fphar.2020.00732 32595492
    [Google Scholar]
  16. Baecher-AllanC. KaskowB.J. WeinerH.L. Multiple sclerosis: Mechanisms and immunotherapy.Neuron201897474276810.1016/j.neuron.2018.01.021 29470968
    [Google Scholar]
  17. PanY PanY JiaX Astragaloside Ⅳ protects against Aβ1-42-induced oxidative stress, neuroinflammation and cognitive impairment in rats.Chin Med Sci J20180000010.24920/1180229620512
    [Google Scholar]
  18. LoY.L. WangW. Formononetin potentiates epirubicin-induced apoptosis via ROS production in HeLa cells in vitro.Chem. Biol. Interact.2013205318819710.1016/j.cbi.2013.07.003 23867903
    [Google Scholar]
  19. OcchiutoF. ZanglaG. SamperiS. The phytoestrogenic isoflavones from Trifolium pratense L. (Red clover) protects human cortical neurons from glutamate toxicity.Phytomedicine200815967668210.1016/j.phymed.2008.04.007 18539019
    [Google Scholar]
  20. HuangY.C. TsayH.J. LuM.K. Astragalus membranaceus-polysaccharides ameliorates obesity, hepatic steatosis, neuroinflammation and cognition impairment without affecting amyloid deposition in metabolically stressed APPswe/PS1dE9 mice.Int. J. Mol. Sci.20171812274610.3390/ijms18122746 29258283
    [Google Scholar]
  21. WangS. HeH. ChenL. ZhangW. ZhangX. ChenJ. Protective effects of salidroside in the MPTP/MPP(+)-induced model of Parkinson’s disease through ROS-NO-related mitochondrion pathway.Mol. Neurobiol.201551271872810.1007/s12035‑014‑8755‑0 24913834
    [Google Scholar]
  22. LiuH. LvP. ZhuY. Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using Schwann cells and PLGA: In vitro and in vivo.Sci. Rep.2017713986910.1038/srep39869 28054637
    [Google Scholar]
  23. HanT. Effects of salidroside pretreatment on expression of tumor necrosis factor-alpha and permeability of blood brain barrier in rat model of focal cerebralischemia-reperfusion injury.Asian Pac. J. Trop. Med.20136215615810.1016/S1995‑7645(13)60014‑0 23339921
    [Google Scholar]
  24. ZhangB. WangY. LiH. Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models.Drug Des. Devel. Ther.20161013351343 27103787
    [Google Scholar]
  25. ZhangW. HeH. SongH. Neuroprotective effects of salidroside in the MPTP mouse model of parkinson’s disease: Involvement of the PI3K/Akt/GSK3β Pathway.Parkinsons Dis.201620169450137
    [Google Scholar]
  26. XiaoL. LiH. ZhangJ. Salidroside protects caenorhabditis elegans neurons from polyglutamine-mediated toxicity by reducing oxidative stress.Molecules20141967757776910.3390/molecules19067757 24918543
    [Google Scholar]
  27. SiP.P. ZhenJ.L. CaiY.L. WangW.J. WangW.P. Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress.Neurosci. Lett.2016618192410.1016/j.neulet.2016.02.056 26940236
    [Google Scholar]
  28. GaoJ. HeH. JiangW. Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer’s disease.Behav. Brain Res.2015293273310.1016/j.bbr.2015.06.045 26192909
    [Google Scholar]
  29. LiQ. WangJ. LiY. XuX. Neuroprotective effects of salidroside administration in a mouse model of Alzheimer’s disease.Mol. Med. Rep.20181757287729210.3892/mmr.2018.8757 29568861
    [Google Scholar]
  30. ZhouF. JuJ. FangY. Salidroside protected against MPP + ‐induced Parkinson’s disease in PC12 cells by inhibiting inflammation, oxidative stress and cell apoptosis.Biotechnol. Appl. Biochem.201966224725310.1002/bab.1719 30548933
    [Google Scholar]
  31. AngelopoulouE. PaudelY.N. PiperiC. Exploring the role of high-mobility group box 1 (HMGB1) protein in the pathogenesis of Huntington’s disease.J. Mol. Med.202098332533410.1007/s00109‑020‑01885‑z 32036391
    [Google Scholar]
  32. LashmanovaE. ZemskayaN. ProshkinaE. The evaluation of geroprotective effects of selected flavonoids in drosophila melanogaster and caenorhabditis elegans.Front. Pharmacol.2017888410.3389/fphar.2017.00884 29375370
    [Google Scholar]
  33. MaG. ZhengQ. XuM. Rhodiola rosea l. improves learning and memory function: Preclinical evidence and possible mechanisms.Front. Pharmacol.20189141510.3389/fphar.2018.01415 30564123
    [Google Scholar]
  34. ZhangX. DuQ. YangY. Salidroside alleviates ischemic brain injury in mice with ischemic stroke through regulating BDNK mediated PI3K/Akt pathway.Biochem. Pharmacol.20181569910810.1016/j.bcp.2018.08.015 30114387
    [Google Scholar]
  35. ZuoW. YanF. ZhangB. HuX. MeiD. Salidroside improves brain ischemic injury by activating PI3K/Akt pathway and reduces complications induced by delayed tPA treatment.Eur. J. Pharmacol.201883012813810.1016/j.ejphar.2018.04.001 29626425
    [Google Scholar]
  36. ChenP. LiuJ. RuanH. Protective effects of Salidroside on cardiac function in mice with myocardial infarction.Sci. Rep.2019911812710.1038/s41598‑019‑54713‑x 31792327
    [Google Scholar]
  37. ZhongX. LinR. LiZ. MaoJ. ChenL. Effects of Salidroside on cobalt chloride-induced hypoxia damage and mTOR signaling repression in PC12 cells.Biol. Pharm. Bull.20143771199120610.1248/bpb.b14‑00100 24989011
    [Google Scholar]
  38. HuH. LiZ. ZhuX. LinR. ChenL. Salidroside reduces cell mobility via NF- κ B and MAPK Signaling in LPS-Induced BV2 Microglial Cells.Evid. Based Complement. Alternat. Med.201421438382110.1155/2014/383821
    [Google Scholar]
  39. MengX. TanJ. LiM. SongS. MiaoY. ZhangQ. Sirt1: Role under the condition of ischemia/Hypoxia.Cell. Mol. Neurobiol.2017371172810.1007/s10571‑016‑0355‑2 26971525
    [Google Scholar]
  40. XuL. JiaL. WangQ. HouJ. LiS. TengJ. Salidroside attenuates hypoxia/reoxygenation-induced human brain vascular smooth muscle cell injury by activating the SIRT1/FOXO3α pathway.Exp. Ther. Med.2018151822830 29434685
    [Google Scholar]
  41. St-Laurent-ThibaultC. ArseneaultM. LongpréF. RamassamyC. Tyrosol and hydroxytyrosol, two main components of olive oil, protect N2a cells against amyloid-β-induced toxicity. Involvement of the NF-κB signaling.Curr. Alzheimer Res.20118554355110.2174/156720511796391845 21605049
    [Google Scholar]
  42. GuoL. SunX. LiaoY. LiW. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis.Neural Regen. Res.201712695395810.4103/1673‑5374.208590 28761429
    [Google Scholar]
  43. GuoS.S. CuiX.L. RauschW.D. Ganoderma Lucidum polysaccharides protect against MPP(+) and rotenone-induced apoptosis in primary dopaminergic cell cultures through inhibiting oxidative stress.Am. J. Neurodegener. Dis.201652131144 27335703
    [Google Scholar]
  44. LongaE.Z. WeinsteinP.R. CarlsonS. CumminsR. Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke1989201849110.1161/01.STR.20.1.84 2643202
    [Google Scholar]
  45. ZhaoH.B. WangS.Z. HeQ. YuanL. ChenA.F. LinZ.B. Ganoderma total sterol (GS) and GS1 protect rat cerebral cortical neurons from hypoxia/reoxygenation injury.Life Sci.20057691027103710.1016/j.lfs.2004.08.013 15607331
    [Google Scholar]
  46. LiuZ. ZhouT. ZieglerA.C. DimitrionP. ZuoL. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications.Oxid. Med. Cell. Longev.201720172525967
    [Google Scholar]
  47. YaoR. HeinrichM. ZouY. Quality Variation of Goji (Fruits of Lycium spp.) in China: A Comparative Morphological and Metabolomic Analysis.Front. Pharmacol.2018915110.3389/fphar.2018.00151 29535631
    [Google Scholar]
  48. BaiL. GaoJ. WeiF. ZhaoJ. WangD. WeiJ. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes.Front. Pharmacol.2018942310.3389/fphar.2018.00423 29765322
    [Google Scholar]
  49. YangD. LiS.Y. YeungC.M. Lycium barbarum extracts protect the brain from blood-brain barrier disruption and cerebral edema in experimental stroke.PLoS One201273e3359610.1371/journal.pone.0033596 22438957
    [Google Scholar]
  50. BinL. Minglin, Jin, Hongbo, and Liu. “Water-soluble polysaccharide from dried Lycium barbarum fruits: Isolation, structural features and antioxidant activity,”.Carbohydr. Polym.201183419471951
    [Google Scholar]
  51. OlatunjiO.J. ChenH. ZhouY. Lycium chinensis Mill attenuates glutamate induced oxidative toxicity in PC12 cells by increasing antioxidant defense enzymes and down regulating ROS and Ca2+ generation.Neurosci. Lett.201661611111810.1016/j.neulet.2015.10.070 26536075
    [Google Scholar]
  52. ParkK.H. ParkM. ChoiS.E. The anti-oxidative and anti-inflammatory effects of caffeoyl derivatives from the roots of Aconitum koreanum R. RAYMOND.Biol. Pharm. Bull.200932122029203310.1248/bpb.32.2029 19952423
    [Google Scholar]
  53. ZhaR. XuW. WangW. DongL. WangY. Prevention of lipopolysaccharide-induced injury by 3,5-dicaffeoylquinic acid in endothelial cells.Acta Pharmacol. Sin.20072881143114810.1111/j.1745‑7254.2007.00595.x 17640475
    [Google Scholar]
  54. KimS.S. ParkR.Y. JeonH.J. KwonY.S. ChunW. Neuroprotective effects of 3,5-dicaffeoylquinic acid on hydrogen peroxide-induced cell death in SH-SY5Y cells.Phytother. Res.200519324324510.1002/ptr.1652 15934031
    [Google Scholar]
  55. CaoX. XiaoH. ZhangY. ZouL. ChuY. ChuX. 1, 5-Dicaffeoylquinic acid-mediated glutathione synthesis through activation of Nrf2 protects against OGD/reperfusion-induced oxidative stress in astrocytes.Brain Res.2010134714214810.1016/j.brainres.2010.05.072 20513363
    [Google Scholar]
  56. FangS.Q. WangY.T. WeiJ.X. ShuY.H. XiaoL. LuX.M. Beneficial effects of chlorogenic acid on alcohol-induced damage in PC12 cells.Biomed. Pharmacother.20167925426210.1016/j.biopha.2016.02.018 27044836
    [Google Scholar]
  57. CamfieldD.A. SilberB.Y. ScholeyA.B. NolidinK. GohA. StoughC. A randomised placebo-controlled trial to differentiate the acute cognitive and mood effects of chlorogenic acid from decaffeinated coffee.PLoS One2013812e8289710.1371/journal.pone.0082897 24349389
    [Google Scholar]
  58. HeitmanE. IngramD.K. Cognitive and neuroprotective effects of chlorogenic acid.Nutr. Neurosci.2017201323910.1179/1476830514Y.0000000146 25130715
    [Google Scholar]
  59. MoriH. IwahashiH. Antioxidant Activity of Caffeic Acid through a Novel Mechanism under UVA Irradiation.J. Clin. Biochem. Nutr.2009451495510.3164/jcbn.08‑258 19590707
    [Google Scholar]
  60. BakırS. ÖzbayM. GünR. The protective role of caffeic acid phenethyl ester against streptomycin ototoxicity.Am. J. Otolaryngol.2013341162110.1016/j.amjoto.2012.07.003 22964505
    [Google Scholar]
  61. PrasadN.R. JeyanthimalaK. RamachandranS. Caffeic acid modulates ultraviolet radiation-B induced oxidative damage in human blood lymphocytes.J. Photochem. Photobiol. B200995319620310.1016/j.jphotobiol.2009.03.007 19386510
    [Google Scholar]
  62. ZhangL. ZhangW.P. ChenK.D. QianX.D. FangS.H. WeiE.Q. Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury.Life Sci.200780653053710.1016/j.lfs.2006.09.039 17074364
    [Google Scholar]
  63. WanX. JinX. RenY. XiuY. LiuS. Antitumor effects and mechanism of protein from Panax ginseng C. A. Meyer on human breast cancer cell line MCF-7.Pharmacogn. Mag.20191565715
    [Google Scholar]
  64. ZhuJ. MuX. ZengJ. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging.PLoS One201496e10129110.1371/journal.pone.0101291 24979747
    [Google Scholar]
  65. HeQ. SunJ. WangQ. WangW. HeB. Neuroprotective effects of ginsenoside Rg1 against oxygen–glucose deprivation in cultured hippocampal neurons.J. Chin. Med. Assoc.201477314214910.1016/j.jcma.2014.01.001 24548377
    [Google Scholar]
  66. YanJ.P. ShenN.E. YeQ. ZongY.H. FangQ.X. LvL.Z. [Protective effect of ginsenoside Rg1 again PC-12 cells in OGD injury through mTOR/Akt/FoxO3 signaling pathway].Zhongguo Zhongyao Zazhi201540815541559 26281597
    [Google Scholar]
  67. LiuA. ZhuW. SunL. Ginsenoside Rb1 administration attenuates focal cerebral ischemic reperfusion injury through inhibition of HMGB1 and inflammation signals.Exp. Ther. Med.20181643020302610.3892/etm.2018.6523 30214520
    [Google Scholar]
  68. ShimI. JavaidJ.I. KimS.E. Effect of ginseng total saponin on extracellular dopamine release elicited by local infusion of nicotine into the striatum of freely moving rats.Planta Med.200066870570810.1055/s‑2000‑9777 11199125
    [Google Scholar]
  69. TangC. LiK.R. YuQ. JiangQ. YaoJ. CaoC. Activation of Nrf2 by Ginsenoside Rh3 protects retinal pigment epithelium cells and retinal ganglion cells from UV.Free Radic. Biol. Med.201811723824610.1016/j.freeradbiomed.2018.02.001 29427790
    [Google Scholar]
  70. YeR. LiN. HanJ. Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons.Neurosci. Res.200964330631010.1016/j.neures.2009.03.016 19447300
    [Google Scholar]
  71. NakamuraA. KanekoN. VillemagneV.L. High performance plasma amyloid-β biomarkers for Alzheimer’s disease.Nature2018554769124925410.1038/nature25456 29420472
    [Google Scholar]
  72. Jin-AL. Autophagy in neurodegenerative diseases.Brain Res20161649(Pt B)1412
    [Google Scholar]
  73. FanK. LinL. AiQ. Lipopolysaccharide-Induced Dephosphorylation of AMPK-Activated Protein Kinase Potentiates Inflammatory Injury via Repression of ULK1-Dependent Autophagy.Front. Immunol.20189146410.3389/fimmu.2018.01464 29988556
    [Google Scholar]
  74. AmadoroG. CorsettiV. AtlanteA. An alzheimer’s-linked toxic nh2-fragment of human tau affects the parkin-driven mitophagy in primary hippocampal neurons.Alzheimer Dementia2014104P647
    [Google Scholar]
  75. StappertL. Roese-KoernerB. BrüstleO. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification.Cell Tissue Res.20153591476410.1007/s00441‑014‑1981‑y 25172833
    [Google Scholar]
  76. HigakiS. MuramatsuM. MatsudaA. Defensive effect of microRNA-200b/c against amyloid-beta peptide-induced toxicity in Alzheimer’s disease models.PLoS One2018135e019692910.1371/journal.pone.0196929 29738527
    [Google Scholar]
  77. LiJ. WangH. miR-15b reduces amyloid-β accumulation in SH-SY5Y cell line through targetting NF-κB signaling and BACE1.Biosci. Rep.2018386BSR2018005110.1042/BSR20180051
    [Google Scholar]
  78. LongJ.M. RayB. LahiriD.K. MicroRNA-339-5p down-regulates protein expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects.J. Biol. Chem.201428985184519810.1074/jbc.M113.518241 24352696
    [Google Scholar]
  79. KangQ. XiangY. LiD. MiR-124-3p attenuates hyperphosphorylation of tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695swe cells.Oncotarget2017815243142432610.18632/oncotarget.15149 28186985
    [Google Scholar]
  80. QiS. XinY. GuoY. Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-κB signaling pathways.Int. Immunopharmacol.201212127828710.1016/j.intimp.2011.12.001 22193240
    [Google Scholar]
  81. KouX. LiJ. LiuX. YangX. FanJ. ChenN. Ampelopsin attenuates the atrophy of skeletal muscle from d -gal-induced aging rats through activating AMPK/SIRT1/PGC-1α signaling cascade.Biomed. Pharmacother.20179031132010.1016/j.biopha.2017.03.070 28364603
    [Google Scholar]
  82. CaoW. DouY. LiA. Resveratrol Boosts Cognitive Function by Targeting SIRT1.Neurochem. Res.20184391705171310.1007/s11064‑018‑2586‑8 29943083
    [Google Scholar]
  83. GaoJ. ZhangQ. SongL. Resveratrol enhances matrix biosynthesis of nucleus pulposus cells through activating autophagy via the PI3K/Akt pathway under oxidative damage.Biosci. Rep.2018384BSR2018054410.1042/BSR20180544 29752339
    [Google Scholar]
  84. MengH.Y. ShaoD.C. LiH. Resveratrol improves neurological outcome and neuroinflammation following spinal cord injury through enhancing autophagy involving the AMPK/mTOR pathway.Mol. Med. Rep.20181822237224410.3892/mmr.2018.9194 29956767
    [Google Scholar]
  85. UlakcsaiZ. BagaméryF. SzökőÉ. TábiT. The role of autophagy induction in the mechanism of cytoprotective effect of resveratrol.Eur. J. Pharm. Sci.201812313514210.1016/j.ejps.2018.07.039 30036580
    [Google Scholar]
  86. ShenJ. XuL. QuC. SunH. ZhangJ. Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro.Behav. Brain Res.20183491710.1016/j.bbr.2018.04.050 29715537
    [Google Scholar]
  87. WangZ.H. ZhangJ.L. DuanY.L. ZhangQ.S. LiG.F. ZhengD.L. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse.Biomed. Pharmacother.20157425225610.1016/j.biopha.2015.08.025 26349993
    [Google Scholar]
  88. WangH. FengH. ZhangY. Resveratrol inhibits hypoxia-induced glioma cell migration and invasion by the p-STAT3/miR-34a axis.Neoplasma201663453253910.4149/neo_2016_406 27268916
    [Google Scholar]
  89. BraidyN. JugderB.E. PoljakA. Resveratrol as a Potential Therapeutic Candidate for the Treatment and Management of Alzheimer’;s Disease.Curr. Top. Med. Chem.201616171951196010.2174/1568026616666160204121431 26845555
    [Google Scholar]
  90. SongG. LuH. ChenF. Tetrahydrocurcumin induced autophagy via suppression of PI3K/Akt/mTOR in non small cell lung carcinoma cells.Mol. Med. Rep.20181745964596910.3892/mmr.2018.8600 29436654
    [Google Scholar]
  91. SeoS.U. WooS.M. LeeH.S. KimS.H. MinK. KwonT.K. mTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy.Oncogene201837385205522010.1038/s41388‑018‑0345‑6 29849119
    [Google Scholar]
  92. LiuJ. LiM. WangY. LuoJ. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition.J. Drug Target.201725764565210.1080/1061186X.2017.1315686 28391715
    [Google Scholar]
  93. NieL. XiaJ. LiH. Ginsenoside Rg1 ameliorates behavioral abnormalities and modulates the hippocampal proteomic change in triple transgenic mice of Alzheimer’s disease.Oxid. Med. Cell. Longev.201720176473506
    [Google Scholar]
  94. ZhuX. ZhuR. Curcumin suppresses the progression of laryngeal squamous cell carcinoma through the upregulation of miR-145 and inhibition of the PI3K/Akt/mTOR pathway.OncoTargets Ther.2018113521353110.2147/OTT.S159236 29950857
    [Google Scholar]
  95. FujiharaK. KoikeS. OgasawaraY. TakahashiK. KoyamaK. KinoshitaK. Inhibition of amyloid β aggregation and protective effect on SH-SY5Y cells by triterpenoid saponins from the cactus Polaskia chichipe.Bioorg. Med. Chem.201725133377338310.1016/j.bmc.2017.04.023 28478866
    [Google Scholar]
  96. YouZ. YaoQ. ShenJ. Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF signaling cascade.J. Nat. Med.201771236737910.1007/s11418‑016‑1066‑1 28013484
    [Google Scholar]
  97. González-BurgosE Fernández-MorianoC LozanoR IglesiasI Gómez-SerranillosMP Ginsenosides Rd and Re co-treatments improve rotenone-induced oxidative stress and mitochondrial impairment in SH-SY5Y neuroblastoma cells.Food Chem Toxicol2017109(Pt 1)384710.1016/j.fct.2017.08.013
    [Google Scholar]
  98. CaoG. SuP. ZhangS. Ginsenoside Re reduces Aβ production by activating PPARγ to inhibit BACE1 in N2a/APP695 cells.Eur. J. Pharmacol.201679310110810.1016/j.ejphar.2016.11.006 27840193
    [Google Scholar]
  99. TuT.H.T. SharmaN. ShinE.J. Ginsenoside Re protects trimethyltin-induced neurotoxicity via Activation of IL-6-mediated phosphoinositol 3-kinase/akt signaling in Mice.Neurochem. Res.201742113125313910.1007/s11064‑017‑2349‑y 28884396
    [Google Scholar]
  100. LvR. DuL. LuC. Allicin protects against H2O2-induced apoptosis of PC12 cells via the mitochondrial pathway.Exp. Ther. Med.20171432053205910.3892/etm.2017.4725 28962124
    [Google Scholar]
  101. ZhuY.F. LiX.H. YuanZ.P. Allicin improves endoplasmic reticulum stress-related cognitive deficits via PERK/Nrf2 antioxidative signaling pathway.Eur. J. Pharmacol.201576223924610.1016/j.ejphar.2015.06.002 26049013
    [Google Scholar]
  102. CuiD.N. WangX. ChenJ.Q. Quantitative evaluation of the compatibility effects of huangqin decoction on the treatment of irinotecan-induced gastrointestinal toxicity using untargeted metabolomics.Front. Pharmacol.2017821110.3389/fphar.2017.00211 28484391
    [Google Scholar]
  103. PostM.R. LiebermanO.J. MosharovE.V. Can interactions between α-synuclein, dopamine and calcium explain selective neurodegeneration in parkinson’s disease?Front. Neurosci.20181216110.3389/fnins.2018.00161 29593491
    [Google Scholar]
  104. HeJ. LiX. WangZ. Therapeutic anabolic and anticatabolic benefits of natural chinese medicines for the treatment of osteoporosis.Front. Pharmacol.201910134410.3389/fphar.2019.01344 31824310
    [Google Scholar]
  105. KwonS.H. MaS.X. HwangJ.Y. The anti-inflammatory activity of eucommia ulmoides Oliv. Bark. Involves NF-κB suppression and Nrf2-dependent HO-1 induction in BV-2 microglial cells.Biomol. Ther.201624326828210.4062/biomolther.2015.150 27068259
    [Google Scholar]
  106. HuW. WangG. LiP. Neuroprotective effects of macranthoin G from Eucommia ulmoides against hydrogen peroxide-induced apoptosis in PC12 cells via inhibiting NF-κB activation.Chem. Biol. Interact.201422410811610.1016/j.cbi.2014.10.011 25451577
    [Google Scholar]
  107. LuoD. OrT.C.T. YangC.L.H. LauA.S.Y. Anti-inflammatory activity of iridoid and catechol derivatives from Eucommia ulmoides Oliver.ACS Chem. Neurosci.20145985586610.1021/cn5001205 25065689
    [Google Scholar]
  108. WangJ. LiY. HuangW.H. The protective effect of aucubin from eucommia ulmoides against status epilepticus by inducing autophagy and inhibiting necroptosis.Am. J. Chin. Med.201745355757310.1142/S0192415X17500331 28387136
    [Google Scholar]
  109. Sharifi-RadJ. RayessY.E. RizkA.A. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.01021 33041781
    [Google Scholar]
  110. BollimpelliV.S. KumarP. KumariS. KondapiA.K. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.Neurochem. Int.201695374510.1016/j.neuint.2016.01.006 26826319
    [Google Scholar]
  111. YuanJ. LiuW. ZhuH. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice.J. Surg. Res.2017207859110.1016/j.jss.2016.08.090 27979493
    [Google Scholar]
  112. NiranjanR. The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes.Mol. Neurobiol.2014491283810.1007/s12035‑013‑8483‑x 23783559
    [Google Scholar]
  113. KimJ. JeongY.H. LeeE.J. ParkJ.S. SeoH. KimH.S. Suppression of neuroinflammation by matrix metalloproteinase-8 inhibitor in aged normal and LRRK2 G2019S Parkinson’s disease model mice challenged with lipopolysaccharide.Biochem. Biophys. Res. Commun.2017493287988610.1016/j.bbrc.2017.09.129 28958936
    [Google Scholar]
  114. YuS. WangX. HeX. Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP+)-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway.Cell Stress Chaperones201621469770510.1007/s12192‑016‑0695‑3 27164829
    [Google Scholar]
  115. PhomL. AchumiB. AloneD.P. Muralidhara YenisettiSC. Curcumin’s neuroprotective efficacy in Drosophila model of idiopathic Parkinson’s disease is phase specific: implication of its therapeutic effectiveness.Rejuvenation Res.201417648148910.1089/rej.2014.1591 25238331
    [Google Scholar]
  116. KhatriD.K. JuvekarA.R. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson’s disease.Pharmacol. Biochem. Behav.2016150-151394710.1016/j.pbb.2016.09.002 27619637
    [Google Scholar]
  117. AbbaouiA. ChatouiH. El HibaO. GamraniH. Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: A possible link with Parkinson’s disease.Neurosci. Lett.201766010310810.1016/j.neulet.2017.09.032 28919537
    [Google Scholar]
  118. YangJ. SongS. LiJ. LiangT. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson’s disease rat.Pathol. Res. Pract.2014210635736210.1016/j.prp.2014.02.005 24642369
    [Google Scholar]
  119. SongS. NieQ. LiZ. DuG. Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats.Pathol. Res. Pract.2016212424725110.1016/j.prp.2015.11.012 26922613
    [Google Scholar]
  120. GoodarziZ. IsmailZ. A practical approach to detection and treatment of depression in Parkinson disease and dementia.Neurol. Clin. Pract.20177212814010.1212/CPJ.0000000000000351 28409063
    [Google Scholar]
  121. LiuY. GaoJ. PengM. A Review on Central Nervous System Effects of Gastrodin.Front. Pharmacol.201892410.3389/fphar.2018.00024 29456504
    [Google Scholar]
  122. ZhanH.D. ZhouH.Y. SuiY.P. The rhizome of Gastrodia elata Blume – An ethnopharmacological review.J. Ethnopharmacol.201618936138510.1016/j.jep.2016.06.057 27377337
    [Google Scholar]
  123. ChenW.C. LaiY.S. LinS.H. Anti-depressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling.J. Ethnopharmacol.201618219019910.1016/j.jep.2016.02.001 26899441
    [Google Scholar]
  124. XuJ. XuH. LiuY. HeH. LiG. Vanillin-induced amelioration of depression-like behaviors in rats by modulating monoamine neurotransmitters in the brain.Psychiatry Res.2015225350951410.1016/j.psychres.2014.11.056 25595338
    [Google Scholar]
  125. WangH. ZhangR. QiaoY. Gastrodin ameliorates depression-like behaviors and up-regulates proliferation of hippocampal-derived neural stem cells in rats: Involvement of its anti-inflammatory action.Behav. Brain Res.201426615316010.1016/j.bbr.2014.02.046 24613238
    [Google Scholar]
  126. Ben SaadH. KharratN. DrissD. Effects of vanillin on potassium bromate-induced neurotoxicity in adult mice: impact on behavior, oxidative stress, genes expression, inflammation and fatty acid composition.Arch. Physiol. Biochem.2017123316517410.1080/13813455.2017.1283527 28276710
    [Google Scholar]
  127. ZhangR. PengZ. WangH. Gastrodin ameliorates depressive-like behaviors and up-regulates the expression of BDNF in the hippocampus and hippocampal-derived astrocyte of rats.Neurochem. Res.201439117217910.1007/s11064‑013‑1203‑0 24293261
    [Google Scholar]
  128. MaX. ZhangW. JiangY. WenJ. WeiS. ZhaoY. Paeoniflorin, a Natural Product With Multiple Targets in Liver Diseases—A Mini Review.Front. Pharmacol.20201153110.3389/fphar.2020.00531 32410996
    [Google Scholar]
  129. TaoW. WangH. SuQ. Paeonol attenuates lipopolysaccharide-induced depressive-like behavior in mice.Psychiatry Res.201623811612110.1016/j.psychres.2016.02.033 27086220
    [Google Scholar]
  130. ZhuX.L. ChenJ.J. HanF. Novel antidepressant effects of Paeonol alleviate neuronal injury with concomitant alterations in BDNF, Rac1 and RhoA levels in chronic unpredictable mild stress rats.Psychopharmacology201823572177219110.1007/s00213‑018‑4915‑7 29752492
    [Google Scholar]
  131. HuM. WangA. ZhaoZ. ChenX. LiY. LiuB. Antidepressant-like effects of paeoniflorin on post-stroke depression in a rat model.Neurol. Res.201941544645510.1080/01616412.2019.1576361 30759063
    [Google Scholar]
  132. HengY. MaoW. YongM. YangG. SuQ. WangJ. WITHDRAWN: Paeoniflorin attenuates LPS-induced inflammation in nucleus pulposus cells via Nrf-2/HO-1/HMGB1/NF-κB pathway.Microb. Pathog.20183008810.1016/j.micpath.2018.08.009
    [Google Scholar]
  133. AnandR. GillK.D. MahdiA.A. Therapeutics of Alzheimer’s disease: Past, present and future.Neuropharmacology201476275010.1016/j.neuropharm.2013.07.004
    [Google Scholar]
  134. HinzF.I. GeschwindD.H. Molecular genetics of neurodegenerative dementias.Cold spring Harb. Perspect. Biol.201794a02370510.1101/cshperspect.a023705 27940516
    [Google Scholar]
  135. DuarteA.I. SantosM.S. OliveiraC.R. MoreiraP.I. reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease.Front. Neurosci.2018122510.1016/j.neuropharm.2018.01.044
    [Google Scholar]
  136. KumarD. GaneshpurkarA. KumarD. ModiG. GuptaS.K. SinghS.K. Secretase inhibitors for the treatment of Alzheimer’s disease: Long road ahead.Eur. J. Med. Chem.201814843645210.1016/j.ejmech.2018.02.035 29477076
    [Google Scholar]
  137. KametaniF. HasegawaM. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease.Front. Neurosci.2018122510.3389/fnins.2018.00025 29440986
    [Google Scholar]
  138. DoodyR.S. ThomasR.G. FarlowM. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease.N. Engl. J. Med.2014370431132110.1056/NEJMoa1312889 24450890
    [Google Scholar]
  139. LyonJ. Alzheimer outlook far from bleak.JAMA2017317989689810.1001/jama.2017.0276 28199483
    [Google Scholar]
  140. AtriA. FrölichL. BallardC. Effect of idalopirdine as adjunct to cholinesterase inhibitors on change in cognition in patients with alzheimer disease.JAMA2018319213014210.1001/jama.2017.20373 29318278
    [Google Scholar]
  141. ZhangB. YangL.L. DingS.Q. Anti-osteoporotic activity of an edible traditional chinese medicine cistanche deserticola on bone metabolism of ovariectomized Rats Through RANKL/RANK/TRAF6-mediated signaling pathways.Front. Pharmacol.201910141210.3389/fphar.2019.01412 31849666
    [Google Scholar]
  142. ChenJ. ZhouS.N. ZhangY.M. FengY.L. WangS. Glycosides of cistanche improve learning and memory in the rat model of vascular dementia.Eur. Rev. Med. Pharmacol. Sci.201519712341240 25912583
    [Google Scholar]
  143. PengX.M. GaoL. HuoS.X. LiuX.M. YanM. The mechanism of memory enhancement of acteoside (Verbascoside) in the senescent mouse model induced by a combination of d ‐gal and AlCl 3.Phytother. Res.20152981137114410.1002/ptr.5358 25900087
    [Google Scholar]
  144. GaoL. PengX.M. HuoS.X. LiuX.M. YanM. Memory Enhancement of Acteoside (Verbascoside) in a Senescent Mice Model Induced by a Combination of d ‐gal and AlCl 3.Phytother. Res.20152981131113610.1002/ptr.5357 25900014
    [Google Scholar]
  145. ZhangJ. ZhangZ. XiangJ. Neuroprotective effects of echinacoside on regulating the Stress-Active p38MAPK and NF-κB p52 Signals in the Mice Model of Parkinson’s Disease.Neurochem. Res.201742497598510.1007/s11064‑016‑2130‑7 27981472
    [Google Scholar]
  146. LiN. WangJ. MaJ. Neuroprotective effects of cistanches herba therapy on patients with moderate alzheimer’s disease.Evid. Based Complement. Alternat. Med.20152015103985
    [Google Scholar]
  147. YuanJ. RenJ. WangY. HeX. ZhaoY. Acteoside binds to caspase-3 and exerts neuroprotection in the rotenone rat model of parkinson’s disease.PLoS One2016119e016269610.1371/journal.pone.0162696 27632381
    [Google Scholar]
  148. ShiaoY.J. SuM.H. LinH.C. WuC.R. Acteoside and Isoacteoside Protect Amyloid β Peptide Induced Cytotoxicity, Cognitive Deficit and Neurochemical Disturbances in vitro and in vivo.Int. J. Mol. Sci.201718489510.3390/ijms18040895 28441758
    [Google Scholar]
  149. LiuJ. LiuL. SunJ. Icariin protects hippocampal neurons from endoplasmic reticulum stress and NF-κB mediated apoptosis in fetal rat hippocampal neurons and asthma rats.Front. Pharmacol.2020101660
    [Google Scholar]
  150. LiC. LiQ. MeiQ. LuT. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii.Life Sci.2015126576810.1016/j.lfs.2015.01.006 25634110
    [Google Scholar]
  151. MajdS. PowerJ.H.T. Oxidative stress and decreased mitochondrial superoxide dismutase 2 and Peroxiredoxins 1 and 4 based mechanism of concurrent activation of AMPK and mTOR in alzheimer’s disease.Curr. Alzheimer Res.201815876477610.2174/1567205015666180223093020 29473507
    [Google Scholar]
  152. CardosoS. SeiçaR. MoreiraP.I. Diabesity and brain energy metabolism: The case of Alzheimer’s disease.Adv. Neurobiol.20171911715010.1007/978‑3‑319‑63260‑5_5 28933063
    [Google Scholar]
  153. HuangN.Q. JinH. ZhouS. ShiJ. JinF. TLR4 is a link between diabetes and Alzheimer’s disease.Behav. Brain Res.201731623424410.1016/j.bbr.2016.08.047 27591966
    [Google Scholar]
  154. ChenY. HanS. HuangX. NiJ. HeX. The protective effect of icariin on mitochondrial transport and distribution in primary hippocampal neurons from 3×Tg-AD Mice.Int. J. Mol. Sci.201617216310.3390/ijms17020163 26828481
    [Google Scholar]
  155. ChenY.J. ZhengH.Y. HuangX.X. Neuroprotective effects of icariin on brain metabolism, mitochondrial functions, and cognition in triple-transgenic Alzheimer’s disease Mice.CNS Neurosci. Ther.2016221637310.1111/cns.12473 26584824
    [Google Scholar]
  156. ZongN. LiF. DengY. ShiJ. JinF. GongQ. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus.Behav. Brain Res.201631311111910.1016/j.bbr.2016.06.055 27368415
    [Google Scholar]
  157. ZhangD. WangZ. ShengC. Icariin prevents amyloid beta-induced apoptosis via the pi3k/akt pathway in PC-12 Cells.Evid. Based Complement. Alternat. Med.2015201523526510.1155/2015/235265
    [Google Scholar]
  158. SalterM.W. BeggsS. Sublime microglia: expanding roles for the guardians of the CNS.Cell20141581152410.1016/j.cell.2014.06.008 24995975
    [Google Scholar]
  159. WangG.Q. LiD.D. HuangC. Icariin reduces dopaminergic neuronal loss and microglia-mediated inflammation in vivo and in vitro.Front. Mol. Neurosci.20181044110.3389/fnmol.2017.00441 29375304
    [Google Scholar]
  160. LoosB. KlionskyD.J. WongE. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging.Prog. Neurobiol.20171569010610.1016/j.pneurobio.2017.05.001 28502807
    [Google Scholar]
  161. MoZ.T. LiW.N. ZhaiY.R. GongQ.H. Icariin attenuates oGD/R-induced autophagy via bcl-2-dependent cross talk between apoptosis and autophagy in PC12 Cells.Evid. Based Complement. Alternat. Med.20162016434308410.1155/2016/4343084
    [Google Scholar]
  162. JinF. GongQ.H. XuY.S. Icariin, a phoshphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling.Int. J. Neuropsychopharmacol.201417687188110.1017/S1461145713001533 24513083
    [Google Scholar]
  163. DengY. XiongD. YinC. LiuB. ShiJ. GongQ. Icariside II protects against cerebral ischemia–reperfusion injury in rats via nuclear factor-κB inhibition and peroxisome proliferator-activated receptor up-regulation.Neurochem. Int.201696566110.1016/j.neuint.2016.02.015 26939761
    [Google Scholar]
  164. DengY. LongL. WangK. Icariside II, A broad-spectrum anti-cancer agent, reverses beta-amyloid-induced cognitive impairment through reducing inflammation and apoptosis in rats.Front. Pharmacol.201783910.3389/fphar.2017.00039 28210222
    [Google Scholar]
  165. YinC. DengY. GaoJ. LiX. LiuY. GongQ. Icariside II, a novel phosphodiesterase-5 inhibitor, attenuates streptozotocin-induced cognitive deficits in rats.Neuroscience2016328697910.1016/j.neuroscience.2016.04.022 27109920
    [Google Scholar]
  166. OtsukaH. AkiyamaT. KawaiK.I. ShibataS. InoueO. OgiharaY. The structure of jujubosides A and B, the saponins isolated from the seeds of Zizyphus jujuba.Phytochemistry19781781349135210.1016/S0031‑9422(00)94587‑4
    [Google Scholar]
  167. XieJ. FengH. ZhangY. QiaoL. SongM. WangL. Hplc-ESI-MS/MS analysis of the water-soluble extract from Ziziphi spinosae semen and its ameliorating effect of learning and memory performance in mice.Pharmacogn. Mag.2014104050951610.4103/0973‑1296.141777 25422554
    [Google Scholar]
  168. JungI.H. LeeH.E. ParkS.J. Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice.Pharmacol. Biochem. Behav.2014120889410.1016/j.pbb.2014.02.015 24582850
    [Google Scholar]
  169. LeeY. JeonS.J. LeeH.E. Spinosin, a C-glycoside flavonoid, enhances cognitive performance and adult hippocampal neurogenesis in mice.Pharmacol. Biochem. Behav.201614591610.1016/j.pbb.2016.03.007 26997033
    [Google Scholar]
  170. ZhouM. WangH. ZengX. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.Lancet2019394102041145115810.1016/S0140‑6736(19)30427‑1
    [Google Scholar]
  171. WangN. WangH. LiL. LiY. ZhangR. β-Asarone Inhibits Amyloid-β by Promoting Autophagy in a Cell Model of Alzheimer’s Disease.Front. Pharmacol.2020101529
    [Google Scholar]
  172. LeeH.J. AhnS.M. PakM.E. Positive effects of α-asarone on transplanted neural progenitor cells in a murine model of ischemic stroke.Phytomedicine20185115116110.1016/j.phymed.2018.09.230 30466612
    [Google Scholar]
  173. ChangW. TengJ. β-asarone prevents Aβ25-35-induced inflammatory responses and autophagy in SH-SY5Y cells: down expression Beclin-1, LC3B and up expression Bcl-2.Int. J. Clin. Exp. Med.20158112065820663 26884987
    [Google Scholar]
  174. LiuH. LaiX. XuY. α-Asarone attenuates cognitive deficit in a pilocarpine-induced status epilepticus rat model via a decrease in the nuclear factor-κb activation and reduction in microglia neuroinflammation.Front. Neurol.2017866110.3389/fneur.2017.00661 29312110
    [Google Scholar]
  175. ÖzenI. RothM. BarbarigaM. Loss of regulator of g-protein signaling 5 leads to neurovascular protection in stroke.Stroke20184992182219010.1161/STROKEAHA.118.020124 30354999
    [Google Scholar]
  176. HuangL. DengM. HeY. LuS. MaR. FangY. β ‐asarone and levodopa co‐administration increase striatal dopamine level in 6‐hydroxydopamine induced rats by modulating P‐glycoprotein and tight junction proteins at the blood‐brain barrier and promoting levodopa into the brain.Clin. Exp. Pharmacol. Physiol.201643663464310.1111/1440‑1681.12570 26991136
    [Google Scholar]
  177. HodaieM. WennbergR.A. DostrovskyJ.O. LozanoA.M. Chronic anterior thalamus stimulation for intractable epilepsy.Epilepsia200243660360810.1046/j.1528‑1157.2002.26001.x 12060019
    [Google Scholar]
  178. O'ConnellBK GlossD DevinskyO Cannabinoids in treatment-resistant epilepsy: A review.Epilepsy Behav201770(Pt B)341810.1016/j.yebeh.2016.11.012
    [Google Scholar]
  179. LiuH. SongZ. LiaoD.G. Anticonvulsant and Sedative Effects of Eudesmin isolated from Acorus tatarinowii on mice and rats.Phytother. Res.2015297996100310.1002/ptr.5337 25851178
    [Google Scholar]
  180. WuC.Y. LinY.S. YangY.H. ShuL.H. ChengY.C. LiuH.T. Potential simultaneous inhibitors of angiotensin-converting enzyme 2 and transmembrane protease, Serine 2.Front. Pharmacol.20201158415810.3389/fphar.2020.584158 33390952
    [Google Scholar]
  181. Khazraei-MoradianS. Ganjalikhani-HakemiM. AndalibA. YazdaniR. ArastehJ. KardarG.A. The effect of licorice protein fractions on proliferation and apoptosis of gastrointestinal cancer cell lines.Nutr. Cancer201769233033910.1080/01635581.2017.1263347 28045565
    [Google Scholar]
  182. SinghP. SinghD. GoelR.K. Protective effect on phenytoin-induced cognition deficit in pentylenetetrazol kindled mice: A repertoire of Glycyrrhiza glabra flavonoid antioxidants.Pharm. Biol.201654712091218 26154520
    [Google Scholar]
  183. XieY.C. DongX.W. WuX.M. YanX.F. XieQ.M. Inhibitory effects of flavonoids extracted from licorice on lipopolysaccharide-induced acute pulmonary inflammation in mice.Int. Immunopharmacol.20099219420010.1016/j.intimp.2008.11.004 19071231
    [Google Scholar]
  184. ZengL. ZhangH. XuC. Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties.J. Zhejiang Univ. Sci. B201314111004101210.1631/jzus.B1300138 24190446
    [Google Scholar]
  185. LuoL. JinY. KimI.D. LeeJ.K. Glycyrrhizin suppresses HMGB1 inductions in the hippocampus and subsequent accumulation in serum of a kainic acid-induced seizure mouse model.Cell. Mol. Neurobiol.201434798799710.1007/s10571‑014‑0075‑4 24919651
    [Google Scholar]
  186. YangR. YuanB.C. MaY.S. WangL.Q. LiuC.S. LiuY. HMGR, SQS, β-AS, and Cytochrome P450 Monooxygenase Genes in Glycyrrhiza uralensis.Chinese Herbal Med.20157429029510.1016/S1674‑6384(15)60054‑5
    [Google Scholar]
  187. HuY. LiJ. LiuP. Protection of SH-SY5Y neuronal cells from glutamate-induced apoptosis by 3,6′-disinapoyl sucrose, a bioactive compound isolated from Radix Polygala.J. Biomed. Biotechnol.201220121510.1155/2012/728342
    [Google Scholar]
  188. ChenC.Y. WeiX.D. ChenC.R. 3,4,5-Trimethoxycinnamic acid, one of the constituents of Polygalae Radix exerts anti-seizure effects by modulating GABAAergic systems in mice.J. Pharmacol. Sci.201613111510.1016/j.jphs.2015.07.021 26260747
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838278135231212100646
Loading
/content/journals/ctm/10.2174/0122150838278135231212100646
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test