Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

This study aims to provide clinical and scientific information about the effects of various anti-inflammatory medicines on patients with cardiovascular disease (CVD). We also discussed the anti-inflammatory strategies and molecular mechanisms being investigated in preclinical or clinical CVD research. Numerous studies on anti-inflammatory medicines for CVD have resulted from greater knowledge of how innate and adaptive immunity influence plaque development and rupture. Some of these are now being evaluated in clinical trials and use lower dosages of existing medications that were initially developed for other inflammatory disorders with a high risk of CVD, such as rheumatoid arthritis and psoriasis. Other research includes retrospective and meta-analyses of clinical trials that examine the risk of CVD among individuals with various inflammatory diseases. We also included natural bioactive compounds, nanodrug and multiomics approaches to treat CVD by utilizing inflammatory pathways. Chronic subclinical inflammation is a major contributor to the development of CVD and has been associated with both the onset and progression of atherosclerosis. Several pro-inflammatory cytokines, including C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interleukins-1 and 6 (IL-1 and IL-6), leukotrienes, and adiponectin, have been identified as independent risk factors for coronary heart disease and promoters of arterial development. Researchers are looking for ways to stop the different inflammatory pathways that lead to atherosclerosis. These include multiomics approach, antioxidants, phospholipase A2 inhibitors, leukotriene pathway inhibitors, Phospholipase A2 (PLA2) inhibitors, non-inhibitors anti-inflammatory drugs (like methotrexate), IL-1 inhibitors, and p-selectin inhibitors.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624366056250407071501
2025-04-24
2025-10-11
Loading full text...

Full text loading...

References

  1. QuiñonesM. MiguelM. AleixandreA. Beneficial effects of polyphenols on cardiovascular disease.Pharmacol. Res.201368112513110.1016/j.phrs.2012.10.018 23174266
    [Google Scholar]
  2. RidkerP.M. LüscherT.F. Anti-inflammatory therapies for cardiovascular disease.Eur. Heart J.2014352717821791
    [Google Scholar]
  3. QamarA. RaderD.J. Effect of interleukin 1β inhibition in cardiovascular disease.Curr. Opin. Lipidol.201223654855310.1097/MOL.0b013e328359b0a6 23069985
    [Google Scholar]
  4. AbrahamM.K. PeterK. MichelT. WendelH.P. KrajewskiS. WangX. Nanoliposomes for safe and efficient therapeutic mRNA delivery: A step toward nanotheranostics in inflammatory and cardiovascular diseases as well as cancer.Nanotheranostics20171215416510.7150/ntno.19449 29071184
    [Google Scholar]
  5. LiuM. ChenJ. HuangD. KeJ. WuW. A meta-analysis of proinflammatory cytokines in chronic heart failure.Heart Asia20146113013610.1136/heartasia‑2013‑010484 27326188
    [Google Scholar]
  6. DevarajS. KumaresanP.R. JialalI. C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: Further evidence of endothelial dysfunction.Clin. Chem.201157121757176110.1373/clinchem.2011.169839 21980169
    [Google Scholar]
  7. WalkerC. BiasucciL.M. Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited.Postgrad. Med.20181301557110.1080/00325481.2018.1412799 29202670
    [Google Scholar]
  8. TalebS. Inflammation in atherosclerosis.Arch. Cardiovasc. Dis.201610912708715
    [Google Scholar]
  9. SmithJ.D. TroganE. GinsbergM. GrigauxC. TianJ. MiyataM. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E.Proc. Natl. Acad. Sci. USA1995921882648268
    [Google Scholar]
  10. SimaA.V. Vascular endothelium in atherosclerosis.Cell Tissue Res.2009335119120310.1007/s00441‑008‑0678‑5 18797930
    [Google Scholar]
  11. HanssonG.K. RobertsonA.K.L. Söderberg-NauclérC. Inflammation and atherosclerosis.Annu. Rev. Pathol.20061297329
    [Google Scholar]
  12. DichtlW. NilssonL. GoncalvesI. Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells.Circ. Res.19998491085109410.1161/01.RES.84.9.1085
    [Google Scholar]
  13. GalkinaE. KadlA. SandersJ. VarugheseD. SarembockI.J. LeyK. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent.J. Exp. Med.200620351273128210.1084/jem.20052205 16682495
    [Google Scholar]
  14. LibbyP. RidkerP.M. MaseriA. Inflammation and atherosclerosis.Circulation200210591135114310.1161/hc0902.104353 11877368
    [Google Scholar]
  15. LibbyP. Inflammation in atherosclerosis.Arterioscler. Thromb. Vasc. Biol.20123292045205110.1161/ATVBAHA.108.179705 22895665
    [Google Scholar]
  16. GoliaE. LimongelliG. NataleF. Inflammation and cardiovascular disease: From pathogenesis to therapeutic target.Curr. Atheroscler. Rep.2014169435
    [Google Scholar]
  17. KruthH.S. Sequestration of aggregated low-density lipoproteins by macrophages.Curr. Opin. Lipidol.200213548348810.1097/00041433‑200210000‑00003 12352011
    [Google Scholar]
  18. BrophyM.L. DongY. WuH. RahmanH.N.A. SongK. ChenH. Eating the dead to keep atherosclerosis at bay.Front. Cardiovasc. Med.20174210.3389/fcvm.2017.00002 28194400
    [Google Scholar]
  19. YuX.H. FuY.C. ZhangD.W. YinK. TangC.K. Foam cells in atherosclerosis.Clin. Chim. Acta201342424525210.1016/j.cca.2013.06.006 23782937
    [Google Scholar]
  20. AlgalarrondoV. BoycottH. EliahouL. MabilleM. SlamaM.S. Indications of anti-inflammatory drugs in cardiac diseases.Antiinflamm. Antiallergy Agents Med. Chem.201312131310.2174/1871523011312010003 23286286
    [Google Scholar]
  21. BergA.H. SchererP.E. Adipose tissue, inflammation, and cardiovascular disease.Circ. Res.200596993994910.1161/01.RES.0000163635.62927.34 15890981
    [Google Scholar]
  22. BertrandM.J. TardifJ.C. Inflammation and beyond: New directions and emerging drugs for treating atherosclerosis.Expert Opin. Emerg. Drugs201722112610.1080/14728214.2017.1269743 27927063
    [Google Scholar]
  23. CazzolaM. MateraM.G. PezzutoG. Inflammation-A new therapeutic target in pneumonia.Respiration200572211712610.1159/000084039 15824518
    [Google Scholar]
  24. RickardA.J. YoungM.J. Corticosteroid receptors, macrophages and cardiovascular disease.J. Mol. Endocrinol.200942644945910.1677/JME‑08‑0144 19158233
    [Google Scholar]
  25. ImigJ.D. HammockB.D. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases.Nat. Rev. Drug Discov.200981079480510.1038/nrd2875 19794443
    [Google Scholar]
  26. AbbateA. ToldoS. MarchettiC. KronJ. Van TassellB.W. DinarelloC.A. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease.Circ. Res.202012691260128010.1161/CIRCRESAHA.120.315937 32324502
    [Google Scholar]
  27. StojanovićS.D. FiedlerJ. BauersachsJ. ThumT. SeddingD.G. Senescence-induced inflammation: An important player and key therapeutic target in atherosclerosis.Eur. Heart J.202041312983299610.1093/eurheartj/ehz919 31898722
    [Google Scholar]
  28. El HadriK. SmithR. DuplusE. El AmriC. Inflammation, oxidative stress, senescence in atherosclerosis: Thioredoxine-1 as an emerging therapeutic target.Int. J. Mol. Sci.202123177
    [Google Scholar]
  29. FullL.E. MonacoC. Targeting inflammation as a therapeutic strategy in accelerated atherosclerosis in rheumatoid arthritis.Cardiovasc. Ther.201129423124210.1111/j.1755‑5922.2010.00159.x 20553292
    [Google Scholar]
  30. VersariD DaghiniE VirdisA GhiadoniL TaddeiS Endothelial dysfunction as a target for prevention of cardiovascular disease.Diabetes Care200932 Suppl 2(Suppl 2): S314-21.10.2337/dc09‑S330
    [Google Scholar]
  31. FerreroM.E. Purinoceptors in inflammation: Potential as anti-inflammatory therapeutic targets.Front. Biosci.2011161217210.2741/3846
    [Google Scholar]
  32. NoelsH. WeberC. KoenenR.R. Chemokines as therapeutic targets in cardiovascular disease the road behind, the road ahead.Arterioscler. Thromb. Vasc. Biol.201939458359210.1161/ATVBAHA.118.312037 30760014
    [Google Scholar]
  33. TaskinenM.R. BorénJ. Why is apolipoprotein CIII emerging as a novel therapeutic target to reduce the burden of cardiovascular disease?Curr. Atheroscler. Rep.2016181059
    [Google Scholar]
  34. OuH.X. GuoB.B. LiuQ. Regulatory T cells as a new therapeutic target for atherosclerosis.Acta Pharmacol. Sin.201839812491258
    [Google Scholar]
  35. AwanZ. GenestJ. Inflammation modulation and cardiovascular disease prevention.Eur. J. Prev. Cardiol.201522671973310.1177/2047487314529350 24711609
    [Google Scholar]
  36. Reina-CoutoM. Pereira-TerraP. Quelhas-SantosJ. Silva-PereiraC. Albino-TeixeiraA. SousaT. Inflammation in human heart failure: Major mediators and therapeutic targets.Front. Physiol.202112746494
    [Google Scholar]
  37. HeimerlM. GausepohlT. MuellerJ.H. Ricke-HochM. Neuraminidases-key players in the inflammatory response after pathophysiological cardiac stress and potential new therapeutic targets in cardiac disease.Biology2022118122910.3390/biology11081229 36009856
    [Google Scholar]
  38. NagareddyP. SmythS.S. Inflammation and thrombosis in cardiovascular disease.Curr. Opin. Hematol.201320545746310.1097/MOH.0b013e328364219d 23892572
    [Google Scholar]
  39. NigamP.K. SehgalU. Leukotrienes.N. Engl. J. Med.1989553155163 28128156
    [Google Scholar]
  40. ColazzoF. GelosaP. TremoliE. SironiL. CastiglioniL. Role of the cysteinyl leukotrienes in the pathogenesis and progression of cardiovascular diseases.Mediators Inflamm.20172017243295810.1155/2017/2432958
    [Google Scholar]
  41. BäckM. Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia.Proc. Natl. Acad. Sci. USA2005Nov 29 10248175011750610.1073/pnas.0505845102 16293697
    [Google Scholar]
  42. AssimesT.L. KnowlesJ.W. PriestJ.R. Common polymorphisms of ALOX5 and ALOX5AP and risk of coronary artery disease.Hum. Genet.2008123439940810.1007/s00439‑008‑0489‑5 18369664
    [Google Scholar]
  43. SanakM. DropinskiJ. SokolowskaB. FaberJ. RzeszutkoM. SzczeklikA. Pharmacological inhibition of leukotriene biosynthesis: Effects on the heart conductance.J. Physiol. Pharmacol.20106115358 20228415
    [Google Scholar]
  44. CrosslinD.R. ShahS.H. NelsonS.C. Genetic effects in the leukotriene biosynthesis pathway and association with atherosclerosis.Hum. Genet.2009125221722910.1007/s00439‑008‑0619‑0 19130089
    [Google Scholar]
  45. ZhouG. Atorvastatin reduces plaque vulnerability in an atherosclerotic rabbit model by altering the 5-lipoxygenase pathway.Cardiology20101153221228
    [Google Scholar]
  46. JawieńJ. The putative role of leukotrienes in experimental atherogenesis.Pol Arch Intern Med20091191-2909410.20452/pamw.620 19341185
    [Google Scholar]
  47. SpanbroekR. GräbnerR. LötzerK. Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis.Proc. Natl. Acad. Sci. USA200310031238124310.1073/pnas.242716099 12552108
    [Google Scholar]
  48. HersbergerM. Potential role of the lipoxygenase derived lipid mediators in atherosclerosis: Leukotrienes, lipoxins and resolvins.Clin. Chem. Lab. Med.20104881063107310.1515/CCLM.2010.212 20441482
    [Google Scholar]
  49. HartialaJ. LiD. ContiD.V. Genetic contribution of the leukotriene pathway to coronary artery disease.Hum. Genet.2011129661762710.1007/s00439‑011‑0963‑3 21293878
    [Google Scholar]
  50. NobiliE. SalvadoM.D. FolkersenL. Cysteinyl leukotriene signaling aggravates myocardial hypoxia in experimental atherosclerotic heart disease.PLoS One201277e4178610.1371/journal.pone.0041786 22848603
    [Google Scholar]
  51. SalaA. RossoniG. BertiF. Monoclonal anti-CD18 antibody prevents transcellular biosynthesis of cysteinyl leukotrienes in vitro and in vivo and protects against leukotriene-dependent increase in coronary vascular resistance and myocardial stiffness.Circulation2000101121436144010.1161/01.CIR.101.12.1436 10736289
    [Google Scholar]
  52. PandaC. VaradharajS. VorugantiV.S. PUFA, genotypes and risk for cardiovascular disease.Prostaglandins Leukot. Essent. Fatty Acids202217610237710.1016/j.plefa.2021.102377 34915303
    [Google Scholar]
  53. BäckM. Leukotriene signaling in atherosclerosis and ischemia.Cardiovasc. Drugs Ther.2009231414810.1007/s10557‑008‑6140‑9
    [Google Scholar]
  54. FerrariR. The role of TNF in cardiovascular disease.Pharmacol. Res.19994029710510.1006/phrs.1998.0463 10433867
    [Google Scholar]
  55. CeconiC. CurelloS. BachettiT. CortiA. FerrariR. Tumor necrosis factor in congestive heart failure: A mechanism of disease for the new millennium?Prog. Cardiovasc. Dis.1998411Suppl. 1253010.1016/S0033‑0620(98)80028‑5 9715820
    [Google Scholar]
  56. WeiS.G. YuY. FelderR.B. TNF-α-induced sympathetic excitation requires EGFR and ERK1/2 signaling in cardiovascular regulatory regions of the forebrain.Am. J. Physiol. Heart Circ. Physiol.20213202H772H78610.1152/ajpheart.00606.2020 33337962
    [Google Scholar]
  57. BalakumarP. SinghM. Anti-tumour necrosis factor-Alpha therapy in heart failure: Future directions.Basic Clin. Pharmacol. Toxicol.20069939139710.1111/j.1742‑7843.2006.pto_508.x 17169118
    [Google Scholar]
  58. SarziputtiniP. AtzeniF. ShoenfeldY. FerraccioliG. TNF-α, rheumatoid arthritis, and heart failure: A rheumatological dilemma.Autoimmun. Rev.20054315316110.1016/j.autrev.2004.09.004 15823501
    [Google Scholar]
  59. HussainA. TarahomiT. SinghL. BollampallyM. Heydari-KamjaniM. KesselmanM.M. Cardiovascular risk associated with TNF alpha inhibitor use in patients with rheumatoid arthritis.Cureus202113910.7759/cureus.17938
    [Google Scholar]
  60. WallaceC.K. StetsonS.J. KüçükerS.A. Simvastatin decreases myocardial tumor necrosis factor α content in heart transplant recipients.J. Heart Lung Transplant.2005241465110.1016/j.healun.2003.09.037 15653378
    [Google Scholar]
  61. JavedQ. MurtazaI. Therapeutic potential of tumour necrosis factor-alpha antagonists in patients with chronic heart failure.Heart Lung Circ.201322532332710.1016/j.hlc.2012.12.002 23337264
    [Google Scholar]
  62. Blanco-ColioL.M. TWEAK/Fn14 axis: A promising target for the treatment of cardiovascular diseases.Front. Immunol.20145JAN310.3389/fimmu.2014.00003 24478772
    [Google Scholar]
  63. JonesE.Y. WalkerN.P.C. StuartD.I. Methodology employed for the structure determination of tumour necrosis factor, a case of high non-crystallographic symmetry.Acta Crystallogr. A199147675377010.1107/S0108767391006839 1760139
    [Google Scholar]
  64. GaoW. LiuH. YuanJ. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway.J. Cell. Mol. Med.201620122318232710.1111/jcmm.12923 27515767
    [Google Scholar]
  65. WangG. HanB. ZhangR. LiuQ. WangX. HuangX. C1q/TNF-A-related protein 9 attenuates atherosclerosis by inhibiting hyperglycemia-induced endothelial cell senescence through the AMPKα/KLF4 signaling pathway.Front. Pharmacol.202112October114
    [Google Scholar]
  66. BosmansL.A. ShamiA. AtzlerD. WeberC. GonçalvesI. LutgensE. Glucocorticoid induced TNF receptor family-related protein (GITR) – A novel driver of atherosclerosis.Vascul. Pharmacol.2021139April10688410.1016/j.vph.2021.106884 34102305
    [Google Scholar]
  67. FischerR. KontermannR.E. PfizenmaierK. Selective targeting of TNF receptors as a novel therapeutic approach.Front. Cell Dev. Biol.20208May40110.3389/fcell.2020.00401
    [Google Scholar]
  68. MichaR. ImamuraF. Wyler von BallmoosM. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease.Am. J. Cardiol.201110891362137010.1016/j.amjcard.2011.06.054 21855836
    [Google Scholar]
  69. FearonW.F. FearonD.T. Inflammation and cardiovascular disease: Role of the interleukin-1 receptor antagonist.Circulation2008117202577257910.1161/CIRCULATIONAHA.108.772491 18490534
    [Google Scholar]
  70. WestlakeS.L. ColebatchA.N. BairdJ. The effect of methotrexate on cardiovascular disease in patients with rheumatoid arthritis: A systematic literature review.Rheumatology201049229530710.1093/rheumatology/kep366 19946022
    [Google Scholar]
  71. YangY. WangH. KouadirM. SongH. ShiF. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors.Cell Death Dis.2019102128
    [Google Scholar]
  72. WangZ. HuW. LuC. Targeting NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome in cardiovascular disorders.Arterioscler. Thromb. Vasc. Biol.2018381227652779
    [Google Scholar]
  73. MaoL. KitaniA. StroberW. FussI.J. The role of NLRP3 and IL-1β in the pathogenesis of inflammatory bowel disease.Front. Immunol.20189256610.3389/fimmu.2018.02566 30455704
    [Google Scholar]
  74. KiriiH. NiwaT. YamadaY. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice.Arterioscler. Thromb. Vasc. Biol.200323465666010.1161/01.ATV.0000064374.15232.C3 12615675
    [Google Scholar]
  75. ChistiakovD. MelnichenkoA. MyasoedovaV. GrechkoA. OrekhovA. Thrombospondins: A role in cardiovascular disease.Int. J. Mol. Sci.2017187154010.3390/ijms18071540 28714932
    [Google Scholar]
  76. MaJ. ChenX. Anti-inflammatory therapy for coronary atherosclerotic heart disease: Unanswered questions behind existing successes.Front. Cardiovasc. Med.2021763139810.3389/fcvm.2020.631398 33598482
    [Google Scholar]
  77. KhafagyR. DashS. Obesity and cardiovascular disease: The emerging role of inflammation.Front. Cardiovasc. Med.2021876811910.3389/fcvm.2021.768119 34760952
    [Google Scholar]
  78. HuE. LiangP. SpiegelmanB.M. AdipoQ is a novel adipose-specific gene dysregulated in obesity.J. Biol. Chem.199627118106971070310.1074/jbc.271.18.10697 8631877
    [Google Scholar]
  79. MaedaK. OkuboK. ShimomuraI. FunahashiT. MatsuzawaY. MatsubaraK. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1). 1996.Biochem. Biophys. Res. Commun.2012425355655910.1016/j.bbrc.2012.08.023 22925673
    [Google Scholar]
  80. SchererP.E. WilliamsS. FoglianoM. BaldiniG. LodishH.F. A novel serum protein similar to C1q, produced exclusively in adipocytes.J. Biol. Chem.199527045267462674910.1074/jbc.270.45.26746 7592907
    [Google Scholar]
  81. AchariA. JainS. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction.Int. J. Mol. Sci.2017186132110.3390/ijms18061321 28635626
    [Google Scholar]
  82. ShibataR. OuchiN. MuroharaT. Adiponectin and cardiovascular disease.Circ. J.200973460861410.1253/circj.CJ‑09‑0057 19261992
    [Google Scholar]
  83. ChungH.Y. LeeE.K. ChoiY.J. Molecular inflammation as an underlying mechanism of the aging process and age-related diseases.J. Dent. Res.201190783084010.1177/0022034510387794 21447699
    [Google Scholar]
  84. OkamotoY. KiharaS. OuchiN. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice.Circulation2002106222767277010.1161/01.CIR.0000042707.50032.19 12451000
    [Google Scholar]
  85. AprahamianT.R. SamF. Adiponectin in cardiovascular inflammation and obesity.Int. J. Inflam.2011201137690910.4061/2011/376909
    [Google Scholar]
  86. FangH. JuddR.L. Adiponectin regulation and function.Compr. Physiol.2018831031106310.1002/cphy.c170046 29978896
    [Google Scholar]
  87. LeitingerN. WatsonA.D. HamaS.Y. Role of group II secretory phospholipase A2 in atherosclerosis: 2. Potential involvement of biologically active oxidized phospholipids.Arterioscler. Thromb. Vasc. Biol.19991951291129810.1161/01.ATV.19.5.1291 10323782
    [Google Scholar]
  88. BermanJ.P. FarkouhM.E. RosensonR.S. Emerging anti-inflammatory drugs for atherosclerosis.Expert Opin. Emerg. Drugs201318219320510.1517/14728214.2013.801453 23675745
    [Google Scholar]
  89. JulianeS. Anthera enrolls first patients in pivotal varespladib phase 3 clinical study.2010Available from: https://www.prnewswire.com/news-releases/anthera-enrolls-first-patients-in-pivotal-varespladib-phase-3-clinical-study-96970569.html
    [Google Scholar]
  90. Anthera halts VISTA-16 clinical study due to lack of efficacy following recommendation by the independent data safety monitoring board.2012Available from: https://www.prnewswire.com/news-releases/anthera-halts-vista-16-clinical-study-due-to-lack-of-efficacy-following-recommendation-by-the-independent-data-safety-monitoring-board-142116083.html
  91. NichollsS.J. KasteleinJ.J.P. SchwartzG.G. Varespladib and cardiovascular events in patients with an acute coronary syndrome: The VISTA-16 randomized clinical trial.JAMA2014311325226210.1001/jama.2013.282836 24247616
    [Google Scholar]
  92. O’DonoghueM.L. BraunwaldE. WhiteH.D. Effect of darapladib on major coronary events after an acute coronary syndrome: The SOLID-TIMI 52 randomized clinical trial.JAMA2014312101006101510.1001/jama.2014.11061 25173516
    [Google Scholar]
  93. StafforiniD.M. McIntyreT.M. ZimmermanG.A. PrescottS.M. Platelet-activating factor acetylhydrolases.J. Biol. Chem.199727229178951789810.1074/jbc.272.29.17895 9218411
    [Google Scholar]
  94. WatsonA.D. NavabM. HamaS.Y. Effect of platelet activating factor-acetyihydrolase on the formation and action of minimally oxidized low density lipoprotein.J. Clin. Invest.1995952774782
    [Google Scholar]
  95. SubbanagounderG. LeitingerN. SchwenkeD.C. Determinants of bioactivity of oxidized phospholipids. Specific oxidized fatty acyl groups at the sn-2 position.Arterioscler. Thromb. Vasc. Biol.2000201022482254
    [Google Scholar]
  96. BochkovV.N. LeitingerN. Anti-inflammatory properties of lipid oxidation products.J. Mol. Med.2003811061362610.1007/s00109‑003‑0467‑2 13679995
    [Google Scholar]
  97. TsimikasS. TsironisL.D. TselepisA.D. New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease.Arterioscler. Thromb. Vasc. Biol.2007271020942099
    [Google Scholar]
  98. RosensonR.S. Future role for selective phospholipase A2 inhibitors in the prevention of atherosclerotic cardiovascular disease.Cardiovasc. Drugs Ther.20092319310110.1007/s10557‑008‑6148‑1 19153679
    [Google Scholar]
  99. ThompsonA. GaoP. OrfeiL. Lipoprotein-associated phospholipase A2 and risk of coronary disease, stroke, and mortality: Collaborative analysis of 32 prospective studies.Lancet201037597251536154410.1016/S0140‑6736(10)60319‑4 20435228
    [Google Scholar]
  100. BalducciS. ZanusoS. NicolucciA. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss.Nutr. Metab. Cardiovasc. Dis.201020860861710.1016/j.numecd.2009.04.015 19695853
    [Google Scholar]
  101. WhiteHD Darapladib for preventing ischemic events in stable coronary heart disease.N Engl J Med201437018170211
    [Google Scholar]
  102. TallA.R. FusterJ.J. Clonal hematopoiesis in cardiovascular disease and therapeutic implications.Nat. Cardiovasc. Res.20221211612410.1038/s44161‑021‑00015‑3
    [Google Scholar]
  103. KosmasC.E. SilverioD. SourlasA. MontanP.D. GuzmanE. GarciaM.J. Anti-inflammatory therapy for cardiovascular disease.Ann. Transl. Med.201977147710.21037/atm.2019.02.34 31157268
    [Google Scholar]
  104. HanssonG.K. Inflammation, atherosclerosis, and coronary artery disease.N. Engl. J. Med.2005352161685169510.1056/NEJMra043430 15843671
    [Google Scholar]
  105. YudkinJ.S. Juhan-VagueI. HaweE. Low-grade inflammation may play a role in the etiology of the metabolic syndrome in patients with coronary heart disease: The HIFMECH study.Metabolism200453785285710.1016/j.metabol.2004.02.004 15254876
    [Google Scholar]
  106. PergolaC. WerzO. 5-Lipoxygenase inhibitors: A review of recent developments and patents.Expert Opin. Ther. Pat.201020335537510.1517/13543771003602012 20180620
    [Google Scholar]
  107. RådmarkO. 5-lipoxygenase-derived leukotrienes: Mediators also of atherosclerotic inflammation.Arterioscler. Thromb. Vasc. Biol.20032371140114210.1161/01.ATV.0000082460.58448.01 12857716
    [Google Scholar]
  108. CipolloneF. MezzettiA. FaziaM.L. Association between 5-lipoxygenase expression and plaque instability in humans.Arterioscler. Thromb. Vasc. Biol.20052581665167010.1161/01.ATV.0000172632.96987.2d 15933245
    [Google Scholar]
  109. LibbyP. RidkerP.M. HanssonG.K. Progress and challenges in translating the biology of atherosclerosis.Nature2011May 19; 4737347317325
    [Google Scholar]
  110. HelgadottirA. ManolescuA. ThorleifssonG. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke.Nat. Genet.200436323323910.1038/ng1311 14770184
    [Google Scholar]
  111. BäckM. SultanA. OvchinnikovaO. HanssonG.K. 5-Lipoxygenase-activating protein: A potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation.Circ. Res.2007100794694910.1161/01.RES.0000264498.60702.0d 17379835
    [Google Scholar]
  112. RiccioniG. CapraV. D’OrazioN. BucciarelliT. BazzanoL.A. Leukotriene modifiers in the treatment of cardiovascular diseases.J. Leukoc. Biol.20088461374137810.1189/jlb.0808476 18794213
    [Google Scholar]
  113. BäckM. Inhibitors of the 5-lipoxygenase pathway in atherosclerosis.Curr. Pharm. Des.200915273116313210.2174/138161209789058020 19754386
    [Google Scholar]
  114. BellR.L. YoungP.R. AlbertD. The discovery and development of zileuton: An orally active 5-lipoxygenase inhibitor.Int. J. Immunopharmacol.1992143505510
    [Google Scholar]
  115. MathurP. DingZ. SaldeenT. MehtaJ.L. Tocopherols in the prevention and treatment of atherosclerosis and related cardiovascular disease.Clin. Cardiol.201538957057610.1002/clc.22422 26272221
    [Google Scholar]
  116. DahlénS.E. Treatment of asthma with antileukotrienes: First line or last resort therapy?Eur. J. Pharmacol.20065331-3405610.1016/j.ejphar.2005.12.070 16510137
    [Google Scholar]
  117. WongS.L. DrajeskJ. ChangM. Pharmacokinetics and pharmacodynamics of single and multiple oral doses of a novel 5-lipoxygenase inhibitor (ABT-761) in healthy volunteers.Clin. Pharmacol. Ther.199863332433110.1016/S0009‑9236(98)90164‑3 9542476
    [Google Scholar]
  118. DrazenJ.M. YandavaC.N. DubéL. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment.Nat. Genet.199922216817010.1038/9680
    [Google Scholar]
  119. HamelP. RiendeauD. BrideauC. Substituted (pyridylmethoxy)naphthalenes as potent and orally active 5-lipoxygenase inhibitors; synthesis, biological profile, and pharmacokinetics of L-739,010.J. Med. Chem.1997401828662875
    [Google Scholar]
  120. ShuaibS.M. BellG.S. HawksworthR.J. Effect of the 5-lipoxygenase inhibitor ZD2138 on allergen-induced early and late asthmatic responses.Thorax199449874374810.1136/thx.49.8.743 8091317
    [Google Scholar]
  121. WerzO. SzellasD. HenselerM. SteinhilberD. Nonredox 5-lipoxygenase inhibitors require glutathione peroxidase for efficient inhibition of 5-lipoxygenase activity.Mol. Pharmacol.1998542445451
    [Google Scholar]
  122. FischerL. SzellasD. RådmarkO. SteinhilberD. WerzO. Phosphorylation‐ and stimulus‐dependent inhibition of cellular 5‐lipoxygenase activity by nonredox‐type inhibitors.FASEB J.200317812410.1096/fj.02‑0815fje 12670876
    [Google Scholar]
  123. TardifJ.C. L’AllierP.L. IbrahimR. Treatment with 5-lipoxygenase inhibitor VIA-2291 (Atreleuton) in patients with recent acute coronary syndrome.Circ. Cardiovasc. Imaging20103329830710.1161/CIRCIMAGING.110.937169 20190281
    [Google Scholar]
  124. ElyasiA. VoloshynaI. AhmedS. The role of interferon-γ in cardiovascular disease: An update.Inflamm. Res.2020691097598810.1007/s00011‑020‑01382‑6
    [Google Scholar]
  125. VoloshynaI. LittlefieldM.J. ReissA.B. Atherosclerosis and interferon-γ: New insights and therapeutic targets.Trends Cardiovasc. Med.2014241455110.1016/j.tcm.2013.06.003 23916809
    [Google Scholar]
  126. LeonM.L. Gamma interferon: A central mediator in atherosclerosis.Inflamm. Res.2005541039541110.1007/s00011‑005‑1377‑2
    [Google Scholar]
  127. YuM. TsaiS.F. KuoY.M. The therapeutic potential of anti-inflammatory exerkines in the treatment of atherosclerosis.Int. J. Mol. Sci.2017186126010.3390/ijms18061260 28608819
    [Google Scholar]
  128. LevickS.P. GoldspinkP.H. Could interferon-gamma be a therapeutic target for treating heart failure?Heart Fail. Rev.201419222723610.1007/s10741‑013‑9393‑8 23589353
    [Google Scholar]
  129. BordaE. LeirósC.P. Sterin-BordaL. de BraccoM.M.E. Cholinergic response of isolated rat atria to recombinant rat interferon-γ.J. Neuroimmunol.1991321535910.1016/0165‑5728(91)90071‑E 1900518
    [Google Scholar]
  130. Cunha-NetoE. DzauV.J. AllenP.D. Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas’ disease cardiomyopathy.Am. J. Pathol.2005167230531310.1016/S0002‑9440(10)62976‑8 16049318
    [Google Scholar]
  131. LioD. ScolaL. CrivelloA. Allele frequencies of +874T→ A single nucleotide polymorphism at the first intron of interferon-gamma gene in a group of Italian centenarians.Exp. Gerontol.2002372-3315319
    [Google Scholar]
  132. SchroderK. HertzogP.J. RavasiT. HumeD.A. Interferon-γ: An overview of signals, mechanisms and functions.J. Leukoc. Biol.200475216318910.1189/jlb.0603252 14525967
    [Google Scholar]
  133. ZhuY. LingW. GuoH. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial.Nutr. Metab. Cardiovasc. Dis.201323984384910.1016/j.numecd.2012.06.005 22906565
    [Google Scholar]
  134. SolomonD.H. LiuC.C. KuoI.H. ZakA. KimS.C. Effects of colchicine on risk of cardiovascular events and mortality among patients with gout: A cohort study using electronic medical records linked with Medicare claims.Ann. Rheum. Dis.20167591674167910.1136/annrheumdis‑2015‑207984 26582823
    [Google Scholar]
  135. NidorfS.M. EikelboomJ.W. BudgeonC.A. ThompsonP.L. Low-dose colchicine for secondary prevention of cardiovascular disease.J. Am. Coll. Cardiol.201361440441010.1016/j.jacc.2012.10.027 23265346
    [Google Scholar]
  136. ShippeyE.A. Hydroxychloroquine: An old drug with new relevance.Cleve. Clin. J. Med.201885645946710.3949/ccjm.85a.17034 29883308
    [Google Scholar]
  137. HwangA.Y. SmithS.M. U.S. trends in prescription nonsteroidal anti‐inflammatory drug use among patients with cardiovascular disease, 1988–2016.Pharmacotherapy202141324725610.1002/phar.2488 33231878
    [Google Scholar]
  138. Al-BariM.A.A. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases.J. Antimicrob. Chemother.20157061608162110.1093/jac/dkv018 25693996
    [Google Scholar]
  139. SunL. LiuM. LiR. Hydroxychloroquine, a promising choice for coronary artery disease?Med. Hypotheses2016935710.1016/j.mehy.2016.04.045 27372847
    [Google Scholar]
  140. SharmaT.S. ChesterM. WaskoM. TangX. VedamurthyD. Hydroxychloroquine use is associated with decreased incident cardiovascular events in rheumatoid arthritis patients.J. Am. Heart Assoc.201651e002867
    [Google Scholar]
  141. ShapiroM. LevyY. The association between hydroxychloroquine treatment and cardiovascular morbidity among rheumatoid arthritis patients.Oncotarget2017956615662210.18632/oncotarget.23570 29464097
    [Google Scholar]
  142. MorrisS.J. WaskoM.C.M. AntoheJ.L. Hydroxychloroquine use associated with improvement in lipid profiles in rheumatoid arthritis patients.Arthritis Care Res.201163453053410.1002/acr.20393 21452265
    [Google Scholar]
  143. ClagettG.P. ReischJ.S. Prevention of venous thromboembolism in general surgical patients. Results of meta-analysis.Ann. Surg.19882082227240
    [Google Scholar]
  144. Van HalmV.P. NurmohamedM.T. TwiskJ.W.R. DijkmansB.A.C. VoskuylA.E. Disease-modifying antirheumatic drugs are associated with a reduced risk for cardiovascular disease in patients with rheumatoid arthritis: A case control study.Arthritis Res. Ther.200685R15110.1186/ar2045 16984661
    [Google Scholar]
  145. MarksJ.L. EdwardsC.J. Protective effect of methotrexate in patients with rheumatoid arthritis and cardiovascular comorbidity.Ther. Adv. Musculoskelet. Dis.20124314915710.1177/1759720X11436239 22850632
    [Google Scholar]
  146. RidkerP.M. Testing the inflammatory hypothesis of atherothrombosis: Scientific rationale for the cardiovascular inflammation reduction trial (CIRT).J. Thromb. Haemost.20097Suppl. 133233910.1111/j.1538‑7836.2009.03404.x 19630828
    [Google Scholar]
  147. ChoiH.K. HernánM.A. SeegerJ.D. RobinsJ.M. WolfeF. Methotrexate and mortality in patients with rheumatoid arthritis: A prospective study.The Lancet2002359931311731177
    [Google Scholar]
  148. RidkerP. EverettB. PradhanA. Low-dose methotrexate for the prevention of atherosclerotic events.N. Engl. J. Med.20193808752762
    [Google Scholar]
  149. SunK. LiuL. HuJ. ChenY. XuD. Methotrexate can prevent cardiovascular events in patients with rheumatoid arthritis.Medicine20211007e2457910.1097/MD.0000000000024579 33607787
    [Google Scholar]
  150. RidkerP.M. Anti‐inflammatory therapy for atherosclerosis: Interpreting divergent results from the CANTOS and CIRT clinical trials.J. Intern. Med.2019285550350910.1111/joim.12862 30472762
    [Google Scholar]
  151. XieF. ChenL. YunH. LevitanE.B. CurtisJ.R. Benefits of methotrexate use on cardiovascular disease risk among rheumatoid arthritis patients initiating biologic disease-modifying antirheumatic drugs.J. Rheumatol.202148680481210.3899/jrheum.191326 33060309
    [Google Scholar]
  152. AtzeniF. SvenungssonE. NurmohamedM.T. Do DMARDs and biologic agents protect from cardiovascular disease in patients with inflammatory arthropathies?Autoimmun. Rev.2019181210240110.1016/j.autrev.2019.102401 31655302
    [Google Scholar]
  153. ClemensD.L. DuryeeM.J. HallJ.H. Relevance of the antioxidant properties of methotrexate and doxycycline to their treatment of cardiovascular disease.Pharmacol. Ther.202020510741310.1016/j.pharmthera.2019.107413 31626869
    [Google Scholar]
  154. MaskreyB.H. MegsonI.L. WhitfieldP.D. RossiA.G. Mechanisms of resolution of inflammation: A focus on cardiovascular disease.Arterioscler. Thromb. Vasc. Biol.20113151001100610.1161/ATVBAHA.110.213850 21508346
    [Google Scholar]
  155. SallamN. LaherI. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases.Oxid. Med. Cell. Longev.201620161723963910.1155/2016/7239639 26823952
    [Google Scholar]
  156. RidkerP.M. EverettB.M. ThurenT. Antiinflammatory therapy with canakinumab for atherosclerotic disease.N. Engl. J. Med.2017377121119113110.1056/NEJMoa1707914 28845751
    [Google Scholar]
  157. RidkerP.M. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: Rationale and design of the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS).Am. Heart J.2011162459760510.1016/j.ahj.2011.06.012 21982649
    [Google Scholar]
  158. RidkerP.M. MacFadyenJ.G. GlynnR.J. Inhibition of interleukin-1β by canakinumab and cardiovascular outcomes in patients with chronic kidney disease.J. Am. Coll. Cardiol.201871212405241410.1016/j.jacc.2018.03.490 29793629
    [Google Scholar]
  159. MatobaT. EgashiraK. Nanoparticle-mediated drug delivery system for cardiovascular disease.Int. Heart J.201455428128610.1536/ihj.14‑150 24942639
    [Google Scholar]
  160. KatsukiS. MatobaT. KogaJ. NakanoK. EgashiraK. Anti-inflammatory nanomedicine for cardiovascular disease.Front. Cardiovasc. Med.201748710.3389/fcvm.2017.00087 29312961
    [Google Scholar]
  161. GuptaP. GarciaE. SarkarA. Nanoparticle based treatment for cardiovascular diseases.Cardiovasc. Hematol. Disord. Drug Targets2019191334410.2174/1871529X18666180508113253 29737265
    [Google Scholar]
  162. GabizonA. CataneR. UzielyB. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes.Cancer Res.1994544987992
    [Google Scholar]
  163. MorganM.T. CarnahanM.A. FinkelsteinS. Dendritic supramolecular assemblies for drug delivery.Chem. Commun.2005344309431110.1039/b502411k 16113731
    [Google Scholar]
  164. ThomasT.P. JoiceM. SumitM. Design and in vitro validation of multivalent dendrimer methotrexates as a folate-targeting anticancer therapeutic.Curr. Pharm. Des.201319376594660510.2174/1381612811319370004
    [Google Scholar]
  165. AjimaK. YudasakaM. MurakamiT. MaignéA. ShibaK. IijimaS. Carbon nanohorns as anticancer drug carriers.Mol. Pharm.20052647548010.1021/mp0500566 16323954
    [Google Scholar]
  166. XuA. WangH. HooR.L.C. Selective elevation of adiponectin production by the natural compounds derived from a medicinal herb alleviates insulin resistance and glucose intolerance in obese mice.Endocrinology2009150262563310.1210/en.2008‑0999 18927219
    [Google Scholar]
  167. OuchiN. WalshK. Adiponectin as an anti-inflammatory factor.Clin. Chim. Acta20073801-2243010.1016/j.cca.2007.01.026 17343838
    [Google Scholar]
  168. ZhangB. HaoZ. ZhouW. Formononetin protects against ox-LDL-induced endothelial dysfunction by activating PPAR-γ signaling based on network pharmacology and experimental validation.Bioengineered20211214887489810.1080/21655979.2021.1959493 34369277
    [Google Scholar]
  169. MaY. LiuS. ShuH. CrawfordJ. XingY. TaoF. Resveratrol alleviates temporomandibular joint inflammatory pain by recovering disturbed gut microbiota.Brain Behav. Immun.20208745546410.1016/j.bbi.2020.01.016 32001342
    [Google Scholar]
  170. OmraninavaM. RaziB. AslaniS. ImaniD. JamialahmadiT. SahebkarA. Effect of resveratrol on inflammatory cytokines: A meta-analysis of randomized controlled trials.Eur. J. Pharmacol.202190817438010.1016/j.ejphar.2021.174380 34303665
    [Google Scholar]
  171. ChenS.R. DaiY. ZhaoJ. LinL. WangY. WangY. A mechanistic overview of triptolide and celastrol, natural products from Tripterygium wilfordii Hook F.Front. Pharmacol.2018910410.3389/fphar.2018.00104 29491837
    [Google Scholar]
  172. LiZ. ZhangJ. DuanX. ZhaoG. ZhangM. Celastrol: A promising agent fighting against cardiovascular diseases.Antioxidants20221181597
    [Google Scholar]
  173. SchroderK. ZhouR. TschoppJ. The NLRP3 inflammasome: A sensor for metabolic danger?Science2010327596329630010.1126/science.1184003 20075245
    [Google Scholar]
  174. YangX. WuF. LiL. Celastrol alleviates metabolic disturbance in high‐fat diet‐induced obese mice through increasing energy expenditure by ameliorating metabolic inflammation.Phytother. Res.202135129731010.1002/ptr.6800 32776627
    [Google Scholar]
  175. GuL. BaiW. LiS. Celastrol prevents atherosclerosis via inhibiting LOX-1 and oxidative stress.PLoS One201386e6547710.1371/journal.pone.0065477 23799016
    [Google Scholar]
  176. LiaoH. YeJ. GaoL. LiuY. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review.Biomed. Pharmacother.2021133110917
    [Google Scholar]
  177. HamedM.A. Aboul NaserA.F. AboutablM.E. Bioactive compounds and therapeutic role of Brassica oleracea L. seeds in rheumatoid arthritis rats via regulating inflammatory signalling pathways and antagonizing interleukin-1 receptor action.Biomarkers202126878880710.1080/1354750X.2021.1999504 34704882
    [Google Scholar]
  178. LiJ. LeeD.H. HuJ. Dietary inflammatory potential and risk of cardiovascular disease among men and women in the U.S.J. Am. Coll. Cardiol.202076192181219310.1016/j.jacc.2020.09.535 33153576
    [Google Scholar]
  179. Choose anti-inflammatory foods to lower heart disease and stroke risk, study says.2020Available from: https://edition.cnn.com/2020/12/02/health/anti-inflammatory-foods-heart-disease-wellness/index.html
  180. MilesiG. RanganA. GrafenauerS. Whole grain consumption and inflammatory markers: A systematic literature review of randomized control trials.Nutrients202214237410.3390/nu14020374 35057555
    [Google Scholar]
  181. KazemzadehM. SafaviS.M. NematollahiS. NouriehZ. Effect of brown rice consumption on inflammatory marker and cardiovascular risk factors among overweight and obese non-menopausal female adults.Int. J. Prev. Med.201454478488 24829736
    [Google Scholar]
  182. KitanoK. Plasma producingapparatus and method of plasma production.US Patent 2010/0292345 A12010
  183. InflammasomeT. LibbyP. Targeting inflammatory pathways in cardiovascular disease: The inflammasome, interleukin-1, interleukin-6 and beyond.Cells2021104951
    [Google Scholar]
  184. KoushkiK. ShahbazS.K. MashayekhiK. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways.Clin. Rev. Allergy Immunol.2021602175199
    [Google Scholar]
  185. CucuI. Signaling pathways in inflammation and cardiovascular diseases: An update of therapeutic strategies.Immuno20222463065010.3390/immuno2040039
    [Google Scholar]
  186. AkinkuolieA.O. LawlerP.R. ChuA.Y. Group IIA secretory phospholipase A2, vascular inflammation, and incident cardiovascular disease.Arterioscler. Thromb. Vasc. Biol.20193961182119010.1161/ATVBAHA.118.311894 31070471
    [Google Scholar]
  187. HerrmannJ. CiechanoverA. LermanL.O. LermanA. The ubiquitin-proteasome system in cardiovascular diseases-A hypothesis extended.Cardiovasc. Res.20046111121
    [Google Scholar]
  188. VigarioF.L. KuiperJ. SlütterB. Tolerogenic vaccines for the treatment of cardiovascular diseases.EBioMedicine20205710282710.1016/j.ebiom.2020.102827
    [Google Scholar]
  189. ChyuK.Y. ShahP.K. In pursuit of an atherosclerosis vaccine chasing the Holy Grail.Circ. Res.2018123101121112310.1161/CIRCRESAHA.118.313842 30359192
    [Google Scholar]
  190. BonvalletM. DellP. BrookD.L. A physical interpretation of shock, exhaustion, and restoration: An extension of the kinetic theory.Forgotten Books1956
    [Google Scholar]
  191. ShapiroM.D. TavoriH. FazioS. PCSK9: From basic science discoveries to clinical trials.Circ. Res.20181221014201438
    [Google Scholar]
  192. WeisshaarS. ZeitlingerM. Vaccines targeting PCSK9: A promising alternative to passive immunization with monoclonal antibodies in the management of hyperlipidaemia?Drugs201878879980810.1007/s40265‑018‑0915‑5 29737499
    [Google Scholar]
  193. CooperP.J. ChicoM.E. LosonskyG. Albendazole treatment of children with ascariasis enhances the vibriocidal antibody response to the live attenuated oral cholera vaccine CVD 103-HgR.J. Infect. Dis.2000182411991206
    [Google Scholar]
  194. DavisM.M. TaubertK. BeninA.L. Influenza vaccination as secondary prevention for cardiovascular disease: A science advisory from the American Heart Association/American College of Cardiology.J. Am. Coll. Cardiol.200648714981502
    [Google Scholar]
  195. MitevaK. MadonnaR. de CaterinaR. van LinthoutS. Innate and adaptive immunity in atherosclerosis.Vascul. Pharmacol.201810.1016/j.vph.2018.04.006
    [Google Scholar]
  196. Faria-NetoJ.R. ChyuK.Y. LiX. Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice.Atherosclerosis20061891839010.1016/j.atherosclerosis.2005.11.033 16386745
    [Google Scholar]
  197. NilssonJ. HanssonG.K. Vaccination strategies and immune modulation of atherosclerosis.Circ. Res.202012691281129610.1161/CIRCRESAHA.120.315942 32324498
    [Google Scholar]
  198. CiszewskiA. Cardioprotective effect of influenza and pneumococcal vaccination in patients with cardiovascular diseases.Vaccine201836220220610.1016/j.vaccine.2017.11.078
    [Google Scholar]
  199. ClarC. OseniZ. FlowersN. Keshtkar-JahromiM. ReesK. Influenza vaccines for preventing cardiovascular disease.Cochrane Database Syst. Rev.201520155CD005050
    [Google Scholar]
  200. AidoudA. MarletJ. AngoulvantD. DebacqC. GavazziG. FougèreB. Influenza vaccination as a novel means of preventing coronary heart disease: Effectiveness in older adults.Vaccine2020383249444955
    [Google Scholar]
  201. HanssonG.K. NilssonJ. Vaccination against atherosclerosis? Induction of atheroprotective immunity.Semin. Immunopathol.20093119510110.1007/s00281‑009‑0151‑x 19468734
    [Google Scholar]
  202. Leon-MimilaP. WangJ. Huertas-VazquezA. Relevance of multi-omics studies in cardiovascular diseases.Front. Cardiovasc. Med.201969110.3389/fcvm.2019.00091 31380393
    [Google Scholar]
  203. DoranS. ArifM. LamS. Multi-omics approaches for revealing the complexity of cardiovascular disease.Brief. Bioinform.2021225bbab06110.1093/bib/bbab061 33725119
    [Google Scholar]
  204. JinH. Integrative multiomics analysis of human atherosclerosis reveals a serum response factor-driven network associated with intraplaque hemorrhage.Clin. Transl. Med.2021116e458
    [Google Scholar]
  205. SteffensenL.B. MortensenM.B. KjolbyM. HagensenM.K. OxvigC. BentzonJ.F. Disturbed laminar blood flow vastly augments lipoprotein retention in the artery wall: A key mechanism distinguishing susceptible from resistant sites.Arterioscler. Thromb. Vasc. Biol.20153591928193510.1161/ATVBAHA.115.305874 26183617
    [Google Scholar]
  206. BentzonJ.F. OtsukaF. VirmaniR. FalkE. Mechanisms of plaque formation and rupture.Circ. Res.2014114121852186610.1161/CIRCRESAHA.114.302721 24902970
    [Google Scholar]
  207. InamdarA. PalledM.S. SuryawanshiS.S. ShettiP. SharmaH. A simple, cost-efficient stability-indicating RP-HPLC method for simultaneous estimation of embelin and piperine for routine analysis of marketed polyherbal capsules and tablets.Nat. Prod. Res.202511110.1080/14786419.2024.2448842 39780606
    [Google Scholar]
  208. InamdarA. GurupadayyaB. SharmaH. The role of glial cells in autism spectrum disorder: Molecular mechanisms and therapeutic approaches.CNS Neurol. Disord. Drug Targets20252412010.2174/0118715273337007241115102118 39773050
    [Google Scholar]
  209. ChandraP. RastogiV. PorwalM. SharmaH. VermaA. SachanN. A critical review on lipid nanoparticle-based siRNA formulations for breast cancer management.Pharm. Nanotechnol.20241311910.2174/0122117385330006241120084721 39670497
    [Google Scholar]
  210. KumariA. BajwaN. AshiqueS. From lab bench to bedside: Advancing malaria treatments through research, patents, and clinical trials.Curr. Treat. Options Infect. Dis.2024171410.1007/s40506‑024‑00279‑w
    [Google Scholar]
  211. Al NomanA. Dev SharmaP. Jahin MimT. Al AzadM. SharmaH. Molecular docking and ADMET analysis of coenzyme Q10 as a potential therapeutic agent for Alzheimer’s disease.Aging Pathobiol. Ther.20246411310.31491/APT.2024.12.155
    [Google Scholar]
  212. InamdarA. GurupadayyaB. HalagaliP. Unraveling neurological drug delivery: Polymeric nanocarriers for enhanced blood-brain barrier penetration.Curr. Drug Targets20242612410.2174/0113894501339455241101065040 39513304
    [Google Scholar]
  213. MishraR. KaurV. NogaiL. Emerging insights and novel therapeutics in polycystic ovary syndrome.Biochem. Cell. Arch.20242421613162610.51470/bca.2024.24.2.1613
    [Google Scholar]
  214. InamdarA. GurupadayyaB. HalagaliP. Cutting-edge strategies for overcoming therapeutic barriers in Alzheimer’s disease.Curr. Pharm. Des.202412110.2174/0113816128344571241018154506 39492772
    [Google Scholar]
  215. Al NomanA. AfrosaH. LihuI.K. Vitamin D and neurological health: Unraveling risk factors, disease progression, and treatment potential.CNS Neurol. Disord. Drug Targets20242411210.2174/0118715273330972241009092828 39440730
    [Google Scholar]
  216. ChandraP. PorwalM. RastogiV. TyagiS.J. SharmaH. VermaA. Carb‐loaded passion: A comprehensive exploration of carbohydrates in shaping aphrodisiac effects.Macromol. Symp.20244135240006410.1002/masy.202400064
    [Google Scholar]
  217. SarkarS. BhuiU. KumarB. Correlation between cognitive impairment and peripheral biomarkers - significance of phosphorylated tau and amyloid-β in alzheimer’s disease: A new insight.Curr. Psychiatry Res. Rev.202412510.2174/0126660822329981241007105405
    [Google Scholar]
  218. PathakR. SharmaH. ChandraP. HalagaliP. AliZ. A compressive review: Mechanisms underlying the use of diuretics in the treatment of hypertension.Indian J Nat Sci202415857806378075
    [Google Scholar]
  219. SharmaH. ChandraP. PathakR. BhandariM. ArushiS.V. Advancements in the therapeutic approaches to treat neurological disorders.Cah Magellanes-NS20246243284389
    [Google Scholar]
  220. ChandraP. SharmaH. Phosphodiesterase inhibitors for treatment of Alzheimer’s disease.Indian Drugs202461772210.53879/id.61.07.14382
    [Google Scholar]
  221. PathakR. SharmaS. BhandariM. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions.J. Exp. Zool. India20242122447246110.59467/jez.2024.27.2.2447
    [Google Scholar]
  222. SinghA. KumarP. SharmaH. Breakthrough opportunities of nanotheranostics in psoriasis: From pathogenesis to management strategy.Infect. Disord. Drug Targets20242412010.2174/0118715265298802240603120251 39075964
    [Google Scholar]
  223. SharmaH. TyagiS.J. VarshneyP. PathakN. PathakR. A review on Mpox: Diagnosis, prevention and treatments.Coronaviruses2024511710.2174/0126667975301557240604113752
    [Google Scholar]
  224. SharmaH. HalagaliP. MajumderA. SharmaV. PathakR. Natural compounds targeting signaling pathways in breast cancer therapy.African J Biol Sci20246105430547910.33472/AFJBS.6.10.2024.5430‑5479
    [Google Scholar]
  225. SharmaH. PathakR. BiswasD. Unveiling the therapeutic potential of modern probiotics in addressing neurodegenerative disorders: A comprehensive exploration, review and future perspectives on intervention strategies.Curr. Psychiatry Res. Rev.20242012510.2174/0126660822304321240520075036
    [Google Scholar]
  226. PathakR. KaurV. SharmaS. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors.Cancer2024691311133010.33472/AFJBS.6.9.2024.1311‑1330
    [Google Scholar]
  227. KapoorD.U. SharmaH. MaheshwariR. Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications.Carbohydr. Polym.202433912226610.1016/j.carbpol.2024.122266 38823930
    [Google Scholar]
  228. ChandraP. AliZ. FatimaN. Shankhpushpi (Convolvulus pluricaulis): Exploring its cognitive enhancing mechanisms and therapeutic potential in neurodegenerative disorders.Curr. Bioact. Compd.2025212E29042422951010.2174/0115734072292339240416095600
    [Google Scholar]
  229. KumarP. SharmaH. SinghA. Targeting the interplay of proteins through protacs for management cancer and associated disorders.Curr. Cancer Ther. Rev.20242010.2174/0115733947304806240417092449
    [Google Scholar]
  230. SharmaH. ChandraP. Effects of natural remedies on memory loss and Alzheimer’s disease.Afr J Bio Sc20246718721110.33472/AFJBS.6.7.2024.187‑211
    [Google Scholar]
  231. HalagaliP. InamdarA. SinghJ. Phytochemicals, herbal extracts, and dietary supplements for metabolic disease management.Endocr. Metab. Immune Disord. Drug Targets20242410.2174/0118715303287911240409055710 38676520
    [Google Scholar]
  232. DasS. MukherjeeT. MohantyS. Impact of NF-κB signaling and Sirtuin-1 protein for targeted inflammatory intervention.Curr. Pharm. Biotechnol.20242510.2174/0113892010301469240409082212 38638042
    [Google Scholar]
  233. SharmaH. KaushikM. GoswamiP. Role of miRNAs in brain development.MicroRNA20241329610910.2174/0122115366287127240322054519 38571343
    [Google Scholar]
  234. AshiqueS. BhowmickM. PalR. Multi drug resistance in colorectal cancer- approaches to overcome, advancements and future success.Adv. Cancer Biol. Metastasis20241010011410.1016/j.adcanc.2024.100114
    [Google Scholar]
  235. AshiqueS. PalR. SharmaH. MishraN. GargA. Unraveling the emerging niche role of extracellular vesicles (EVs) in traumatic brain injury (TBI).CNS Neurol. Disord. Drug Targets202423111357137010.2174/0118715273288155240201065041 38351688
    [Google Scholar]
  236. KumarP. PandeyS. AhmadF. Carbon nanotubes: A targeted drug delivery against cancer cell.Curr. Nanosci.2023913110.2174/0115734137271865231105070727
    [Google Scholar]
  237. SharmaH. ChandraP. VermaA. PandeyS.N. KumarP. SighA. Therapeutic approaches of nutraceuticals in the prevention of neurological disorders.Eur. Chem. Bull.202312515751596
    [Google Scholar]
  238. SharmaH. ChandraP. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease.Int. J. Pharm. Investig.202314111712610.5530/ijpi.14.1.15
    [Google Scholar]
  239. SharmaH. PathakR. JainS. Ficus racemosa L: A review on its important medicinal uses, phytochemicals and biological activities.J. Popul. Ther. Clin. Pharmacol.2023301721322710.47750/jptcp.2023.30.17.018
    [Google Scholar]
  240. SinghLP GugulothuS PerusomulaR Synthesis of some tetrazole and Thiazolidine-4-One derivatives of Schiff base by using ionic liquids as catalyst and evaluation of their antifungal and antibacterial activity.Eur Chem Bull202312Special Issue828197
    [Google Scholar]
  241. PathakR. SharmaH. NogaiL. BhandariM. KoliM. MishraR. KumarN. A brief review on pathogenesis, transmission and management of monkeypox virus outbreaks.Bull. Environ. Pharmacol. Life Sci.2023124244256
    [Google Scholar]
  242. SharmaH. BhattacharyaV. BhattA. Optimization of formulation by box behnken and in vitro studies of emulsified gel containing zaltoprofen for the management of arthritis.in Eur. Chem. Bull.202312SS-41173411744
    [Google Scholar]
  243. ManjuKoli NogaiL. BhandariM. MishraR. PathakR. SharmaH. Formulation and evaluation of berberine hydrochloride film coated tablet.J. Pharm. Negat. Results20233439344910.47750/pnr.2023.14.02.403
    [Google Scholar]
  244. DwivediM. JhaK.K. PandeyS. SachanA. SharmaH. DwivediS.K. Formulation and evaluation of herbal medicated chocolate in treatment of intestinal worms and related problems.IJFANS202211214261439
    [Google Scholar]
  245. SharmaH. PathakR. KumarN. Endocannabinoid system: Role in depression, recompense, and pain control.J Survey Fish Sci2023104S2743275110.17762/sfs.v10i4S.1655
    [Google Scholar]
  246. SharmaH. PathakR. SaxenaD. KumarN. Emerging role of non-coding RNA’S: Human health and diseases.GIS20229720222050
    [Google Scholar]
  247. SharmaH. RaniT. KhanS. An insight into neuropathic pain: A systemic and up-to-date review.Int. J. Pharm. Sci. Res.202314260762110.13040/IJPSR.0975‑8232.14(2).607‑21
    [Google Scholar]
  248. PandeyP. KumarN. KaurT. SainiS. SharmaH. Antidiabetic activity of Caesalpinia bonducella leavess of hydro alcoholic extracts in albino rats.YMER Digital202221784084610.37896/YMER21.07/67
    [Google Scholar]
  249. PathakR. SharmaH. KumarN. A brief review on Anthocephalus cadamba.Acta Scientific Pharmacology202235
    [Google Scholar]
  250. SharmaS. DindaS.C.S.H. Matrix types drug delivery system for sustained release : A review.ASIO J Drug Deliv20226118
    [Google Scholar]
  251. SharmaH PathakR. A review on prelimenary phytochemical screening of Curcuma longa Linn.J Pharma Herbal Med Res (ASIO-JPHMR)202172247
    [Google Scholar]
  252. PathakR. SharmaH. A review on medicinal uses of Cinnamomum verum (Cinnamon).J. Drug Deliv. Ther.2021116-S16116610.22270/jddt.v11i6‑S.5145
    [Google Scholar]
  253. SharmaH. PandeM. JhaK.K. Hyperuricemia: A risk factor beyond gout.ASIO J Pharm Herb Med Res2020614219
    [Google Scholar]
  254. SharmaH SinghS JhaKK Treatment and recommendations for homeless patients with hypertension, hyperlipidemia & heart failure- a review.J Exp Pharmacol Clin Res (ASIO-JEPCR)2020612432
    [Google Scholar]
  255. SharmaH. KaushikM. AshiqueS. FaridA. Taghizadeh-HesaryF. Evolving Landscape on Sex Specific Status on Lung Cancer Management: Moderating Effects, Risk Assessment.Emerging Social Issues on Targeted Drug Delivery.Scientific Research Publishing, Inc.2024189220
    [Google Scholar]
  256. SuryawanshiM. KurtkotiS. MullaT. ShahE. SharmaH. BhattH. Edible Biopolymers for Food Applications.Green Biopolymers for Packaging Applications.Boca RatonCRC Press202422825410.1201/9781003455356‑10
    [Google Scholar]
  257. SuryawanshiM. MullaT. SuryawanshiI. Modified Starch in Food Packaging.Green Biopolymers for Packaging Applications.Boca RatonCRC Press202425527110.1201/9781003455356‑11
    [Google Scholar]
  258. SharmaH. KaushikM. VenishaaS. PathakR. FaridA. BhowmickM. Correlation and Successive Role of Synbiotics to Manage Blood Pressure.Synbiotics in Metabolic Disorders.Boca RatonCRC Press202410312010.1201/9781032702438‑7
    [Google Scholar]
  259. RayP. FaseehM.A. AdakD. SharmaH. Probiotics, Prebiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota.Synbiotics in Metabolic Disorders.Boca RatonCRC Press202416017210.1201/9781032702438‑11
    [Google Scholar]
  260. ChandraP. SharmaH. SachanN. The Potential Role of Prebiotics, Probiotics, and Synbiotics in Cancer Prevention and Therapy.Synbiotics in Metabolic Disorders.Boca RatonCRC Press202419121310.1201/9781032702438‑13
    [Google Scholar]
  261. KaushikM. SharmaH. MadeswaragupthaP. VanangamudiM. MudiV. Synbiotic.Synbiotics in Metabolic Disorders.Boca RatonCRC Press202413515010.1201/9781032702438‑9
    [Google Scholar]
  262. SharmaH. KumarS. AshiqueS. The Impact of Probiotic and Synbiotic Supplementation on Oxidative Stress and Inflammation.Synbiotics in Metabolic Disorders.Boca RatonCRC Press20249010210.1201/9781032702438‑6
    [Google Scholar]
  263. HalagaliP. NayakD. TippavajhalaV.K. RathnanandM. BiswasD. SharmaH. Navigating the nanoscopic frontier: Ethical dimensions in developing nanocarriers for neurodegenerative diseases. KoduruT.S. OsmaniR.A.M. SinghE. DuttaS.B.T.T.N.R. Academic Press.Cambridge, Massachusetts202539942010.1016/B978‑0‑443‑28822‑7.00011‑8
    [Google Scholar]
  264. HalagaliP. NayakD. RathnanandM. TippavajhalaV.K. SharmaH. BiswasD. Synergizing sustainable green nanotechnology and AI/ML for advanced nanocarriers: A paradigm shift in the treatment of neurodegenerative diseases. KoduruT.S. OsmaniR.A.M. SinghE. DuttaS.B.T.T.N.R. Academic Press.Cambridge, Massachusetts202537339710.1016/B978‑0‑443‑28822‑7.00017‑9
    [Google Scholar]
  265. KumarP. AshiqueS. KumarN. Regulation of Plant Hormones Under Abiotic Stress Conditions in Plants.Plant Secondary Metabolites and Abiotic Stress.Wiley202424327610.1002/9781394186457.ch10
    [Google Scholar]
  266. DattaD. ColacoV. BandiS.P. SharmaH. DhasN. GiramP.S. Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities.Polymers for Oral Drug Delivery Technologies.Woodhead Publishing202526333310.1016/B978‑0‑443‑13774‑7.00007‑4
    [Google Scholar]
  267. SharmaH. Jai TyagiS. PathakN. KeshariA. VarshneyP. PathakR. Social, Economic, and Environmental Justifications for 3D Printing of Pharmaceutical Products.Handbook of 3D Printing in Pharmaceutics.Boca RatonCRC Press202417919410.1201/9781003439509‑17
    [Google Scholar]
  268. SharmaH. PathakR. SachanN. ChandraP. Role of Tumor Antigens for Cancer Vaccine Development.Cancer Vaccination and Challenges.New YorkApple Academic Press2024579410.1201/9781003501718‑3
    [Google Scholar]
  269. SharmaH. AnandA. HalagaliP. Advancement of nanoengineered flavonoids for chronic metabolic diseases.Role of flavonoids in chronic metabolic diseases.Wiley202445951010.1002/9781394238071.ch13
    [Google Scholar]
  270. KaushikM. KumarS. SinghM. Bio-inspired Nanomaterials in Cancer Theranostics.Nanotheranostics for Diagnosis and Therapy.SingaporeSpringer Nature Singapore20249512310.1007/978‑981‑97‑3115‑2_5
    [Google Scholar]
  271. SharmaH. RachamallaH.K. MishraN. ChandraP. PathakR. AshiqueS. Introduction to exosome and its role in brain disorders. MishraN. AshiqueS. GargA. ChithravelV. AnandK. Exosomes Based Drug Delivery Strategies for Brain Disorders.SingaporeSpringer Nature Singapore202413510.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  272. SharmaH. TyagiS.J. ChandraP. Role of exosomes in Parkinson’s and Alzheimer’s diseases. MishraN. AshiqueS. GargA. ChithravelV. AnandK. Exosomes Based Drug Delivery Strategies for Brain Disorders.SingaporeSpringer Nature202414718210.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  273. KumarP. SharmaH. SinghA. PandeyS.N. ChandraP. Correlation between exosomes and neuro-inflammation in various brain disorders. MishraN. AshiqueS. GargA. ChithravelV. AnandK. Exosomes Based Drug Delivery Strategies for Brain Disorders.SingaporeSpringer Nature202427330210.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
/content/journals/cst/10.2174/0115743624366056250407071501
Loading
/content/journals/cst/10.2174/0115743624366056250407071501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test