Skip to content
2000
image of Piezoelectric and Electrically Conducting Filler-based Elastomer Composite For Piezoelectric Nano Generators

Abstract

Introduction

There are many challenges in achieving high performance composites. These challenges are achieving uniform filler dispersion, strong interfacial interactions, and efficient load transfer. This study addresses some of these challenges and presents a strategy to balance properties with high-performance PENGs.

Methods

These PENGs devices were fabricated using hybrid composites consisting of barium titanate (BaTiO) and titanium carbide (TiC) as fillers, embedded in a silicone rubber matrix. The mechanical and electromechanical behavior were assessed using a universal testing machine and a digital multimeter.

Results

The results indicate that BaTiO and TiC were effective in achieving high modulus and robust power density. For example, the compressive modulus increased from 1.15 MPa (control) to 1.45 MPa at 10 phr BaTiO (BaTiO-10), and further to 2.29 MPa at 40 phr (BaTiO-40). Similarly, the generated power output increased from 0.79 pW/cm2 (BaTiO-10) to a maximum of 2.29 pW/cm2 (BaTiO-20), before decreasing to 0.39 pW/cm2 (BaTiO-30).

Discussion

These results show the effectiveness of BaTiO and TiC-filled silicone rubber composites in enhancing the performance of PENGs. The study covers a promising route for the development of self-powered devices.

Conclusions

The study shows that the BaTiO and TiC hybrid used in silicone rubber provides a robust performance for portable electronics and biological applications. The results show that 20 phr of hybrid filler is sufficient to best performance, while the properties fall after this filler loading.

Loading

Article metrics loading...

/content/journals/cset/10.2174/0130506115412171250923211707
2025-10-28
2025-12-23
Loading full text...

Full text loading...

References

  1. Briscoe J. Dunn S. Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters. Nano Energy 2015 14 15 29 10.1016/j.nanoen.2014.11.059
    [Google Scholar]
  2. Deng W. Zhou Y. Libanori A. Chen G. Yang W. Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022 51 9 3380 3435 10.1039/D1CS00858G 35352069
    [Google Scholar]
  3. Shee C. Banerjee S. Bairagi S. Baburaj A. Naveen K.S.K. Aliyana A.K. Mulvihill D.M. Alagirusamy R. Ali S.W. A critical review on polyvinylidene fluoride (PVDF)/zinc oxide (ZnO)-based piezoelectric and triboelectric nanogenerators. Journal of Physics: Energy. 2024 6 3 032001 10.1088/2515‑7655/ad405b
    [Google Scholar]
  4. Zhao Z. Dai Y. Dou S.X. Liang J. Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Mater. Today Energy 2021 20 100690 10.1016/j.mtener.2021.100690
    [Google Scholar]
  5. Li T. Lee P.S. Piezoelectric energy harvesting technology: From materials, structures, to applications. Small Struct. 2022 3 3 2100128 10.1002/sstr.202100128
    [Google Scholar]
  6. Noh J.S. Conductive elastomers for stretchable electronics, sensors and energy harvesters. Polymers 2016 8 4 123 10.3390/polym8040123 30979215
    [Google Scholar]
  7. Alarifi I.M. A comprehensive review on advancements of elastomers for engineering applications. Advanced Industrial and Engineering Polymer Research 2023 6 4 451 464 10.1016/j.aiepr.2023.05.001
    [Google Scholar]
  8. Kumar V. Alam M.N. Yewale M.A. Park S.S. Great elastomer-based composites for robust and portable wearable sensors: A critical review. Sens. Actuators A Phys. 2025 389 116563 10.1016/j.sna.2025.116563
    [Google Scholar]
  9. Hu S. Shi Z. Zhao W. Wang L. Yang G. Multifunctional piezoelectric elastomer composites for smart biomedical or wearable electronics. Compos., Part B Eng. 2019 160 595 604 10.1016/j.compositesb.2018.12.077
    [Google Scholar]
  10. Vallem V. Sargolzaeiaval Y. Ozturk M. Lai Y.C. Dickey M.D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 2021 33 19 2004832 10.1002/adma.202004832 33502808
    [Google Scholar]
  11. Keum K. Kim J.W. Hong S.Y. Son J.G. Lee S.S. Ha J.S. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv. Mater. 2020 32 51 2002180 10.1002/adma.202002180 32930437
    [Google Scholar]
  12. Bokobza L. Elastomer nanocomposites: Effect of filler–matrix and filler–filler interactions. Polymers 2023 15 13 2900 10.3390/polym15132900 37447545
    [Google Scholar]
  13. Qian W. Yang W. Zhang Y. Bowen C.R. Yang Y. Piezoelectric materials for controlling electro-chemical processes. Nano-Micro Lett. 2020 12 1 149 10.1007/s40820‑020‑00489‑z 34138166
    [Google Scholar]
  14. Tang W. Sun Q. Wang Z.L. Self-powered sensing in wearable electronics— a paradigm shift technology. Chem. Rev. 2023 123 21 12105 12134 10.1021/acs.chemrev.3c00305 37871288
    [Google Scholar]
  15. Owusu F. Nüesch F.A. Opris D.M. Stretchable high response piezoelectric elastomers based on polable polynorbornene fillers in a polydimethylsiloxane matrix. Adv. Funct. Mater. 2022 32 41 2207083 10.1002/adfm.202207083
    [Google Scholar]
  16. Huang L.J. Geng L. Peng H-X. Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog. Mater. Sci. 2015 71 93 168 10.1016/j.pmatsci.2015.01.002
    [Google Scholar]
  17. Xiong J. Chen J. Lee P.S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 2021 33 19 2002640 10.1002/adma.202002640 33025662
    [Google Scholar]
  18. Chen W. Zheng Q. Lv Y.A. Chen Y. Fan Q. Zhou X. Li H. Yu Q. Liu H. Piezoelectric energy harvesting and dissipating behaviors of polymer-based piezoelectric composites for nanogenerators and dampers. Chem. Eng. J. 2023 465 142755 10.1016/j.cej.2023.142755
    [Google Scholar]
  19. Habib M. Lantgios I. Hornbostel K. A review of ceramic, polymer and composite piezoelectric materials. J. Phys. D Appl. Phys. 2022 55 42 423002 10.1088/1361‑6463/ac8687
    [Google Scholar]
  20. Baidya K. Roy A. Das K. A review of polymer-matrix piezoelectric composite coatings for energy harvesting and smart sensors. J. Coat. Technol. Res. 2024 21 1 55 85 10.1007/s11998‑023‑00819‑x
    [Google Scholar]
  21. Zhou Z. Du X. Zhang Z. Luo J. Niu S. Shen D. Wang Y. Yang H. Zhang Q. Dong S. Interface modulated 0-D piezoceramic nanoparticles/PDMS based piezoelectric composites for highly efficient energy harvesting application. Nano Energy 2021 82 105709 10.1016/j.nanoen.2020.105709
    [Google Scholar]
  22. Kumar V. Manikkavel A. Yewale M.A. Alam M.N. Park S.S. Lightweight, compressible, stretchable, ultra-soft, and mechanically stable composites for piezo-electric energy generators and strain sensing. Mater. Res. Bull. 2024 179 112962 10.1016/j.materresbull.2024.112962
    [Google Scholar]
  23. Zhu J. Wang X. Xing Y. Li J. Highly stretchable all-rubber-based thread-shaped wearable electronics for human motion energy-harvesting and self-powered biomechanical tracking. Nanoscale Res. Lett. 2019 14 1 247 10.1186/s11671‑019‑3085‑9 31338603
    [Google Scholar]
  24. Chung K.Y. Xu B. Li Z. Liu Y. Han J. Bioinspired ultra-stretchable dual-carbon conductive functional polymer fiber materials for health monitoring, energy harvesting and self-powered sensing. Chem. Eng. J. 2023 454 140384 10.1016/j.cej.2022.140384
    [Google Scholar]
  25. Kumar V. Alam M.N. Yewale M.A. Lee D.J. Park S.S. Mimicking self-powered piezoelectric energy-generating behavior in silicone rubber composites under compressive and tensile strains. ACS Appl. Electron. Mater. 2024 6 3 1638 1650 10.1021/acsaelm.3c01536
    [Google Scholar]
  26. Kumar V. Sood A. Kumar A. Yewale M.A. Alam M.N. Park S.S. Modulating the energy harvesting with tunable hardness from mildly functionalized graphite nanoplatelets-based composites for wearable applications. J. Alloys Compd. 2025 1010 177517 10.1016/j.jallcom.2024.177517
    [Google Scholar]
  27. Determination of tensile strength at break, tensile stress at yield, elongation at break and stress values of rubber in a tensile test (Foreign Standard) Available from: https://webstore.ansi.org/standards/din/DIN535041994
  28. Kumar V. Lee D.J. Studies of nanocomposites based on carbon nanomaterials and RTV silicone rubber J. Appl. Polym. Sci., vol. 134, no. 4, p. app.44407 2017 10.1002/app.44407
    [Google Scholar]
  29. Obeid A. Roumie M. Badawi M.S. Awad R. Evaluation of the effect of different nano-size of WO3 on the structural and mechanical properties of HDPE. J. Inorg. Organomet. Polym. Mater. 2022 32 4 1506 1519 10.1007/s10904‑021‑02219‑3
    [Google Scholar]
  30. Robertson C.G. Hardman N.J. Nature of carbon black reinforcement of rubber: Perspective on the original polymer nanocomposite. Polymers 2021 13 4 538 10.3390/polym13040538 33673094
    [Google Scholar]
  31. Mohamad Aini N.A. Othman N. Hussin M.H. Sahakaro K. Hayeemasae N. Efficiency of interaction between hybrid fillers carbon black/lignin with various rubber-based compatibilizer, epoxidized natural rubber, and liquid butadiene rubber in NR/BR composites: Mechanical, flexibility and dynamical properties. Ind. Crops Prod. 2022 185 115167 10.1016/j.indcrop.2022.115167
    [Google Scholar]
  32. Bairagi S. Shahid-ul-Islam, M. Shahadat, D.M. Mulvihill, and W. Ali, “Mechanical energy harvesting and self-powered electronic applications of textile-based piezoelectric nanogenerators: A systematic review”. Nano Energy 2023 111 108414 10.1016/j.nanoen.2023.108414
    [Google Scholar]
  33. Hu J. Fan H. Wu S. Tang L. Qin L. Luo W. Characterization of temperature dependence of dielectric, elastic and piezoelectric properties of BaTiO3 ceramics. Ceram. Int. 2022 48 18 25741 25746 10.1016/j.ceramint.2022.05.245
    [Google Scholar]
  34. Pîrvu C.I. Sover A. Abrudeanu M. Participation of polymer materials in the structure of piezoelectric composites. Polymers 2024 16 24 3603 10.3390/polym16243603 39771453
    [Google Scholar]
  35. Xiong Y. Du M. Zhang F. Saba F. Shang C. Preparation and mechanical properties of titanium alloy matrix composites reinforced by Ti3AlC and TiC ceramic particulates. J. Alloys Compd. 2021 886 161216 10.1016/j.jallcom.2021.161216
    [Google Scholar]
  36. Li B. Polizos G. Manias E. "Interfacial effects on the dielectric properties of elastomer composites and nanocomposites". In: Dynamics of Composite Materials. Cham Springer International Publishing 2022 225 249 10.1007/978‑3‑030‑89723‑9_8
    [Google Scholar]
  37. Wang L. Xin L. Wang X. Ding Z. Zhou Y. Lu Y. Ashuri M. Chen H. Zhou Y. Enhancing stress dispersion through interfacial strategy in multidimensional spacer fabric reinforced polyurethane. ACS Appl. Polym. Mater. 2025 7 6 3504 3510 10.1021/acsapm.5c00169
    [Google Scholar]
  38. Raja T. Devarajan Y. Prakash J.U. Upadhye V.J. Singh L. Kannan S. Sustainable innovations: Mechanical and thermal stability in palm fiber-reinforced boron carbide epoxy composites. Results Eng. 2024 24 103214 10.1016/j.rineng.2024.103214
    [Google Scholar]
  39. Lee D.K. Hur O. Kim E. Kang B.H. Kang S.H. Min K. Park S.H. Unveiling unexpected mechanical softening/stiffening in carbon nanotube composites under cyclic deformation: Experiments and predictive modeling. Adv. Compos. Hybrid Mater. 2025 8 2 194 10.1007/s42114‑025‑01291‑4
    [Google Scholar]
  40. Li G. Chen X. Guo H. Liu L. Li S. Zhu Y. Wei Y. Insulation properties of polypropylene and silicone rubber modified by barium strontium titanate and interfacial charge accumulation properties. Compos. Sci. Technol. 2025 261 111037 10.1016/j.compscitech.2025.111037
    [Google Scholar]
  41. Sood A. Desseigne M. Dev A. Maurizi L. Kumar A. Millot N. Han S.S. A comprehensive review on barium titanate nanoparticles as a persuasive piezoelectric material for biomedical applications: Prospects and challenges. Small 2023 19 12 2206401 10.1002/smll.202206401 36585372
    [Google Scholar]
  42. Dutta B. Ray S.K. Characterization and transport properties of ceramic filler incorporated natural rubber composites. J. Appl. Polym. Sci. 2024 141 7 54966 10.1002/app.54966
    [Google Scholar]
  43. Lv H. Zhang S. Sun Q. Chen R. Zhang W.J. The dynamic models, control strategies and applications for magnetorheological damping systems: A systematic review. J. Vib Eng. Technol 2021 9 1 131 147 10.1007/s42417‑020‑00215‑4
    [Google Scholar]
  44. Zhang S. Wang T. Dong C. Liang X. Gao X. Song Y. Wang F. Fatigue damage evolution model of ceramic matrix composites structures based on hysteresis loss energy and life prediction at elevated temperatures. Appl. Compos. Mater. 2025 32 2 599 623 10.1007/s10443‑024‑10295‑0
    [Google Scholar]
  45. Wang S. Luo Z. Liang J. Hu J. Jiang N. He J. Li Q. Polymer nanocomposite dielectrics: Understanding the matrix/particle interface. ACS Nano 2022 16 9 13612 13656 10.1021/acsnano.2c07404 36107156
    [Google Scholar]
  46. Isaac C.W. Ezekwem C. A review of the crashworthiness performance of energy absorbing composite structure within the context of materials, manufacturing and maintenance for sustainability. Compos. Struct. 2021 257 113081 10.1016/j.compstruct.2020.113081
    [Google Scholar]
  47. Shahapurkar K. Compressive behavior of crump rubber reinforced epoxy composites. Polym. Compos. 2021 42 1 329 341 10.1002/pc.25828
    [Google Scholar]
  48. Aldegheishem A. AlDeeb M. Al-Ahdal K. Helmi M. Alsagob E.I. Influence of reinforcing agents on the mechanical properties of denture base resin: A systematic review. Polymers 2021 13 18 3083 10.3390/polym13183083 34577983
    [Google Scholar]
  49. Markandan K. Lai C.Q. Fabrication, properties and applications of polymer composites additively manufactured with filler alignment control: A review. Compos., Part B Eng. 2023 256 110661 10.1016/j.compositesb.2023.110661
    [Google Scholar]
  50. Pu Y. Ma Z. Liu L. Bai Y. Huang Y. Improvement on strength and toughness for CFRPs by construction of novel “soft-rigid” interface layer. Compos., Part B Eng. 2022 236 109846 10.1016/j.compositesb.2022.109846
    [Google Scholar]
  51. Huo S. Wang Y. Yao M. Zhang Z. Chen L. Gu H. Ouyang J. Zhou Y. Novel TiC-based composites with enhanced mechanical properties. J. Eur. Ceram. Soc. 2021 41 11 5466 5473 10.1016/j.jeurceramsoc.2021.05.008
    [Google Scholar]
  52. Ferreira P.M. Machado M.A. Vidal C. Carvalho M.S. Modelling electro-mechanical behaviour in piezoelectric composites: Current status and perspectives on homogenisation. Adv. Eng. Softw. 2024 193 103651 10.1016/j.advengsoft.2024.103651
    [Google Scholar]
  53. Liu S. Z. Guo W. T. Zhao X. H. Tang X. G. Sun Q. J. Self-powered sensing for health monitoring and robotics Soft Sci., vol. 5, no. 2, 2025. 2025 10.20517/ss.2024.65
    [Google Scholar]
  54. Zhong Y. Li Y. Xie Q. Duan Q. Song Y. Xia G. Xie J. Enhancing insulating properties of glass-fiber reinforced polymers using plasma fluorination-modified boron nitride nanosheets. Appl. Surf. Sci. 2025 681 161495 10.1016/j.apsusc.2024.161495
    [Google Scholar]
  55. Promsung R. Chuaybamrung A. Georgopoulou A. Clemens F. Nakaramontri Y. Johns J. Lehman N. Songtipya L. Kalkornsurapranee E. Rapid formation of carbon nanotubes–natural rubber films cured with glutaraldehyde for reducing percolation threshold concentration. Discov Nano 2024 19 1 30 10.1186/s11671‑024‑03970‑5 38372836
    [Google Scholar]
  56. Liu Y. Tao J. Liu Y. Hu Y. Bao R. Li F. Fang D. Li C. Yi J. Regulating the mechanical properties and electrical conductivity of CNTs/Cu composites by tailoring nano-sized TiC on the surface of intact CNTs. Carbon 2021 185 428 441 10.1016/j.carbon.2021.09.040
    [Google Scholar]
  57. Wang H. Li Z. Shi S. Fan X. Sun Z. Liu J. Li P. Zhai J. Pan Z. Harnessing piezoelectric and flexoelectric synergies in one-dimensional heterostructure nanofibers for nano-energy harvesting and self-powered sensors. Chem. Eng. J. 2023 474 145470 10.1016/j.cej.2023.145470
    [Google Scholar]
  58. Liu S. Feng Y. Wang Y. Zhang S. Yu M. Wang X. Zhou C. Interfacial enhancement by constructing a “flexible-rigid” structure between high-modulus fillers and low-modulus matrix in carbon fiber/silicone rubber composites. Prog. Org. Coat. 2024 191 108468 10.1016/j.porgcoat.2024.108468
    [Google Scholar]
  59. Osman A. Elhakeem A. Kaytbay S. Ahmed A. A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Adv. Compos. Hybrid Mater. 2022 5 2 547 605 10.1007/s42114‑022‑00423‑4
    [Google Scholar]
  60. Ren Z. Shi Z. Tang Q. Xia S. Sun L. Fan R. Cui H. Wang H. Core‐shell TiO2@ Au nanofibers derived from a unique physical coating strategy for excellent capacitive energy storage nanocomposites. Adv. Funct. Mater. 2024 34 36 2401907 10.1002/adfm.202401907
    [Google Scholar]
  61. Guan X. Lei Z. Xue R. Li Z. Li P. David M. Yi J. Jia B. Huang H. Li X. Ma T. Polarization: A universal driving force for energy, environment, and electronics. Adv. Mater. 2025 37 1 2413525 10.1002/adma.202413525 39551991
    [Google Scholar]
  62. Su J. He K. Li Y. Tu J. Chen X. Soft materials and devices enabling sensorimotor functions in soft robots. Chem. Rev. 2025 125 12 5848 5977 10.1021/acs.chemrev.4c00906 40163535
    [Google Scholar]
  63. Xu T. Wang L. Gao L. Li F. Hu B. Li B. Shen H. Liu Z. Hu B.L. Intrinsic elastomer with remarkable dielectric constant via elastification of relaxor ferroelectric polymer. Adv. Mater. 2024 36 31 2404001 10.1002/adma.202404001 38838735
    [Google Scholar]
  64. Bouad V. Girardot M. Ladmiral V. Barrau S. Piezoelectric fluorinated polymer composites: A review on coupling agents at the filler/matrix interface. Polym. Compos. 2024 45 5 3861 3882 10.1002/pc.28064
    [Google Scholar]
  65. Zhou W. Cao G. Yuan M. Zhong S. Wang Y. Liu X. Cao D. Peng W. Liu J. Wang G. Dang Z.M. Li B. Core–shell engineering of conductive fillers toward enhanced dielectric properties: A universal polarization mechanism in polymer conductor composites. Adv. Mater. 2023 35 2 2207829 10.1002/adma.202207829 36349800
    [Google Scholar]
  66. Zhou X. Liu S. Siddique A. Min C. Pei X. Liu S. Yin Y. Song K. Xu Z. Construction of nanocomposite interphase with controllable thickness to relieve stress concentration and boost stress transfer from carbon fiber/epoxy resin interface. Chem. Eng. J. 2025 505 159542 10.1016/j.cej.2025.159542
    [Google Scholar]
  67. Li L. Cheng J. Cheng Y. Han T. Liu Y. Zhou Y. Han Z. Zhao G. Zhao Y. Xiong C. Dong L. Wang Q. Significantly enhancing the dielectric constant and breakdown strength of linear dielectric polymers by utilizing ultralow loadings of nanofillers. J. Mater. Chem. A Mater. Energy Sustain. 2021 9 40 23028 23036 10.1039/D1TA05408B
    [Google Scholar]
  68. Wakshume D.G. Płaczek M.Ł. Optimizing piezoelectric energy harvesting from mechanical vibration for electrical efficiency: A comprehensive review. Electronics 2024 13 5 987 10.3390/electronics13050987
    [Google Scholar]
  69. Zhang B. Chen X. Wu W. Khesro A. Liu P. Mao M. Song K. Sun R. Wang D. Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer. Chem. Eng. J. 2022 446 136926 10.1016/j.cej.2022.136926
    [Google Scholar]
  70. Afshar H. Kamran F. Shahi F. Recent progress in energy harvesting technologies for self‐powered wearable devices: The significance of polymers. Polym. Adv. Technol. 2025 36 4 70187 10.1002/pat.70187
    [Google Scholar]
  71. Afolabi O.A. Ndou N. Synergy of hybrid fillers for emerging composite and nanocomposite materials—A review. Polymers 2024 16 13 1907 10.3390/polym16131907 39000762
    [Google Scholar]
  72. Chen Z. Chen F. Tu Z. Jiang Q. Wang Y. Liu X. Sheng S. Microstructure-property relationships in piezoelectric-polymer composites: A review. J. Polym. Res. 2025 32 2 41 10.1007/s10965‑025‑04264‑9
    [Google Scholar]
  73. Aabid A. Hrairi M. Mohamed Ali S.J. Ibrahim Y.E. Review of piezoelectric actuator applications in damaged structures: Challenges and opportunities. ACS Omega 2023 8 3 2844 2860 10.1021/acsomega.2c06573 36713708
    [Google Scholar]
  74. Wang Z.H. Liu B.W. Zeng F.R. Lin X.C. Zhang J.Y. Wang X.L. Wang Y.Z. Zhao H.B. Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance. Sci. Adv. 2022 8 50 eadd8527 10.1126/sciadv.add8527 36516253
    [Google Scholar]
  75. Mazitova A.K. Zaripov I.I. Aminova G.K. Ovod M.V. Suntsova N.L. Fillers for polymer composite materials. Nanotechnologies Constr. 2022 14 4 294 299 10.15828/2075‑8545‑2022‑14‑4‑294‑299
    [Google Scholar]
  76. Qiu J. Li Y. Xu F. Hu X. Xiao Y. Strain induced crack initiation and the subsequent crack propagation of fiber-reinforced resin composites. Compos., Part A Appl. Sci. Manuf. 2022 155 106836 10.1016/j.compositesa.2022.106836
    [Google Scholar]
  77. Won D. Bang J. Choi S.H. Pyun K.R. Jeong S. Lee Y. Ko S.H. Transparent electronics for wearable electronics application. Chem. Rev. 2023 123 16 9982 10078 10.1021/acs.chemrev.3c00139 37542724
    [Google Scholar]
  78. He X. Ou D. Wu S. Luo Y. Ma Y. Sun J. A mini review on factors affecting network in thermally enhanced polymer composites: Filler content, shape, size, and tailoring methods. Adv. Compos. Hybrid Mater. 2022 5 1 21 38 10.1007/s42114‑021‑00321‑1
    [Google Scholar]
  79. Zhang C. Zhang G. Xu J. Shi X.P. Wang X. Review of curing deformation control methods for carbon fiber reinforced resin composites. Polym. Compos. 2022 43 6 3350 3370 10.1002/pc.26648
    [Google Scholar]
  80. Aabid A. Parveez B. Raheman M.A. Ibrahim Y.E. Anjum A. Hrairi M. A review of piezoelectric material-based structural control and health monitoring techniques for engineering structures: Challenges and opportunities. Actuators 2021 10 101 10.3390/act10050101
    [Google Scholar]
  81. Azam S. Kumar V. Park S.S. Novel fillers for wearable technology: Impact of titanium carbide and thinners on room temperature vulcanized silicone rubber composites. Colloids Surf. A Physicochem. Eng. Asp. 2024 703 135308 10.1016/j.colsurfa.2024.135308
    [Google Scholar]
  82. Hu Q. Zhang X. Zhang J. Lu G. Tse K.M. A review on energy absorption performance of auxetic composites with fillings. Thin-walled Struct. 2024 205 112348 10.1016/j.tws.2024.112348
    [Google Scholar]
  83. Deng C. Zhang Y. Yang D. Zhang H. Zhu M. Recent progress on barium titanate‐based ferroelectrics for sensor applications. Advanced Sensor Research 2024 3 6 2300168 10.1002/adsr.202300168
    [Google Scholar]
  84. Samal S. Blanco I. Investigation of dispersion, interfacial adhesion of isotropic and anisotropic filler in polymer composite. Appl. Sci. 2021 11 18 8561 10.3390/app11188561
    [Google Scholar]
  85. Alimardani M. Razzaghi-Kashani M. Ghoreishy M.H.R. Prediction of mechanical and fracture properties of rubber composites by microstructural modeling of polymer-filler interfacial effects. Mater. Des. 2017 115 348 354 10.1016/j.matdes.2016.11.061
    [Google Scholar]
  86. Feng J. Safaei B. Qin Z. Chu F. Nature-inspired energy dissipation sandwich composites reinforced with high-friction graphene. Compos. Sci. Technol. 2023 233 109925 10.1016/j.compscitech.2023.109925
    [Google Scholar]
  87. Felix Sahayaraj A. Muthukrishnan M. Ramesh M. Influence of Tamarindus indica seed nano‐powder on properties of Luffa cylindrica (L.) fruit waste fiber reinforced polymer composites. Polym. Compos. 2022 43 9 6442 6452 10.1002/pc.26957
    [Google Scholar]
  88. James J. Annamalai A.R. Muthuchamy A. Jen C.P. Effect of wettability and uniform distribution of reinforcement particle on mechanical property (tensile) in aluminum metal matrix composite—A review. Nanomaterials 2021 11 9 2230 10.3390/nano11092230 34578547
    [Google Scholar]
/content/journals/cset/10.2174/0130506115412171250923211707
Loading
/content/journals/cset/10.2174/0130506115412171250923211707
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test