Skip to content
2000
Volume 11, Issue 3
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

One of the most common infectious diseases in the world is tuberculosis (TB), which is spread by the bacteria Many people throughout the world have stopped using anti-TB medications because of concerns related to multidrug resistance and their effects on the liver. To treat and combat antimycobacterial resistance, it is vital to find new medications with distinctive structures and rare modes of action. Many scientists have discussed the usefulness of plants in the treatment of tuberculosis caused by phytochemical exposure. A large number of chemical structures are present in naturally occurring compounds, which exhibit a wide range of efficacy against . To investigate possible adjuvants for tuberculosis chemotherapy, the current study has provided a mini-review on phytochemicals evaluated for their antimycobacterial properties during the last few decades.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838260819231114050019
2024-01-12
2026-01-03
Loading full text...

Full text loading...

References

  1. KaufmannS.H.E. SchaibleU.E. 100th anniversary of Robert Koch’s Nobel Prize for the discovery of the tubercle bacillus.Trends Microbiol.2005131046947510.1016/j.tim.2005.08.003 16112578
    [Google Scholar]
  2. Ilievska-PoposkaB. MetodievaM. ZakoskaM. VragoterovaC. TrajkovD. Latent tuberculosis infection-diagnosis and treatment.Open Access Maced. J. Med. Sci.20186465165510.3889/oamjms.2018.161 29731933
    [Google Scholar]
  3. HiraiwaM. KimJ.H. LeeH.B. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis.J. Micromech. Microeng.201525505501310.1088/0960‑1317/25/5/055013 26097292
    [Google Scholar]
  4. PaulR. The threat of multidrug-resistant tuberculosis.J. Glob. Infect. Dis.201810311912010.4103/jgid.jgid_125_17 30166808
    [Google Scholar]
  5. ForgetE.J. MenziesD. Adverse reactions to first-line antituberculosis drugs.Expert Opin. Drug Saf.20065223124910.1517/14740338.5.2.231 16503745
    [Google Scholar]
  6. World Health OrganisationGlobal Tuberculosis ReportAvailable From: https://www.who.int/publications/i/item/9789240061729 2022
  7. KontsevayaI. LangeC. Comella-del-BarrioP. Perspectives for systems biology in the management of tuberculosis.Eur. Respir. Rev.20213016020037710.1183/16000617.0377‑2020 34039674
    [Google Scholar]
  8. AcharyaB. AcharyaA. GautamS. Advances in diagnosis of Tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis.Mol. Biol. Rep.20204754065407510.1007/s11033‑020‑05413‑7 32248381
    [Google Scholar]
  9. HumN.J. SungweonR. First and second line drugs and drug resistance Tuberc.Issues Diagnosis Manag2013163180
    [Google Scholar]
  10. World Health OrganizationGlobal tuberculosis report GenevaAvailable From: https://apps.who.int/iris/handle/10665/137094 2014
  11. BradshawD. NannanN. LaubscherR. South African National Burden of Disease Study 2000: Estimates of Provincial Mortality.PretoriaGovernment Printer2000
    [Google Scholar]
  12. VilariçaA.S. DiogoN. AndréM. PinaJ. Adverse reactions to antituberculosis drugs in in-hospital patients: Severity and risk factors.Rev. Port. Pneumol.2010163431451 20635058
    [Google Scholar]
  13. AryaV. A review on anti-tubercular plants.Int. J. Pharm. Tech. Res.20113872880
    [Google Scholar]
  14. El-DinM.A.T. HalimH.A.A.E. El-TantawyA.M. Adverse reactions among patients being treated for multi-drug resistant tuberculosis in Egypt from July 2006 to January 2009.Egypt. J. Chest Dis. Tuberc.201564365766410.1016/j.ejcdt.2015.05.011
    [Google Scholar]
  15. PooranA. PietersonE. DavidsM. TheronG. DhedaK. What is the cost of diagnosis and management of drug resistant tuberculosis in South Africa?PLoS One201381e5458710.1371/journal.pone.0054587 23349933
    [Google Scholar]
  16. OrdasA. RaterinkR.J. CunninghamF. Testing tuberculosis drug efficacy in a zebrafish high-throughput translational medicine screen.Antimicrob. Agents Chemother.201559275376210.1128/AAC.03588‑14 25385118
    [Google Scholar]
  17. MarksS.M. FloodJ. SeaworthB. Treatment practices, outcomes, and costs of multidrug-resistant and extensively drug-resistant tuberculosis, United States, 2005-2007.Emerg. Infect. Dis.201420581282110.3201/eid2005.131037 24751166
    [Google Scholar]
  18. HoppeL.E. KettleR. EisenhutM. AbubakarI. Tuberculosis—diagnosis, management, prevention, and control: Summary of updated NICE guidance.BMJ2016352h674710.1136/bmj.h6747 26762607
    [Google Scholar]
  19. MitnickC.D. WhiteR.A. LuC. Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method.Eur. Respir. J.20164841160117010.1183/13993003.00462‑2016 27587552
    [Google Scholar]
  20. AwasthiD. FreundlichJ.S. Antimycobacterial metabolism: Illuminating Mycobacterium tuberculosis biology and drug discovery.Trends Microbiol.201725975676710.1016/j.tim.2017.05.007 28622844
    [Google Scholar]
  21. ShashidharM. SandhyaM.S. PankajP. SuhasiniB. Herbal drugs as antituberculosis agents.Int J Ayurvedic Herb Med2015418951900
    [Google Scholar]
  22. GaraniyaN. BapodraA. Ethno botanical and Phytophrmacological potential of Abrus precatorius L.: A review.Asian Pac. J. Trop. Biomed.20144Suppl. 1S27S3410.12980/APJTB.4.2014C1069 25183095
    [Google Scholar]
  23. GreenE. SamieA. ObiC.L. BessongP.O. NdipR.N. Inhibitory properties of selected South African medicinal plants against Mycobacterium tuberculosis.J. Ethnopharmacol.2010130115115710.1016/j.jep.2010.04.033 20447452
    [Google Scholar]
  24. GriersonD.S. AfolayanA.J. An ethnobotanical study of plants used for the treatment of wounds in the Eastern Cape, South Africa.J. Ethnopharmacol.199967332733210.1016/S0378‑8741(99)00082‑3 10617068
    [Google Scholar]
  25. HossanS AgarwalaB SarwarS Traditional use of medicinal plants in Bangladesh to treat urinary tract infections and sexually transmitted diseases.Ethnobot Res Appl2010806110.17348/era.8.0.61‑74
    [Google Scholar]
  26. GangadharamP.R.J. Drug resistance in tuberculosis.Tuberculosis: A Comprehensive International Approach.New YorkMarcel Dekker1993293328
    [Google Scholar]
  27. KumarB. SharmaD. SharmaP. KatochV.M. VenkatesanK. BishtD. Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin.J. Proteomics201394687710.1016/j.jprot.2013.08.025 24036035
    [Google Scholar]
  28. IgumborE.U. BradshawD. LaubscherR. Mortality Profile From Registered Deaths for the Limpopo Province, South Africa 1997–2001.Cape TownSouth African Medical Research Council, University of Venda2003
    [Google Scholar]
  29. ItoH. KobayashiE. TakamatsuY. Polyphenols from Eriobotrya japonica and their cytotoxicity against human oral tumor cell lines.Chem. Pharm. Bull.200048568769310.1248/cpb.48.687 10823708
    [Google Scholar]
  30. JasmerR.M. NahidP. HopewellP.C. Clinical practice. Latent tuberculosis infection.N. Engl. J. Med.2002347231860186610.1056/NEJMcp021045 12466511
    [Google Scholar]
  31. KandelT.R. MfenyanaK. ChandiaJ. YogeswaranP. The prevalence of and reasons for interruption of anti-tuberculosis treatment by patients at mbekweni health centre in the king sabata dalindyebo (KSD) district in the eastern cape province.S. Afr. Fam. Pract.20085064747c10.1080/20786204.2008.10873785
    [Google Scholar]
  32. LallN. MeyerJ.J.M. Inhibition of drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis by diospyrin, isolated from Euclea natalensis.J. Ethnopharmacol.2001782-321321610.1016/S0378‑8741(01)00356‑7 11694367
    [Google Scholar]
  33. LodgeT. Provincial government and state authority in South Africa.J. South. Afr. Stud.200531473775310.1080/03057070500370480
    [Google Scholar]
  34. MabogoD.E.N. The ethnobotany of the VhaVenda.MSc Dissertation1990
    [Google Scholar]
  35. MalloryK.F. ChurchyardG.J. KleinschmidtI. De CockK.M. CorbettE.L. The impact of HIV infection on recurrence of tuberculosis in South African gold miners.Int. J. Tuberc. Lung Dis.200045455462 10815740
    [Google Scholar]
  36. MillsE. CooperC. SeelyD. KanferI. African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology.Nutr. J.2005411910.1186/1475‑2891‑4‑19 15927053
    [Google Scholar]
  37. PatwardhanB. VaidyaA.D.B. ChorghadeM. Ayurveda and natural products drug discovery.Curr. Sci.200486789799
    [Google Scholar]
  38. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.00177 24454289
    [Google Scholar]
  39. FatimaS. KumariA. DwivediV.P. Advances in adjunct therapy against tuberculosis: Deciphering the emerging role of phytochemicals.Med Comm.20212494513
    [Google Scholar]
  40. MohamadS. ZinN.M. WahabH.A. Antituberculosis potential of some ethnobotanically selected Malaysian plants.J. Ethnopharmacol.201113331021102610.1016/j.jep.2010.11.037 21094237
    [Google Scholar]
  41. GuptaV.K. KaushikA. ChauhanD.S. AhirwarR.K. SharmaS. BishtD. Anti-mycobacterial activity of some medicinal plants used traditionally by tribes from Madhya Pradesh, India for treating tuberculosis related symptoms.J. Ethnopharmacol.201822711312010.1016/j.jep.2018.08.031 30172059
    [Google Scholar]
  42. NewtonS.M. LauC. WrightC.W. A review of antimycobacterial natural products.Phytother. Res.200014530332210.1002/1099‑1573(200008)14:5<303::AID‑PTR712>3.0.CO;2‑N 10925394
    [Google Scholar]
  43. PanditR. SinghP.K. KumarV. Natural remedies against multi-drug resistant Mycobacterium tuberculosis.J. Tuberc. Res.20153417118310.4236/jtr.2015.34024
    [Google Scholar]
  44. GuX. ManautouJ.E. Molecular mechanisms underlying chemical liver injury.Expert Rev. Mol. Med.201214e410.1017/S1462399411002110 22306029
    [Google Scholar]
  45. SonikaU. KarP. Tuberculosis and liver disease: Management issues.Trop. Gastroenterol.201233210210610.7869/tg.2012.25 23025055
    [Google Scholar]
  46. LiuJ. Pharmacology of oleanolic acid and ursolic acid.J. Ethnopharmacol.1995492576810.1016/0378‑8741(95)90032‑2 8847885
    [Google Scholar]
  47. FontanayS. GrareM. MayerJ. FinanceC. DuvalR.E. Ursolic, oleanolic and betulinic acids: Antibacterial spectra and selectivity indexes.J. Ethnopharmacol.2008120227227610.1016/j.jep.2008.09.001 18835348
    [Google Scholar]
  48. KanterM. MeralI. DedeS. Effects of Nigella sativa L. and Urtica dioica L. on lipid peroxidation, antioxidant enzyme systems and some liver enzymes in CCl4-treated rats.J. Vet. Med. A Physiol. Pathol. Clin. Med.200350526426810.1046/j.1439‑0442.2003.00537.x 14567515
    [Google Scholar]
  49. MaJ.Q. DingJ. ZhangL. LiuC.M. Protective effects of ursolic acid in an experimental model of liver fibrosis through Nrf2/ARE pathway.Clin. Res. Hepatol. Gastroenterol.201539218819710.1016/j.clinre.2014.09.007 25459994
    [Google Scholar]
  50. KashyapD. TuliH.S. SharmaA.K. Ursolic acid (UA): A metabolite with promising therapeutic potential.Life Sci.201614620121310.1016/j.lfs.2016.01.017 26775565
    [Google Scholar]
  51. AsgariZ. SelwynB.J. VonvilleH. DuPontH.L. A systematic review of the evidence for use of herbal medicine for the treatment of acute diarrhea.Nat. Prod. J.201221810.2174/2210315511202010001
    [Google Scholar]
  52. GilaniA.H. JanbazK.H. Prevention of acetaminophen-induced liver damage by Berberis aristata leaves.Biochem. Soc. Trans.1992204347S10.1042/bst020347s 1487011
    [Google Scholar]
  53. WangF. ZhouH.Y. ZhaoG. Inhibitory effects of berberine on ion channels of rat hepatocytes.World J. Gastroenterol.200410192842284510.3748/wjg.v10.i19.2842 15334682
    [Google Scholar]
  54. DomitrovićR. PotočnjakI. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives.Arch. Toxicol.2016901397910.1007/s00204‑015‑1580‑z 26377694
    [Google Scholar]
  55. SinghD. ChoW.C. UpadhyayG. Drug-induced liver toxicity and prevention by herbal antioxidants: an Overview.Front. Physiol.2016636310.3389/fphys.2015.00363 26858648
    [Google Scholar]
  56. EminzadeS. UrasF. IzzettinF.V. Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals.Nutr. Metab.2008511810.1186/1743‑7075‑5‑18 18601745
    [Google Scholar]
  57. MarjaniM. BaghaeiP. Kazempour DizajiM. Evaluation of hepatoprotective effect of silymarin among under treatment tuberculosis patients: a randomized clinical trial.Iran. J. Pharm. Res.2016151247252 27610165
    [Google Scholar]
  58. ZhangW. HongR. TianT. Silymarin’s protective effects and possible mechanisms on alcoholic fatty liver for rats.Biomol. Ther.201321426426910.4062/biomolther.2013.020 24244810
    [Google Scholar]
  59. Al-MalkiA.L. SayedA.A.R. Thymoquinone attenuates cisplatin-induced hepatotoxicity via nuclear factor kappa- β.BMC Complement. Altern. Med.201414128210.1186/1472‑6882‑14‑282 25088145
    [Google Scholar]
  60. KhaderM. EcklP.M. Thymoquinone: an emerging natural drug with a wide range of medical applications.Iran. J. Basic Med. Sci.20141712950957 25859298
    [Google Scholar]
  61. MansourM.A. GinawiO.T. El-HadiyahT. El-KhatibA.S. Al-ShabanahO.A. Al-SawafH.A. Effects of volatile oil constituents of Nigella sativa on carbon tetrachloride-induced hepatotoxicity in mice: Evidence for antioxidant effects of thymoquinone.Res. Commun. Mol. Pathol. Pharmacol.20011103-4239251 12760491
    [Google Scholar]
  62. PrabhakarP. ReetaK.H. MaulikS.K. DindaA.K. GuptaY.K. Protective effect of thymoquinone against high-fructose diet-induced metabolic syndrome in rats.Eur. J. Nutr.20155471117112710.1007/s00394‑014‑0788‑7 25347965
    [Google Scholar]
  63. Sayed-AhmedM.M. AleisaA.M. Al-RejaieS.S. Thymoquinone attenuates diethylnitrosamine induction of hepatic carcinogenesis through antioxidant signaling.Oxid. Med. Cell. Longev.20103425426110.4161/oxim.3.4.12714 20972371
    [Google Scholar]
  64. NoorbakhshM.F. HayatiF. SamarghandianS. Shaterzadeh-YazdiH. FarkhondehT. An overview of hepatoprotective effects of thymoquinone.Recent Pat. Food Nutr. Agric.201891142210.2174/2212798410666180221105503 29473535
    [Google Scholar]
  65. TekbasA. HuebnerJ. SettmacherU. DahmenU. Plants and surgery: The protective effects of thymoquinone on hepatic injury-A systematic review of in vivo studies.Int. J. Mol. Sci.2018194108510.3390/ijms19041085 29621129
    [Google Scholar]
  66. AggarwalB.B. SungB. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets.Trends Pharmacol. Sci.2009302859410.1016/j.tips.2008.11.002 19110321
    [Google Scholar]
  67. AmmonH. WahlM. Pharmacology of Curcuma longa.Planta Med.19915711710.1055/s‑2006‑960004 2062949
    [Google Scholar]
  68. GhoshD. BagchiD. KonishiT. Clinical Aspects of Functional Foods and Nutraceuticals.1st edBoca Raton, FloridaCRC Press201410.1201/b17349
    [Google Scholar]
  69. PalipochS. PunsawadC. KoomhinP. SuwannalertP. Hepatoprotective effect of curcumin and alpha-tocopherol against cisplatin-induced oxidative stress.BMC Complement. Altern. Med.201414111110.1186/1472‑6882‑14‑111 24674233
    [Google Scholar]
  70. FarombiE.O. ShrotriyaS. NaH.K. KimS.H. SurhY.J. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1.Food Chem. Toxicol.20084641279128710.1016/j.fct.2007.09.095 18006204
    [Google Scholar]
  71. GaoS. DuanX. WangX. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion.Food Chem. Toxicol.20135973974710.1016/j.fct.2013.07.032 23871787
    [Google Scholar]
  72. XuD. HuL. SuC. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin.Toxicol. Appl. Pharmacol.2014280230531310.1016/j.taap.2014.08.003 25123790
    [Google Scholar]
  73. BishtS. KhanM.A. BekhitM. A polymeric nanoparticle formulation of curcumin (NanoCurc™) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation.Lab. Invest.20119191383139510.1038/labinvest.2011.86 21691262
    [Google Scholar]
  74. ZhangJ. XuL. ZhangL. YingZ. SuW. WangT. Curcumin attenuates D-galactosamine/lipopolysaccharide-induced liver injury and mitochondrial dysfunction in mice.J. Nutr.201414481211121810.3945/jn.114.193573 24899159
    [Google Scholar]
  75. LiuZ. CuiC. XuP. Curcumin activates AMPK Pathway and regulates lipid metabolism in rats following prolonged clozapine exposure.Front. Neurosci.20171155810.3389/fnins.2017.00558 29046626
    [Google Scholar]
  76. ChenH.W. HuangC.S. LiC.C. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats.Toxicol. Appl. Pharmacol.201428011910.1016/j.taap.2014.07.024 25110055
    [Google Scholar]
  77. YeJ.F. ZhuH. ZhouZ.F. Protective mechanism of andrographolide against carbon tetrachloride-induced acute liver injury in mice.Biol. Pharm. Bull.201134111666167010.1248/bpb.34.1666 22040877
    [Google Scholar]
  78. KondoS. ChatuphonprasertW. JaruchotikamolA. SakumaT. NemotoN. Cellular glutathione content modulates the effect of andrographolide on β-naphthoflavone-induced CYP1A1 mRNA expression in mouse hepatocytes.Toxicology20112801-2182310.1016/j.tox.2010.11.002 21094198
    [Google Scholar]
  79. JaruchotikamolA. JarukamjornK. SirisangtrakulW. SakumaT. KawasakiY. NemotoN. Strong synergistic induction of CYP1A1 expression by andrographolide plus typical CYP1A inducers in mouse hepatocytes.Toxicol. Appl. Pharmacol.2007224215616210.1016/j.taap.2007.07.008 17825862
    [Google Scholar]
  80. NicolettiN.F. Rodrigues-JuniorV. SantosA.A.Jr Protective effects of resveratrol on hepatotoxicity induced by isoniazid and rifampicin via SIRT1 modulation.J. Nat. Prod.201477102190219510.1021/np5003143 25302422
    [Google Scholar]
  81. DasS. DasD. Anti-inflammatory responses of resveratrol.Inflamm. Allergy Drug Targets20076316817310.2174/187152807781696464 17897053
    [Google Scholar]
  82. SmolarzH.D. Swatko-OssorM. GinalskaG. MedyńskaE. Antimycobacterial effect of extract and its components from Rheum rhaponticum.J. AOAC Int.201396115516010.5740/jaoacint.12‑010 23513971
    [Google Scholar]
  83. YangH. HuJ. ChenY.J. GeB. Role of Sirt1 in innate immune mechanisms against Mycobacterium tuberculosis via the inhibition of TAK1 activation.Arch. Biochem. Biophys.2019667495810.1016/j.abb.2019.04.006 31029687
    [Google Scholar]
  84. LeeY.S. HanS.H. LeeS.H. Synergistic effect of tetrandrine and ethidium bromide against methicillin-resistant Staphylococcus aureus (MRSA).J. Toxicol. Sci.201136564565110.2131/jts.36.645 22008539
    [Google Scholar]
  85. LiX.Z. ZhangL. NikaidoH. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis.Antimicrob. Agents Chemother.20044872415242310.1128/AAC.48.7.2415‑2423.2004 15215089
    [Google Scholar]
  86. ZhangH. GaoA. LiF. ZhangG. HoH.I. LiaoW. Mechanism of action of tetrandrine, a natural inhibitor of Candida albicans drug efflux pumps.Yakugaku Zasshi2009129562363010.1248/yakushi.129.623 19420894
    [Google Scholar]
  87. ZhangZ. YanJ. XuK. JiZ. LiL. Tetrandrine reverses drug resistance in isoniazid and ethambutol dual drug-resistant Mycobacterium tuberculosis clinical isolates.BMC Infect. Dis.201515115310.1186/s12879‑015‑0905‑0 25887373
    [Google Scholar]
  88. ShamonS.D. PerezM.I. Blood pressure-lowering efficacy of reserpine for primary hypertension.Cochrane Libr.2016201612CD00765510.1002/14651858.CD007655.pub3 27997978
    [Google Scholar]
  89. NeyfakhA.A. BidnenkoV.E. ChenL.B. Efflux-mediated multidrug resistance in Bacillus subtilis: Similarities and dissimilarities with the mammalian system.Proc. Natl. Acad. Sci. USA199188114781478510.1073/pnas.88.11.4781 1675788
    [Google Scholar]
  90. ZhangY. ScorpioA. NikaidoH. SunZ. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide.J. Bacteriol.199918172044204910.1128/JB.181.7.2044‑2049.1999 10094680
    [Google Scholar]
  91. ZhangY. SunZ. PermarS. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide.J. Med. Microbiol.2002511424910.1099/0022‑1317‑51‑1‑42 11800471
    [Google Scholar]
  92. JainA. JaiswalI. VermaS. SinghP. KantS. SinghM. Effect of efflux pump inhibitors on the susceptibility of Mycobacterium tuberculosis to isoniazid.Lung India201734649950510.4103/0970‑2113.217567 29098993
    [Google Scholar]
  93. SzumowskiJ.D. AdamsK.N. EdelsteinP.H. RamakrishnanL. Antimicrobial efflux pumps and Mycobacterium tuberculosis drug tolerance: Evolutionary considerations.Curr. Top. Microbiol. Immunol.20123748110810.1007/82_2012_300 23242857
    [Google Scholar]
  94. SinghC. SinghS.K. NathG. RaiN.P. Antimycobacterial activity of Piper longum L. fruit extracts against multi drug resistant Mycobacterium spp.Phytomedicine20113353361
    [Google Scholar]
  95. MuraseL.S. Perez de SouzaJ.V. MeneguelloJ.E. Possible binding of piperine in Mycobacterium tuberculosis RNA polymerase and rifampin synergism.Antimicrob. Agents Chemother.20196311e02520e1810.1128/AAC.02520‑18 31481438
    [Google Scholar]
  96. SharmaS. KaliaN.P. SudenP. Protective efficacy of piperine against mycobacterium tuberculosis.Tuberculosis201494438939610.1016/j.tube.2014.04.007 24880706
    [Google Scholar]
  97. JinJ. ZhangJ. GuoN. The plant alkaloid piperine as a potential inhibitor of ethidium bromide efflux in Mycobacterium smegmatis.J. Med. Microbiol.201160222322910.1099/jmm.0.025734‑0 21051548
    [Google Scholar]
  98. SharmaS. KumarM. SharmaS. NargotraA. KoulS. KhanI.A. Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis.J. Antimicrob. Chemother.20106581694170110.1093/jac/dkq186 20525733
    [Google Scholar]
  99. RajaA KapurA FijjuM SaliqueM In vitro studies on efflux pump inhibition of Catharanthus roseus and piperine against ofloxacin resistant M. tuberculosis.Int J Pharma sci Inv201549327
    [Google Scholar]
  100. BakriI.M. DouglasC.W.I. Inhibitory effect of garlic extract on oral bacteria.Arch. Oral Biol.200550764565110.1016/j.archoralbio.2004.12.002 15892950
    [Google Scholar]
  101. RaoR.R. RaoS.S. NatarajanS. VenkataramanP.R. Inhibition of mycobacterium tuberculosis by garlic extract.Nature1946157398844110.1038/157441b0 21066575
    [Google Scholar]
  102. RatnakarP. MurthyP.S. Purification and mechanism of action of antitubercular principle from garlic (Allium sativum) active against isoniazid susceptible and resistantMycobacterium tuberculosis H37Rv.Indian J. Clin. Biochem.1995101343810.1007/BF02873666
    [Google Scholar]
  103. HasanN. YusufN. ToossiZ. IslamN. Suppression of Mycobacterium tuberculosis induced reactive oxygen species (ROS) and TNF-α mRNA expression in human monocytes by allicin.FEBS Lett.2006580102517252210.1016/j.febslet.2006.03.071 16638580
    [Google Scholar]
  104. DibuaU. OdoG. UdengwuS. EsimoneC. Cytotoxicity and antitubercular activity of Allium sativum and lantana camara against mycobacterial isolates from people living with HIV/AIDS.Int. J. Infect. Dis.2010819
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838260819231114050019
Loading
/content/journals/ctm/10.2174/0122150838260819231114050019
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): hepatotoxicity; Mycobacterium tuberculosis; phytochemical; plants; toxicity; Tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test