Skip to content
2000
Volume 11, Issue 3
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

(L.) Kurz, a member of the 'Lythraceae' family, has been used in traditional medicine to cure common diseases since ancient times. It is traditionally used to treat a variety of maladies such as the common cold, toothache, blood infection, leprosy, dysentery, wounds, rheumatic pain, fever, urinary issues, inflammation, infertility, and menstrual problems. The huge potential and impacts of this plant have been thoroughly confirmed in and studies. The most current research on the plant is critical for identifying the bioactive components responsible for its medicinal efficacy. Phytochemical studies reveal the existence of several chemicals extracted from various components of the plant, including glycosides, terpenes, flavonoids, tannins, sterols, phenolics, and essential oils. According to pharmacological studies, the plant has many medicinal properties, such as hypoglycemic, antioxidant, analgesic, hepatoprotective, antibacterial, gastroprotective, and wound healing. Most of the pharmacological effects of raw extracts of this plant have been described. Only a few researchers have reported the activity of chemicals isolated from this plant. Therefore, this research will help to discover the many different medicinal properties of the plant as well as its pharmacological effects on various diseases and will show that further research is needed to explore its practical applications.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838258736231007045743
2023-10-20
2026-01-03
Loading full text...

Full text loading...

References

  1. SofoworaA. OgunbodedeE. OnayadeA. The role and place of medicinal plants in the strategies for disease prevention.Afr. J. Tradit. Complement. Altern. Med.201310521022910.4314/ajtcam.v10i5.2 24311829
    [Google Scholar]
  2. EkorM. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.20134177 24454289
    [Google Scholar]
  3. BennadiD. Self-medication: A current challenge.J. Basic Clin. Pharm.201451192310.4103/0976‑0105.128253 24808684
    [Google Scholar]
  4. DasP.K. GoswamiS. ChinniahA. Woodfordia fruticosa: Traditional uses and recent findings.J. Ethnopharmacol.2007110218919910.1016/j.jep.2006.12.029 17276634
    [Google Scholar]
  5. John-AfricaL.B. YahayaT.A. IsimiC.Y. Anti-ulcer and wound healing activities of Sida Corymbosa in rats.Afr. J. Tradit. Complement. Altern. Med.2013111879210.4314/ajtcam.v11i1.12 24653558
    [Google Scholar]
  6. AbubakarA. HaqueM. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes.J. Pharm. Bioallied Sci.202012111010.4103/jpbs.JPBS_175_19 32801594
    [Google Scholar]
  7. ThakurS. KauravH. ChaudharyG. A Review on Woodfordia fruticosa Kurz (Dhatki): Ayurvedic, Folk and Modern Uses.J. Drug Deliv. Ther.202111312613110.22270/jddt.v11i3.4839
    [Google Scholar]
  8. GiriS. DeyG. SahuR. PaulP. Traditional uses, phytochemistry and pharmacological activities of Woodfordia fruticosa (L) Kurz: a comprehensive review.Indian J. Pharm. Sci.2023851112
    [Google Scholar]
  9. DeFilippsR.A. KrupnickG.A. The medicinal plants of Myanmar.PhytoKeys2018102102134110.3897/phytokeys.102.24380 30002597
    [Google Scholar]
  10. TeohE.S. Secondary Metabolites of Plants.Med Orchid Asia201659
    [Google Scholar]
  11. KhanI.A. SinghA. MindalaD.P. Preclinical development of gastro-protective botanical candidate from Woodfordia fruticosa Chemical standardization, efficacy, pharmacokinetics and safety pharmacology.J. Ethnopharmacol.201924111202310.1016/j.jep.2019.112023 31195031
    [Google Scholar]
  12. TayabM.A. ChowdhuryK.A.A. JabedM. Antioxidant-rich Woodfordia fruticosa leaf extract alleviates depressive-like behaviors and impede hyperglycemia.Plants202110228710.3390/plants10020287 33546288
    [Google Scholar]
  13. Al-KhayriJ.M. SahanaG.R. NagellaP. JosephB.V. AlessaF.M. Al-MssallemM.Q. Flavonoids as potential anti-inflammatory molecules: A review.Molecules2022279290110.3390/molecules27092901 35566252
    [Google Scholar]
  14. TomiyamaK. MukaiY. SaitoM. Antibacterial action of a condensed tannin extracted from astringent persimmon as a component of food addictive pancil PS-M on oral polymicrobial biofilms.Biomed Res. Int.20162016573074810.1155/2016/5730748
    [Google Scholar]
  15. WangP. DingX. KimH. MichalekS.M. ZhangP. Structural effect on adjuvanticity of saponins.J. Med. Chem.20206363290329710.1021/acs.jmedchem.9b02063 32101001
    [Google Scholar]
  16. KuiateJ-R. KueteV. TeponnoR.B. TapondjouL.A. VilaremG. TekeG.N. Antidiarrheal activity of extracts and compound from Trilepisium madagascariense stem bark.Indian J. Pharmacol.201042315716310.4103/0253‑7613.66839 20871767
    [Google Scholar]
  17. AbotalebM. LiskovaA. KubatkaP. BüsselbergD. Therapeutic potential of plant phenolic acids in the treatment of cancer.Biomolecules202010222110.3390/biom10020221 32028623
    [Google Scholar]
  18. AslamN. JanbazK.H. Studies on antidiarrheal and laxative activities of aqueous-ethanol extract of Asphodelus tenuifolius and underlying mechanisms.BMC Complement. Altern. Med.201919130710.1186/s12906‑019‑2740‑0 31711473
    [Google Scholar]
  19. SalminenW. Agbaje-WilliamsM. AjayiF. A unique formulation of cardioprotective bio-actives: an overview of their safety profile.Medicines (Basel)20196410710.3390/medicines6040107 31652632
    [Google Scholar]
  20. Shreeram KumawatA.K. Study of fermentation and quality control in Arishta and asava.Altern. Integr. Med.20130101
    [Google Scholar]
  21. BhattedS. ThakarA. ShuklaV.D. BhattN.N. A study on Vasantika Vamana (therapeutic emesis in spring season) - A preventive measure for diseases of Kapha origin.Ayu201132218118610.4103/0974‑8520.92562 22408299
    [Google Scholar]
  22. ChauhanJ. SrivastavaS. SrivastavaS. Phytochemical investigation of the flowers of Woodfordia fruticosa.Planta Med.197936618318410.1055/s‑0028‑1097262 461573
    [Google Scholar]
  23. YoshidaT. ChouT. MatsudaM. Woodfordin D and oenothein A, trimeric hydrolyzable tannins of macro-ring structure with antitumor activity.Chem. Pharm. Bull. (Tokyo)19913951157116210.1248/cpb.39.1157 1913994
    [Google Scholar]
  24. YoshidaT. ChouT. NittaA. OkudaT. Tannins and related polyphenols of lythraceous plants. III. hydrolyzable tannin oligomers with macrocyclic structures, and accompanying tannins from Woodfordia fruticosa Kurz.Chem. Pharm. Bull. (Tokyo)19924082023203010.1248/cpb.40.2023
    [Google Scholar]
  25. YoshidaT. ChouT. NittaA. MiyamotoK. KoshiuraR. OkudaT. Woodfordin C, a macro-ring hydrolyzable tannin dimer with antitumor activity, and accompanying dimers from Woodfordia fruticosa flowers.Chem. Pharm. Bull. (Tokyo)19903851211121710.1248/cpb.38.1211 2393947
    [Google Scholar]
  26. NajdaA. BainsA. ChawlaP. Assessment of anti-inflammatory and antimicrobial potential of ethanolic extract of Woodfordia fruticosa flowers: GC-MS analysis.Molecules20212623719310.3390/molecules26237193 34885782
    [Google Scholar]
  27. JoshiM. KaurS. VermaM. MishraT. Analysis of antimicrobial activity of Woodfordia fruticosa, Adhatoda vasica and Ricinus communis against multi-drug resistant bacteria.Res J Pharm Technol20191262987299410.5958/0974‑360X.2019.00505.5
    [Google Scholar]
  28. RiazA. RasulA. HussainG. ZahoorM.K. JabeenF. SubhaniZ. Astragalin: A bioactive phytochemical with potential therapeutic activities.Adv. Pharmacol. Sci.20182018979462510.1155/2018/9794625
    [Google Scholar]
  29. JohnsonW BergfeldWF BelsitoDV Safety assessment of benzyl alcohol, benzoic acid and its salts, and benzyl benzoate.Int J Toxicol2017363_suppl)(Suppl.5S30S10.1177/109158181772899629243541
    [Google Scholar]
  30. WuH.F. Morris-NatschkeS.L. XuX.D. Recent advances in natural anti‐HIV triterpenoids and analogs.Med. Res. Rev.20204062339238510.1002/med.21708 32666531
    [Google Scholar]
  31. Oliveira-CostaJ.F. MeiraC.S. Neves MVGdas Dos ReisBPZC SoaresMBP. Anti-inflammatory activities of betulinic acid: a review.Front. Pharmacol.202213883857
    [Google Scholar]
  32. KimD.H. ParkE.K. BaeE.A. HanM.J. Metabolism of rhaponticin and chrysophanol 8-o-β-D-glucopyranoside from the rhizome of rheum undulatum by human intestinal bacteria and their anti-allergic actions.Biol. Pharm. Bull.200023783083310.1248/bpb.23.830 10919361
    [Google Scholar]
  33. Al-MijalliS.H. AssaggafH. QasemA. El-ShemiA.G. AbdallahE.M. MrabtiH.N. Antioxidant, antidiabetic, and antibacterial potentials and chemical composition of Salvia officinalis and Mentha suaveolens grown wild in Morocco.Adv. Pharmacol. Pharm. Sci.20222022284488010.1155/2022/2844880
    [Google Scholar]
  34. SharmeenJ. MahomoodallyF. ZenginG. MaggiF. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals.Molecules202126366610.3390/molecules26030666 33514008
    [Google Scholar]
  35. ShashikumaraS. PurushothamK. DarshanC.L. KalalB.S. Characterization of antidepressant activity of Saraca asoca flower (Roxb.) Wilde in mice subjected to acute restraint stress.Am. J. Transl. Res.202214750145023 35958453
    [Google Scholar]
  36. AkterM. ParvinM.S. HasanM.M. RahmanM.A.A. IslamM.E. Anti-tumor and antioxidant activity of kaempferol-3-O-alpha-L-rhamnoside (Afzelin) isolated from Pithecellobium dulce leaves.BMC Complement. Med. Ther.202222116910.1186/s12906‑022‑03633‑x
    [Google Scholar]
  37. UllahA. MunirS. BadshahS.L. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules25225243 33187049
    [Google Scholar]
  38. EssaA.F. TelebM. El-KershD.M. El GendyA.E.N.G. ElshamyA.I. FaragM.A. Natural acylated flavonoids: their chemistry and biological merits in context to molecular docking studies.Phytochem. Rev.2022202214010.1007/s11101‑022‑09840‑1
    [Google Scholar]
  39. SuchonwanitP. ThammaruchaS. LeerunyakulK. Minoxidil and its use in hair disorders: a review.Drug Des. Devel. Ther.2019132777278610.2147/DDDT.S214907 31496654
    [Google Scholar]
  40. BeierR.C. ByrdJ.A.II KubenaL.F. Evaluation of linalool, a natural antimicrobial and insecticidal essential oil from basil: Effects on poultry.Poult. Sci.201493226727210.3382/ps.2013‑03254 24570447
    [Google Scholar]
  41. RathinavelT. AmmashiS. ShanmugamG. Analgesic and anti-inflammatory potential of Lupeol isolated from Indian traditional medicinal plant Crateva adansonii screened through in vivo and in silico approaches.J. Genet. Eng. Biotechnol.20211916210.1186/s43141‑021‑00167‑6 33945040
    [Google Scholar]
  42. HsiehT.J. LiuT.Z. ChiaY.C. Protective effect of methyl gallate from Toona sinensis (Meliaceae) against hydrogen peroxide-induced oxidative stress and DNA damage in MDCK cells.Food Chem. Toxicol.200442584385010.1016/j.fct.2004.01.008 15046831
    [Google Scholar]
  43. TangP. TangY. LiuY. Quercetin-3-O-α-L-arabinopyra] nosyl-(1→2)-β-D-glucopyranoside Isolated from Eucommia ulmoides Leaf Relieves Insulin Resistance in HepG2 Cells via the IRS-1/PI3K/Akt/GSK-3β Pathway.Biol. Pharm. Bull.202346221922910.1248/bpb.b22‑00597 36517007
    [Google Scholar]
  44. FerenczyovaK. KalocayovaB. BartekovaM. Potential implications of quercetin and its derivatives in cardioprotection.Int. J. Mol. Sci.2020215158510.3390/ijms21051585 32111033
    [Google Scholar]
  45. Fraga-CorralM. OteroP. CassaniL. Traditional applications of tannin rich extracts supported by scientific data: chemical composition, bioavailability and bioaccessibility.Foods202110225110.3390/foods10020251 33530516
    [Google Scholar]
  46. (8) (PDF) Antimutagenic Properties of Basil (Ocimum basilicum L.) in Salmonella typhimurium TA100Available from: https://www.researchgate.net/publication/267030425_Antimutagenic_Properties_of_Basil_Ocimum_basilicum_L_in_Salmonella_typhimurium_TA100 (Accessed on: 2023 May 10).
  47. ChowdhuryD. Tension type headache.Ann. Indian Acad. Neurol.2012155Suppl. 18310.4103/0972‑2327.100023 23024570
    [Google Scholar]
  48. LiangQ. QianH. YaoW. Identification of flavonoids and their glycosides by high-performance liquid chromatography with electrospray ionization mass spectrometry and with diode array ultraviolet detection.Eur. J. Mass Spectrom. (Chichester, Eng.)20051119310110.1255/ejms.710 15947448
    [Google Scholar]
  49. BatraP SharmaAK Anti-cancer potential of flavonoids: recent trends and future perspectives.3 Biotech2013364395910.1007/s13205‑013‑0117‑5
    [Google Scholar]
  50. PeriferakisA. PeriferakisK. BadarauI.A. Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications.Int. J. Mol. Sci.202223231505410.3390/ijms232315054 36499380
    [Google Scholar]
  51. DuloB. PhanK. GithaigaJ. RaesK. De MeesterS. Natural quinone dyes: A review on structure, extraction techniques, analysis and application potential.Waste Biomass Valoriz.202112126339637410.1007/s12649‑021‑01443‑9
    [Google Scholar]
  52. MasyitaA. Mustika SariR. Dwi AstutiA. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives.Food Chem. X20221310021710.1016/j.fochx.2022.100217 35498985
    [Google Scholar]
  53. SaleemM. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene.Cancer Lett.2009285210911510.1016/j.canlet.2009.04.033 19464787
    [Google Scholar]
  54. HabtemariamS. Methyl-3-O-methyl gallate and gallic acid from the leaves of Peltiphyllum peltatum: isolation and comparative antioxidant, prooxidant, and cytotoxic effects in neuronal cells.J. Med. Food201114111412141810.1089/jmf.2010.0257 21663488
    [Google Scholar]
  55. KonieckiD. WangR. MoodyR.P. ZhuJ. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure.Environ. Res.2011111332933610.1016/j.envres.2011.01.013 21315328
    [Google Scholar]
  56. Sharifi-RadJ. QuispeC. CastilloC.M.S. Ellagic acid: A review on its natural sources, chemical stability, and therapeutic potential.Oxid. Med. Cell. Longev.2022202212410.1155/2022/3848084 35237379
    [Google Scholar]
  57. Eugenol (Clove Oil).LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.Bethesda (MD)National Institute of Diabetes and Digestive and Kidney Diseases2019
    [Google Scholar]
  58. AlhakmaniF. KumarS. KhanS.A. Estimation of total phenolic content, in-vitro antioxidant and anti–inflammatory activity of flowers of Moringa oleifera.Asian Pac. J. Trop. Biomed.20133862362710.1016/S2221‑1691(13)60126‑4 23905019
    [Google Scholar]
  59. MączkaW. WińskaK. GrabarczykM. One hundred faces of geraniol.Molecules20202514330310.3390/molecules25143303 32708169
    [Google Scholar]
  60. ShahG. ShriR. PanchalV. SharmaN. SinghB. MannA.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass).J. Adv. Pharm. Technol. Res.2011213810.4103/2231‑4040.79796 22171285
    [Google Scholar]
  61. SwamyM.K. AkhtarM.S. SinniahU.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review.Evid. Based Complement. Alternat. Med.20162016301246210.1155/2016/3012462
    [Google Scholar]
  62. DziałoM. MierziakJ. KorzunU. PreisnerM. SzopaJ. KulmaA. The potential of plant phenolics in prevention and therapy of skin disorders.Int. J. Mol. Sci.201617216010.3390/ijms17020160 26901191
    [Google Scholar]
  63. ChenY.F. WuS.N. GaoJ.M. The antioxidant, anti-inflammatory, and neuroprotective properties of the synthetic chalcone derivative AN07.Molecules20202512290710.3390/molecules25122907 32599797
    [Google Scholar]
  64. HuangL. ZhuX. ZhouS. Phthalic acid esters: Natural sources and biological activities.Toxins (Basel)202113749510.3390/toxins13070495 34357967
    [Google Scholar]
  65. KowalczykA. PrzychodnaM. SopataS. BodalskaA. FeckaI. Thymol and thyme essential oil-New insights into selected therapeutic applications.Molecules20202518412510.3390/molecules25184125 32917001
    [Google Scholar]
  66. SemwalD. SemwalR. CombrinckS. ViljoenA. Myricetin: A dietary molecule with diverse biological activities.Nutrients2016829010.3390/nu8020090 26891321
    [Google Scholar]
  67. SrinivasuluC. RamgopalM. RamanjaneyuluG. AnuradhaC.M. Suresh KumarC. Syringic acid (SA) ‒ A review of its occurrence, biosynthesis, pharmacological and industrial importance.Biomed. Pharmacother.201810854755710.1016/j.biopha.2018.09.069 30243088
    [Google Scholar]
  68. KissA.K. BazylkoA. FilipekA. Oenothein B’s contribution to the anti-inflammatory and antioxidant activity of Epilobium sp.Phytomedicine201118755756010.1016/j.phymed.2010.10.016 21112753
    [Google Scholar]
  69. SulaimanC.T. BalachandranI. Total phenolics and total flavonoids in selected Indian medicinal plants.Indian J. Pharm. Sci.201274325826010.4103/0250‑474X.106069 23439764
    [Google Scholar]
  70. HaidaS BakkoucheK KribiiAR KribiiA Chemical composition of essential oil, phenolic compounds content, and antioxidant activity of Cistus monspeliensis from Northern Morocco.Biochem Res Int20212021666987710.1155/2021/6669877
    [Google Scholar]
  71. KökenT. KocaB. ÖzkurtM. ErkasapN. KuşG. KaralarM. Apium graveolens extract inhibits cell proliferation and expression of vascular endothelial growth factor and induces apoptosis in the human prostatic carcinoma cell line LNCaP.J. Med. Food201619121166117110.1089/jmf.2016.0061 27982754
    [Google Scholar]
  72. NithaA. PrabhaS.P. AnsilP.N. LathaM.S. Antiproliferative effect of Woodfordia fruticosa kurz flowers on experimentally induced hepatocellular carcinoma in rats and in human hepatoma cell line.J. Pharm. Res.20136223924810.1016/j.jopr.2013.02.003
    [Google Scholar]
  73. FerreiraM.F. CastanheiraL. SebastiãoA.M. Telles-CorreiaD. Depression assessment in clinical trials and pre-clinical tests: A critical review.Curr. Top. Med. Chem.201818191677170310.2174/1568026618666181115095920 30430942
    [Google Scholar]
  74. HossenM.F. AsrafuzzamanM. MannanM.A. Evaluation of CNS depressant activity of methanolic extract of Brownlowia tersa leaves in Swiss albino mice.J Med Plants Stud2022104150155
    [Google Scholar]
  75. Herrera-RuizM. Santillán-UrquizaM.A. Romero-CereceroO. ZamilpaA. Jiménez-FerrerE. TortorielloJ. Antidepressant-like effect of Bauhinia blakeana Dunn in a neuroinflammation model in mice.Med. Princ. Pract.202029211312010.1159/000502996 31466071
    [Google Scholar]
  76. Phytochemical and chromatographic studies in the flowers of Woodfordia fruticosa (L) Kurz.Available from: https://www.researchgate.net/publication/267979130_Phytochemical_and_Chromatographic_studies_in_the_flowers_of_Woodfordia_fruticosa_L_Kurz (Accessed on: 2023 May 11).
  77. ShahA.S. JuvekarA.R. In vitro and in vivo immunostimulatory activity of Woodfordia fruticosa flowers on non-specific immunity.Pharm. Biol.20104891066107210.3109/13880200903490497 20731559
    [Google Scholar]
  78. SahuM. MaliP. WaikarS. RangariV. Evaluation of immunomodulatory potential of ethanolic extract of Roscoea procera rhizomes in mice.J. Pharm. Bioallied Sci.20102434634910.4103/0975‑7406.72138 21180470
    [Google Scholar]
  79. HijaziM.A. El-MallahA. Aboul-ElaM. EllakanyA. Evaluation of analgesic activity of Papaver libanoticum extract in mice: involvement of opioids receptors.Evid. Based Complement. Alternat. Med.20172017893508510.1155/2017/8935085
    [Google Scholar]
  80. EzejaM. OmehY. EzeigboI. EkechukwuA. Evaluation of the analgesic activity of the methanolic stem bark extract of Dialium guineense (wild).Ann. Med. Health Sci. Res.2011115562 23209955
    [Google Scholar]
  81. NathanD.M. BuseJ.B. DavidsonM.B. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes.Diabetes Care200932119320310.2337/dc08‑9025 18945920
    [Google Scholar]
  82. SukanyaV. PandiyanV. VijayaraniK. PadmanathK. A study on insulin levels and the expression of Glut 4 in Streptozotocin (STZ) induced diabetic rats treated with mustard oil diet.Indian J. Clin. Biochem.202035448849610.1007/s12291‑019‑00852‑x 33013020
    [Google Scholar]
  83. AyeleA.G. KumarP. EngidaworkE. Antihyperglycemic and hypoglycemic activities of the aqueous leaf extract of Rubus Erlangeri Engl (Rosacea) in mice.Metab. Openol20211110011810.1016/j.metop.2021.100118
    [Google Scholar]
  84. Vargas-SánchezK. Garay-JaramilloE. González-ReyesR.E. Effects of Moringa oleifera on glycaemia and insulin levels: A review of animal and human studies.Nutrients20191112290710.3390/nu11122907 31810205
    [Google Scholar]
  85. Anti-inflammatory and analgesic activity of ethanolic extract of Kaempferia rotunda rhizome in rats
    [Google Scholar]
  86. GonzalezA.C.O. CostaT.F. AndradeZ.A. MedradoA.R.A.P. Wound healing - A literature review.An. Bras. Dermatol.201691561462010.1590/abd1806‑4841.20164741 27828635
    [Google Scholar]
  87. MendesC. ThirupathiA. ZaccaronR.P. Microcurrent and gold nanoparticles combined with hyaluronic acid accelerates wound healing.Antioxidants20221111225710.3390/antiox11112257
    [Google Scholar]
  88. WangL. QinW. ZhouY. Transforming growth factor β plays an important role in enhancing wound healing by topical application of Povidone-iodine.Sci. Rep.20177199110.1038/s41598‑017‑01116‑5 28428640
    [Google Scholar]
  89. HasanuzzamanM. NaharK. AneeT.I. FujitaM. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance.Physiol. Mol. Biol. Plants201723224926810.1007/s12298‑017‑0422‑2 28461715
    [Google Scholar]
  90. MahajanS.G. MehtaA.A. Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma.Eur. J. Pharmacol.2011650145846410.1016/j.ejphar.2010.09.075 20946894
    [Google Scholar]
  91. GeY. LiuJ. SuD. In vivo evaluation of the anti-asthmatic, antitussive and expectorant activities of extract and fractions from Elaeagnus pungens leaf.J. Ethnopharmacol.2009126353854210.1016/j.jep.2009.08.042 19735714
    [Google Scholar]
  92. GuravA.M. MurthyS.N. BirajdarV.V. MhaseA.G. Preliminary pharmacognostic and phytochemical standardization of Dhataki (Woodfordia fruticosa (L.) Kurz.) leaves.Ayu201435330931510.4103/0974‑8520.153752 25972722
    [Google Scholar]
  93. HossainM.A. AL-RaqmiKAS AL-MijizyZH WeliAM Al-RiyamiQ. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris.Asian Pac. J. Trop. Biomed.20133970571010.1016/S2221‑1691(13)60142‑2 23998010
    [Google Scholar]
  94. KustersJ.G. van VlietA.H.M. KuipersE.J. Pathogenesis of Helicobacter pylori infection.Clin. Microbiol. Rev.200619344949010.1128/CMR.00054‑05 16847081
    [Google Scholar]
  95. Sharifi-RadM. FokouP. SharopovF. Antiulcer agents: From plant extracts to phytochemicals in healing promotion.Molecules2018237175110.3390/molecules23071751 30018251
    [Google Scholar]
  96. AileniM. BulleM. MalavathR.N. Woodfordia fruticosa (L.) Kurz: In vitro biotechnological interventions and perspectives.Appl. Microbiol. Biotechnol.2023107195855587110.1007/s00253‑023‑12695‑x 37522947
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838258736231007045743
Loading
/content/journals/ctm/10.2174/0122150838258736231007045743
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test