Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Introduction

Breast cancer, a complex disease characterized by aberrant cellular physiology, poses a significant health threat to women globally. Its prevalence and mortality rates emphasize the need to understand its etiology and risk factors. Recent studies recommend a possible association between heavy metal revelation and the development of breast cancer.

Objective

The work aimed to study heavy metal exposure in the hair of breast cancer patients across different stages of the disease according to previous work.

Methods

The data from already reported studies was collected, including Google Scholar, PubMed, Web of Science, and many more.

Results and Discussion

Previous research has shown elevated levels of cadmium in hair samples from breast cancer patients compared to controls. Other metals like Zinc, Lead, Mercury, Cobalt, Nickel, Selenium, Tin, Antimony, Scandium, Silver, Gold, Boron, Barium, Beryllium, Calcium, Cerium, Cesium, Gadolinium, Manganese, and arsenic play an important role in spreading of breast cancer to people. Additionally, a comparison of metal concentrations in hair samples revealed significant differences between cancer patients and healthy individuals. Correlations between certain metals within each group were also found, suggesting distinct patterns in metal distribution among breast cancer patients.

Conclusion

The elevated level of certain metals in hairs from breast cancer patients needs further investigation into the processes underlying their association with disease development and progression. Cadmium and other metals play an important role in breast cancer development either by oral, skin, or food ingestion. Understanding the part of metals in breast cancer may offer insights into preventive strategies and therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624376695250529115624
2025-06-11
2025-10-11
Loading full text...

Full text loading...

References

  1. SeyfriedT.N. SheltonL.M. Cancer as a metabolic disease.Nutr. Metab. (Lond.)201071710.1186/1743‑7075‑7‑7 20181022
    [Google Scholar]
  2. EggertJ. Genetics and genomics in oncology nursing: What does every nurse need to know?Nurs. Clin. North Am.201752112510.1016/j.cnur.2016.11.001 28189157
    [Google Scholar]
  3. GariglioliP. Oncogenes and tumor suppressor genes.Molecular Oncology Principles and Recent Advances.Bentham Books20126410.2174/97816080501611120101
    [Google Scholar]
  4. DesaiA ScheckelC JensenCJ OrmeJ WilliamsC ShahN Trends in prices of drugs used to treat metastatic non-small cell lung cancer in the US from 2015 to 2020.JAMA Netw Open202251e214492310.1001/jamanetworkopen.2021.44923
    [Google Scholar]
  5. PengL. WangZ. StebbingJ. YuZ. Novel immunotherapeutic drugs for the treatment of lung cancer.Curr. Opin. Oncol.2022341899410.1097/CCO.0000000000000800 34636350
    [Google Scholar]
  6. XuM. PengR. MinQ. Bisindole natural products: A vital source for the development of new anticancer drugs.Eur. J. Med. Chem.202224311474810.1016/j.ejmech.2022.114748 36170798
    [Google Scholar]
  7. ZigrossiA. HongL.K. EkyalongoR.C. Selenof is a new tumor suppressor in breast cancer.Oncogene20224191263126810.1038/s41388‑021‑02158‑w 35082382
    [Google Scholar]
  8. ChhikaraB.S. ParangK. Global Cancer Statistics 2022: The trends projection analysis.Chem Biol Lett2023101451
    [Google Scholar]
  9. CheungE.C. VousdenK.H. The role of ROS in tumour development and progression.Nat. Rev. Cancer202222528029710.1038/s41568‑021‑00435‑0 35102280
    [Google Scholar]
  10. KumariS. SharmaV. TiwariR. MauryaJ.P. SubudhiB.B. SenapatiD. Therapeutic potential of p53 reactivation in prostate cancer: Strategies and opportunities.Eur. J. Pharmacol.202291917480710.1016/j.ejphar.2022.174807 35151649
    [Google Scholar]
  11. Goding SauerA. SiegelR.L. JemalA. FedewaS.A. Current prevalence of major cancer risk factors and screening test use in the United States: Disparities by education and race/ethnicity.Cancer Epidemiol. Biomarkers Prev.201928462964210.1158/1055‑9965.EPI‑18‑1169 30944145
    [Google Scholar]
  12. FerlayJ. SoerjomataramI. DikshitR. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.29210 25220842
    [Google Scholar]
  13. GhonchehM PournamdarZ Incidence and mortality and epidemiology of breast cancer in the world.Asian Pac J Cancer Prev201617S34310.7314/apjcp.2016.17.s3.43
    [Google Scholar]
  14. AndrianiY MohamadH KassimMNI RosnanND SyamsumirDF SaidinJ Evaluation on Hydnophytum formicarum tuber from Setiu wetland (Malaysia) and Muara Rupit (Indonesia) for antibacterial and antioxidant activities, and anti-cancer potency against MCF-7 and HeLa cells.J Appl Pharmaceutical Sci20177903010.7324/JAPS.2017.70904
    [Google Scholar]
  15. OliverA. FreixenetJ. MartíR. A novel breast tissue density classification methodology.IEEE Trans. Inf. Technol. Biomed.2008121556510.1109/TITB.2007.903514 18270037
    [Google Scholar]
  16. SchünemannH.J. LerdaD. QuinnC. Breast cancer screening and diagnosis: A synopsis of the European Breast Guidelines.Ann. Intern. Med.20201721465610.7326/M19‑2125 31766052
    [Google Scholar]
  17. LeeCI ZhuW OnegaT HendersonLM KerlikowskeK SpragueBL Comparative access to and use of digital breast tomosynthesis screening by women's Race/Ethnicity and socioeconomic status.AMA Netw Open202142e203754610.1001/jamanetworkopen.2020.37546
    [Google Scholar]
  18. SulemanM Tahir ul QamarM SaleemS Mutational landscape of Pirin and elucidation of the impact of most detrimental missense variants that accelerate the breast cancer pathways: A computational modelling study.Front. Mol. Biosci.2021869283510.3389/fmolb.2021.692835 34262943
    [Google Scholar]
  19. RakhaE.A. El-SayedM.E. GreenA.R. LeeA.H.S. RobertsonJ.F. EllisI.O. Prognostic markers in triple‐negative breast cancer.Cancer20071091253210.1002/cncr.22381 17146782
    [Google Scholar]
  20. DeSantisC.E. FedewaS.A. Goding SauerA. KramerJ.L. SmithR.A. JemalA. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women.CA Cancer J. Clin.2016661314210.3322/caac.21320 26513636
    [Google Scholar]
  21. RimshaK.K. NavidaM.F. Muhammad GulzadaM. AfzalY.I. SaleemA. TanvirF. Clinical characteristics, hematological variations and bioaccumulation of heavy metals in blood, hair and urine of breast cancer patients.Chelonian Conserv. Biol.2024191139610.18011/2024.01
    [Google Scholar]
  22. AnjumS. AliH. NaseerF. Antioxidant activity of Carica papaya & Persea americana fruits against cadmium induced neurotoxicity, nephrotoxicity, and hepatotoxicity in rats with a computational approach.J. Trace Elem. Med. Biol.20248112732410.1016/j.jtemb.2023.127324 37944220
    [Google Scholar]
  23. NaseerF. AhmadT. KousarK. KakarS. GulR. AnjumS. Formulation of surface-functionalized hyaluronic acid-coated thiolated chitosan nano-formulation for the delivery of vincristine in prostate cancer: A multifunctional targeted drug delivery approach.J. Drug Deliv. Sci. Technol.20227410354510.1016/j.jddst.2022.103545
    [Google Scholar]
  24. SatayavivadJ. ThiantanawatA. PianjingP. VisitnonthachaiD. ChaiyotK. WatcharasitP. Estrogenic activity of sesamol from sesame seed and its interaction with the effect of metalloestrogen cadmium on T47D human breast cancer cells.Toxicol. Lett.2010196196S311S31210.1016/j.toxlet.2010.03.984
    [Google Scholar]
  25. GeorgescuB. GeorgescuC. DărăbanS. BouaruA. PașcalăuS. Heavy metals acting as endocrine disrupters.Lucr. Stiint. Zooteh. Biotehnol.201144289
    [Google Scholar]
  26. ByrneC. DivekarS.D. StorchanG.B. ParodiD.A. MartinM.B. Cadmium: A metallohormone?Toxicol. Appl. Pharmacol.2009238326627110.1016/j.taap.2009.03.025 19362102
    [Google Scholar]
  27. MartinM.B. ReiterR. PhamT. Estrogen-like activity of metals in MCF-7 breast cancer cells.Endocrinology200314462425243610.1210/en.2002‑221054 12746304
    [Google Scholar]
  28. AquinoN.B. SevignyM.B. SabanganJ. LouieM.C. The role of cadmium and nickel in estrogen receptor signaling and breast cancer: Metalloestrogens or not?J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.201230318922410.1080/10590501.2012.705159 22970719
    [Google Scholar]
  29. ByrneC. DivekarS.D. StorchanG.B. ParodiD.A. MartinM.B. Metals and breast cancer.J. Mammary Gland Biol. Neoplasia20131816310.1007/s10911‑013‑9273‑9
    [Google Scholar]
  30. YuX. FilardoE.J. ShaikhZ.A. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells.Toxicol. Appl. Pharmacol.20102451839010.1016/j.taap.2010.02.005 20153348
    [Google Scholar]
  31. MitraS. ChakrabortyA.J. TareqA.M. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity.J. King Saud Univ. Sci.202234310186510.1016/j.jksus.2022.101865
    [Google Scholar]
  32. StrumylaitėL. MechonošinaK. TamašauskasŠ. Environmental factors and breast cancer.Medicina (Kaunas)2010461286787310.3390/medicina46120121 21532292
    [Google Scholar]
  33. AliA.S. NazarM.E. MustafaR.M. HusseinS. QurbaniK. AhmedS.K. Impact of heavy metals on breast cancer.World Acad. Sci. J.202461112
    [Google Scholar]
  34. Lifetime Risk. of dying from cancer by site and race.Ethnicity2014Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Risk+LJE.+of+Dying+from+Cancer+by+Site+and+Race.+2014.&btnG=.
    [Google Scholar]
  35. WangR. YuJ. ChenD. Occurrences of heavy metal in breast milk in China: Results of the third national breast milk survey.J. Hazard. Mater.202548613710410.1016/j.jhazmat.2025.137104 39787862
    [Google Scholar]
  36. SharmaG. DaveR. SanadyaJ. SharmaP. SharmaK.K. Various types and management of breast cancer: An overview.J. Adv. Pharm. Technol. Res.20101210912610.4103/2231‑4040.72251 22247839
    [Google Scholar]
  37. ParidaL. PatelT.N. Systemic impact of heavy metals and their role in cancer development: A review.Environ. Monit. Assess.2023195676610.1007/s10661‑023‑11399‑z 37249740
    [Google Scholar]
  38. Benderli CihanY. SözenS. Öztürk YıldırımS. Trace nlms and heavy metals in hair of stage III breast cancer patients.Biol. Trace Elem. Res.20111441-336037910.1007/s12011‑011‑9104‑z 21660533
    [Google Scholar]
  39. TarhonskaK. LesickaM. JanasikB. Cadmium and breast cancer – Current state and research gaps in the underlying mechanisms.Toxicol. Lett.2022361294210.1016/j.toxlet.2022.03.003 35331840
    [Google Scholar]
  40. AlatiseO.I. SchrauzerG.N. Lead exposure: A contributing cause of the current breast cancer epidemic in Nigerian women.Biol. Trace Elem. Res.2010136212713910.1007/s12011‑010‑8608‑2 20195925
    [Google Scholar]
  41. Takatani-NakaseT. Zinc transporters and the progression of breast cancers.Biol. Pharm. Bull.201841101517152210.1248/bpb.b18‑00086 30270320
    [Google Scholar]
  42. AlamS. KelleherS.L. Cellular mechanisms of zinc dysregulation: A perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer.Nutrients20124887590310.3390/nu4080875 23016122
    [Google Scholar]
/content/journals/cst/10.2174/0115743624376695250529115624
Loading
/content/journals/cst/10.2174/0115743624376695250529115624
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Breast cancer; cadmium; cobalt; heavy metals; lead; nickel
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test