Skip to content
2000
image of Growth, Distribution and Quality of Gastrodia Elata: Combined Effects of Environmental Factors, Soil Microorganisms, Symbiotic Fungi and Processing Methods

Abstract

Gastrodia elata Blume. ()—a heterotrophic orchid with high medicinal value—faces sustainability challenges due to its ecological specificity. This review highlights critical factors governing its cultivation: optimal growth occurs at 20–25°C, 60-80% humidity, and 1,400–1,800 m altitude, where temperature-humidity gradients shape biomass and bioactive compound synthesis. Genetic diversity is driven by environmental heterogeneity, with high-altitude populations adapting to climatic stress, while lowland cultivation risks genetic erosion. Soil microbiomes, particularly symbiotic (, enable nutrient acquisition but degrade under monoculture, necessitating microbial diversity restoration organic amendments. Post-harvest processing significantly impacts medicinal quality: steaming and Ultra-High-Pressure (UHP) methods preserve neuroprotective gastrodin and parishins, whereas sulfur fumigation introduces toxic residues. To ensure sustainability, we propose integrating climate-resilient breeding, microbiome engineering, and standardized processing. These strategies address environmental, genetic, and technological bottlenecks, positioning as a sustainable resource for global medicinal applications.

Loading

Article metrics loading...

/content/journals/cset/10.2174/0122102981383897251016093520
2025-11-13
2025-12-28
Loading full text...

Full text loading...

References

  1. The Pharmacopeia of the People's Republic of China 2020 Edition. 2020 Available from:https://store.usp.org/product/3124465?srsltid=AfmBOopul77Bp8oYVJ2JjGlcj0CIonVf4y9Dp93X575erO7C9rceqW-q
  2. Su Z Yang Y Chen S The processing methods, phytochemistry and pharmacology of Gastrodia elata Bl.: A comprehensive review. J. Ethnopharmacol. 2023 314 116467 10.1016/j.jep.2023.116467
    [Google Scholar]
  3. Han Y. Zhang J. Chen B.Q. Research progress on classification of chemical constituents from Gastrodia elata and their pharmacological effects. Chin. Tradit. Herbal Drugs 2022 53 17 5553 5564 10.7501/j.issn.0253‑2670
    [Google Scholar]
  4. Yang L. Qin S.H. Zi C.T. Research progress of Gastrodia elata Blume polysaccharides: A review of chemical structures and biological activities. Front Chem. 2024 12 1395222 10.3389/fchem.2024.1395222 39015542
    [Google Scholar]
  5. Shang Y.J. Zhang Q. Han Y.B. Pharmacological effects of chemical components of Gastrodia rhizoma and its product development. Acta. Chinese Med. Pharm. 2024 52 8 115 120 10.19664/j.cnki.1002‑2392.240169
    [Google Scholar]
  6. Chen H. Tan C. Li H. Discrimination between wild-grown and cultivated Gastrodia elata by near-infrared spectroscopy and chemometrics. Vib Spectrosc. 2021 113 103203 10.1016/j.vibspec.2020.103203
    [Google Scholar]
  7. Duan H. Yan W.J. Research progress on bioactive components in Gastrodia elata Bl. and their biological activity. Shipin Kexue 2023 44 17 332 340 10.7506/spkx1002‑6630‑20220914‑130
    [Google Scholar]
  8. Wang X. Wen M. He X. Research advances on post-harvest quality, pharmacological action and preservation technology of fresh Gastrodia elata. Baoxian Yu Jiagong 2024 24 7 110 116 10.3969/j.issn.1009‑6221.2024.07.017
    [Google Scholar]
  9. Zheng L. Weng L. Shou D. TianmaGouteng yin attenuates ischemic stroke-induced brain injury by inhibiting the AGE/RAGE pathway. Biocell 2023 47 6 1345 1352 10.32604/biocell.2023.028866
    [Google Scholar]
  10. Xu F. Cai W. Ma T. Zeng H. Kuang X. Chen W. Liu B. Traditional uses, phytochemistry, pharmacology, quality control, industrial application, pharmacokinetics and network pharmacology of Pogostemon cablin: A Comprehensive Review. Am. J. Chin. Med. 2022 50 3 691 721 10.1142/S0192415X22500288 35282804
    [Google Scholar]
  11. Li K.H. Hu Y.K. Wang X. Fan Y.G. Wu-Maier W.S. [Relationships between aboveground biomass and environmental factors along an altitude gradient of alpine grassland Ying Yong Sheng Tai Xue Bao 2007 18 9 2019 2024 10.1360/yc‑007‑1324 18062306
    [Google Scholar]
  12. Fan Y. Tian M. Hu D. Xiong Y. Exploring the biocultural nexus of Gastrodia elata in Zhaotong: A pathway to ecological conservation and economic growth. Biology (Basel) 2025 14 7 846 10.3390/biology14070846 40723404
    [Google Scholar]
  13. Xie YK Li XY Chen C Effects of steam and water blanching on drying characteristics, water distribution, microstructure, and bioactive components of gastrodia elata. Plants 2023 12 6 1372 10.3390/plants12061372
    [Google Scholar]
  14. Wang Q.Y. Guo S.X. Growth characteristics of Gastrodia elata and its application in cultivation. Zhongguo Zhongyao Zazhi 2001 26 5 253 10.3321/j.issn:1001‑5302.2001.05.027
    [Google Scholar]
  15. Zhang Y.J. Liang J.Y. Gastrodia elata Bl. var. obovata, a new variety of the Orchidaceae from Shaanxi, China. Xibei Zhiwu Xuebao 2010 30 6 1277 1278 10.3724/SP.J.1231.2010.06705
    [Google Scholar]
  16. Li C. Shen T. Liu H. Wang Y. Simulation of suitable habitats and geographic tracing based on medicinal and edible plants with Gastrodia elata Bl. as an example. Glob. Ecol. Conserv. 2024 49 e02790 10.1016/j.gecco.2023.e02790
    [Google Scholar]
  17. Zeng Y. Cai C.T. Liu G.Z. Yield and quality variation in two varieties of Gastrodia elata blume in bionic wild cultivation at Different altitudes. Zhiwu Kexue Xuebao 2011 29 5 637 643 10.3724/SP.J.1011.2011.00093
    [Google Scholar]
  18. Ferreira A. Vieira G. Ramos M. Nieuwendam A. Ground temperature and permafrost distribution in Hurd Peninsula (Livingston Island, Maritime Antarctic): An assessment using freezing indexes and TTOP modelling. Catena 2017 149 560 571 10.1016/j.catena.2016.08.027
    [Google Scholar]
  19. Ali S. Kim W.C. Plant growth promotion under water: Decrease of waterlogging-induced acc and ethylene levels by ACC deaminase-producing bacteria. Front Microbiol. 2018 9 1096 10.3389/fmicb.2018.01096 29887854
    [Google Scholar]
  20. Wang Y. Li Y. Zhang J. Capturing the geoherbalism differentiation in wild Paris polyphylla var. yunnanensis raw materials through the application of multispectral information fusion combined with chemometrics. ACS omega 2019 4 20 18820 18832 10.1021/acsomega.9b02818 31737844
    [Google Scholar]
  21. Guo Y.B. Mo K. Wang G.R. Analysis of prediction and spatial-temporal changes of suitable distribution of Gastrodiae Rhizoma under future climate conditions. Zhongguo Zhongyiyao Xinxi Zazhi 2022 7 7 1 7 10.19879/j.cnki.1005‑5304.202111032
    [Google Scholar]
  22. Wang Y. Liu Y. Chen P. Song J. Fu B. Interannual precipitation variability dominates the growth of alpine grassland above-ground biomass at high elevations on the Tibetan Plateau. Sci. Total Environ. 2024 931 172745 10.1016/j.scitotenv.2024.172745 38677425
    [Google Scholar]
  23. Hao J.L. Zhao J.C. Zhao M.Y. Assessment of the cultivation suitability and suitable regions of Gastrodia elata under climate change in China. Zuo Wu Xue Bao 2024 50 4 1004 1014 10.3724/SP.J.1006.2024.34098
    [Google Scholar]
  24. Cho K.T. Lee S.I. Jang R.H. Park J-H. You Y-H. Effects of Elevated CO2 Concentration and Increased Temperature on the Growth of Gastrodia elata Blume, Parasitic Medicinal Plant. Korean J. Environ. Ecol. 2017 31 6 557 563 10.13047/KJEE.2017.31.6.557
    [Google Scholar]
  25. Liu J.M. Tang Z.J. Kang D. Studies on the optimal harvest period of zhaotong’s gastrodiae rhizoma (Gastrodia elata Bl. f. glauca S. Chow). Zhongguo Xiandai Zhongyao 2016 18 2 189 192 10.13313/j.issn.1673‑4890.2016.2.015
    [Google Scholar]
  26. Wu Z. Xu X. Zhang J. Wiegleb G. Hou H. Influence of environmental factors on the genetic variation of the aquatic macrophyte Ranunculus subrigidus on the Qinghai-Tibetan Plateau. BMC Evol. Biol. 2019 19 1 228 10.1186/s12862‑019‑1559‑0 31856717
    [Google Scholar]
  27. Wang Y. Shahid M.Q. Genome sequencing and resequencing identified three horizontal gene transfers and uncovered the genetic mechanism on the intraspecies adaptive evolution of Gastrodia elata Blume. Front Plant. Sci. 2023 13 1035157 10.3389/fpls.2022.1035157 36684780
    [Google Scholar]
  28. Yuan Q.S. Wang H. Jiang W.K. Ou X.H. Xu J. Wang X.A. Wang L. Ou Y.Y. Zhou T. Dissection of seed development of Gastrodia elata at different temperatures. Zhongguo Zhongyao Zazhi 2020 45 3 485 490 10.19540/j.cnki.cjcmm.20191204.109 32237504
    [Google Scholar]
  29. Cai J. Muhammad I. Chen B. Xu P. Li Y. Xu H. Li K. Whole genome sequencing and analysis of Armillaria gallica Jzi34 symbiotic with Gastrodia elata. BMC Genomics 2023 24 1 275 10.1186/s12864‑023‑09384‑4 37217849
    [Google Scholar]
  30. Xu Z. Shi Y. Zhang L. Qian H. Chen X. Su J. Chen H. Dong J. Cong K. Ji P. Genome-wide assessment of genetic variation and differentiation for Gastrodia elata germplasm based on SLAF sequencing. Genet. Resour. Crop Evol. 2023 70 7 1971 1984 10.1007/s10722‑023‑01548‑1
    [Google Scholar]
  31. Silva-Arias G.A. Caballero-Villalobos L. Giudicelli G.C. Freitas L.B. Landscape and climatic features drive genetic differentiation processes in a South American coastal plant. BMC Ecol. Evol. 2021 21 1 196 10.1186/s12862‑021‑01916‑4 34702161
    [Google Scholar]
  32. Zhang Z. Li X. Zhang Y. Yin N. Wu G. Wei G. Zhou Y. Chen S. Dong L. Ecological factors impacting genetic characteristics and metabolite accumulations of Gastrodia elata. Chin. Herb. Med. 2025 17 3 562 574 10.1016/j.chmed.2024.09.002 40734917
    [Google Scholar]
  33. Chrismas N.A. Anesio A.M. Sánchez-Baracaldo P. Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Front. Microbiol. 2015 6 1010 10.3389/fmicb.2015.01070
    [Google Scholar]
  34. Gong L. Liu D. Jiang L. Li X. Lv J. Distribution characteristics of climate potential productivity of soybean in frigid region and its response to climate change. Environ. Sci. Pollut. Res. Int. 2022 29 5 7452 7464 10.1007/s11356‑021‑15879‑y 34476694
    [Google Scholar]
  35. Chen Y.Y. Bao Z.X. Qu Y. Li Z-Z. Genetic variation in cultivated populations of Gastrodia elata, a medicinal plant from central China analyzed by microsatellites. Genet. Resour. Crop Evol. 2014 61 8 1523 1532 10.1007/s10722‑014‑0127‑0
    [Google Scholar]
  36. Chai K. Liu H.C. Li J.L. Genetic diversity of Gastrodia elata based on SRAP analysis. Chin. Tradit. Herbal Drugs 2014 45 20 2974 2981 10.7501/j.issn.0253‑2670.2014.20.020
    [Google Scholar]
  37. Jiang X. Dai J. Huang Y. Zhao D. Yin Y. Lin Q. Hou M. Jin H. Comprehensive quantitative evaluation and mechanism analysis of influencing factors on yield and quality of cultivated Gastrodia elata Blume. Sci. Rep. 2025 15 1 18457 10.1038/s41598‑025‑99706‑1 40425731
    [Google Scholar]
  38. Zhang C.G. Guo Y.B. Wang S.T. Study on the relationship between ecological environmental factors and the content of quality related components of Gastrodia elata. Guangxi Sciences 2023 30 6 1190 1203 10.13656/j.cnki.gxkx.20240125.018
    [Google Scholar]
  39. Li F. Kong Q. Zhang Q. Wang H. Wang L. Luo T. Spent mushroom substrates affect soil humus composition, microbial biomass and functional diversity in paddy fields. Appl. Soil Ecol. 2020 149 1192 103489 10.1016/j.apsoil.2019.103489
    [Google Scholar]
  40. Wang Y Xu J Yuan Q Composition and diversity of soil microbial communities change by introducing Phallus impudicus into a Gastrodia elata Bl.-based soil. BMC Microbiol. 2024 24 1 204 10.1186/s12866‑024‑03330‑4
    [Google Scholar]
  41. Wang L. Zhang J.Y. Yuan Y. Liu T.R. Effects of soil relative water content on growth characteristics of Armillaria spp. and seedling production of Gastrodia elata f. glauca. Zhongguo Zhongyao Zazhi 2024 49 12 3178 3184 10.19540/j.cnki.cjcmm.20240215.101 39041078
    [Google Scholar]
  42. Huang J. Hartemink A.E. Soil and environmental issues in sandy soils. Earth Sci. Rev. 2020 208 3 103295 10.1016/j.earscirev.2020.103295
    [Google Scholar]
  43. Yang R Liu K Harrison MT How does crop rotation influence soil moisture, mineral nitrogen, and nitrogen use efficiency? Front Plant. Sci. 2022 13 854731 10.3389/fpls.2022.854731
    [Google Scholar]
  44. Zhou Y. Liu J.H. Tang C.L. Research progress on soil characteristics of Gastrodia elata growth. Anhui Agr. Sci. Bulletin 2025 31 10 57 60 10.16377/j.cnki.issn1007‑7731.2025.10.014
    [Google Scholar]
  45. Shi Z.W. Ma C.J. Kang C.Z. Wang L. Zhang Z.H. Chen J.F. Zhang X.B. Liu D.H. Ecological suitability regionalization for Gastrodia elata in Zhaotong based on Maxent and ArcGIS. Zhongguo Zhongyao Zazhi 2016 41 17 3155 3163 10.4268/cjcmm20161707 28920364
    [Google Scholar]
  46. Gan H. Li X. Wang Y. Lü P. Ji N. Yao H. Li S. Guo L. Plants play stronger effects on soil fungal than bacterial communities and co-occurrence network structures in a subtropical tree diversity experiment. Microbiol. Spectr. 2022 10 3 00134 e22 10.1128/spectrum.00134‑22 35475656
    [Google Scholar]
  47. Hardoim P.R. van Overbeek L.S. Berg G. Pirttilä A.M. Compant S. Campisano A. Döring M. Sessitsch A. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015 79 3 293 320 10.1128/MMBR.00050‑14 26136581
    [Google Scholar]
  48. Wang Y. Jiao P. Guo W. Du D. Hu Y. Tan X. Liu X. Changes in bulk and rhizosphere soil microbial diversity and composition along an age gradient of Chinese fir (Cunninghamia lanceolate) plantations in subtropical China. Front. Microbiol. 2022 12 777862 10.3389/fmicb.2021.777862 35281312
    [Google Scholar]
  49. Xu J. Ou X.H. Jiang W.K. Yuan Q.S. Wang Y.H. Yang J. Liu D.H. Wang X. Zhang G.W. Pan C. Zhou T. Effect of Gastrodiae elata-Phallus impudicus sequential planting pattern on soil microbial community structure Zhongguo Zhongyao Zazhi 2020 45 3 463 471 10.19540/j.cnki.cjcmm.20191204.106 32237501
    [Google Scholar]
  50. Liu J.J. Yang X.Q. Li Z.Y. Miao J.Y. Li S.B. Zhang W.P. Lin Y.C. Lin L.B. The role of symbiotic fungi in the life cycle of Gastrodia elata Blume (Orchidaceae): A comprehensive review. Front Plant. Sci. 2024 14 1309038 10.3389/fpls.2023.1309038 38264031
    [Google Scholar]
  51. Zhu J F. Liu B. Xu Q. Dynamic change patterns of sevenactive components of tianma (Gastrodia elata) at different developmental stages and confirmation of quality difference markers.chinese archives of traditional chinese medicine 2024 42 2 197 203I0035 10.13193/j.issn.1673‑7717.2024.02.037
  52. Xie X. Shi R. Yan X. Zhang A. Wang Y. Jiao J. Yu Y. Horowitz A.R. Lu J. He X. Changes in soil chemistry and microbial communities in rhizospheres of planted Gastrodia elata on a barren slope and under a forest. Forests 2024 15 2 331 331 10.3390/f15020331
    [Google Scholar]
  53. Chen J. Liu H-G. Chang P. Yuan Y. Dai Y-C. Insight into the Gastrodia elata microbiome and its relationship with secondary metabolites. Ind. Crops Prod 2025 223 120248 10.1016/j.indcrop.2024.120248
    [Google Scholar]
  54. Liu T. Li C.M. Han Y.L. Chiang T.Y. Chiang Y.C. Sung H.M. Highly diversified fungi are associated with the achlorophyllous orchid Gastrodia flavilabella. BMC Genomics 2015 16 1 185 10.1186/s12864‑015‑1422‑7 25886817
    [Google Scholar]
  55. Chen L. Wang Y.C. Qin L.Y. He H.Y. Yu X.L. Yang M.Z. Zhang H.B. Dynamics of fungal communities during Gastrodia elata growth. BMC Microbiol. 2019 19 1 158 158 10.1186/s12866‑019‑1501‑z 31291888
    [Google Scholar]
  56. Yuan Q.S. Xu J. Jiang W. Ou X. Wang H. Guo L. Xiao C. Wang Y. Wang X. Kang C. Zhou T. Insight to shape of soil microbiome during the ternary cropping system of Gastradia elata. BMC Microbiol. 2020 20 1 108 10.1186/s12866‑020‑01790‑y 32370761
    [Google Scholar]
  57. Zheng H. Zhang P. Qin J. Guo J. Deng J. High-throughput sequencing-based analysis of the composition and diversity of endophytic bacteria community in tubers of Gastrodia elata f.glauca. Front. Microbiol. 2023 13 1092552 10.3389/fmicb.2022.1092552 36733772
    [Google Scholar]
  58. Wang Y. Xu J. Yuan Q. Guo L. Xiao C. Yang C. Li L. Jiang W. Zhou T. Effect of symbiotic fungi-Armillaria gallica on the yield of Gastrodia elata Bl. and insight into the response of soil microbial community. Front Microbiol. 2023 14 1233555 10.3389/fmicb.2023.1233555 37744896
    [Google Scholar]
  59. Yu E. Gao Y. Li Y. Zang P. Zhao Y. He Z. An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification and evaluation of Armillaria. BMC Plant Biol. 2022 22 1 621 10.1186/s12870‑022‑04007‑8 36581798
    [Google Scholar]
  60. Zeng Y.J. Wang Y.H. Tao T. Response of Armillaria borealis rhizomorph growth and development to environmental oxygen and soil humidity. Junwu Xuebao 2022 41 5 739 748 10.13346/j.mycosystema.210446
    [Google Scholar]
  61. Zhang J.Q. Zhou T. Jiang W.K. Guo L.P. Zhang G.W. Wen Y.C. Liu P. Wang X. Pan C. Xiao C.H. Analysis of ecological recycling modes for Gastrodia elata cultivation. Zhongguo Zhongyao Zazhi 2020 45 9 2036 2041 10.19540/j.cnki.cjcmm.20200302.109 32495550
    [Google Scholar]
  62. Duan M. Yang C. Bao L. Han D. He H. Zhang Y. Dong L. Yang S. Unraveling the key mechanisms of Gastrodia elata continuous cropping obstacles: soil bacteria Massilia, Burkholderia-Caballeronia-Paraburkholderia, and Dyella along with soil metabolites 4-hydroxy-benzenemethanol and N-(2-butyl)-N-octadecyl-, ethyl ester as crucial indicators. Front. Microbiol. 2024 15 1478330 10.3389/fmicb.2024.1478330 39529674
    [Google Scholar]
  63. Cai Y. Zheng Y. Bodelier P.L.E. Conrad R. Jia Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 2016 7 1 11728 10.1038/ncomms11728 27248847
    [Google Scholar]
  64. van der Heijden M.G.A. Martin F.M. Selosse M.A. Sanders I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015 205 4 1406 1423 10.1111/nph.13288 25639293
    [Google Scholar]
  65. Yang Y. Liang Y. Han X. Chiu T.Y. Ghosh A. Chen H. Tang M. The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci. Rep. 2016 6 1 20469 10.1038/srep20469 26842958
    [Google Scholar]
  66. Xu Y. Lei Y. Su Z. Zhao M. Zhang J. Shen G. Wang L. Li J. Qi J. Wu J. A chromosome‐scale Gastrodia elata genome and large‐scale comparative genomic analysis indicate convergent evolution by gene loss in mycoheterotrophic and parasitic plants. Plant J. 2021 108 6 1609 1623 10.1111/tpj.15528 34647389
    [Google Scholar]
  67. Zhang D.Z. Mei L. He H.Y. Study of factors for cultivating the orchid species Gastrodia elata, a traditional. Chinese medicine 2014 36 002 254 260 10.7677/ynzwyj201413100
    [Google Scholar]
  68. Cheng R. Liu T.R. Li Y.H. Zhou J.H. Zhao Y.Y. Yuan Y. [Screening of an Armillaria gallica strain for Gastrodia elata cultivation Zhongguo Zhongyao Zazhi 2023 48 2 374 381 10.19540/j.cnki.cjcmm.20221014.101 36725227
    [Google Scholar]
  69. Zhan M. Tian M. Wang W. Li G. Lu X. Cai G. Yang H. Du G. Huang L. Draft genomic sequence of Armillaria gallica 012m: insights into its symbiotic relationship with Gastrodia elata. Braz. J. Microbiol. 2020 51 4 1539 1552 10.1007/s42770‑020‑00317‑x 32572836
    [Google Scholar]
  70. Khanh N.V. Dutta S. Kim C.S. Lee Y.H. Features of bacterial and fungal communities in the rhizosphere of Gastrodia elata cultivated in greenhouse for early harvest. Front. Microbiol. 2024 15 1389907 10.3389/fmicb.2024.1389907 38721597
    [Google Scholar]
  71. Fu Y. Xu Q. Zhang J. Kang C. Yang C. Guo L. Zhang C. Zhou T. Xiao C. Identifying the quality markers and optimizing the processing of Gastrodiae rhizoma to treat brain diseases. Front. Pharmacol. 2024 15 1396825 10.3389/fphar.2024.1396825 39568583
    [Google Scholar]
  72. Yang L.L. Duan G.Y. Huang L.H. Effect of steaming, boiling and fermentation treatments on the quality and flavour of Gastrodia elata. Shipin Yu Fajiao Gongye 2024 11 301 307 10.13995/j.cnki.11‑1802/ts.036531
    [Google Scholar]
  73. Su Z. Yang Y. Xu H. Tang Z. Sun M. Zhu Y. Xue T. He Y. Wang H. Yang H. Chen S. Study on the chemical composition and in vitro enzyme inhibition of different processed products of Gastrodia elata. J. Food Compos. Anal. 2024 130 106148 10.1016/j.jfca.2024.106148
    [Google Scholar]
  74. Liu Y. Ran R. Huang G. Study on the best initial processing technology of Gastrodia elata. Pharm. Chem. J. 2018 52 3 224 230 10.1007/s11094‑018‑1795‑4
    [Google Scholar]
  75. Tian Z.J. Effects of different processing methods and steamed time on the quality of Zhaotong Gastrodiae rhizoma. Xi Nan Nong Ye Xue Bao 2016 29 7 1701 1706 10.16213/j.cnki.8cj
    [Google Scholar]
  76. Dong H. Liu S. Wang X. Li M. Perumpuli Arachchige B.N. Wang X. Effect of ultra-high-pressure treatment on Gastrodia elata Blume: drying characteristics, components, and neuroprotective activity. Foods 2024 13 22 3534 10.3390/foods13223534 39593950
    [Google Scholar]
  77. Li S. He X. Zhang X. Kong K.W. Xie J. Sun J. Wang Z. Integration of volatile and non-volatile metabolite profile, and in vitro digestion reveals the differences between different preparation methods on physico-chemical and biological properties of Gastrodia elata. Food Chem. 2025 463 Pt 1 141177 10.1016/j.foodchem.2024.141177 39260170
    [Google Scholar]
  78. Zhang J. Wang B. Zhang Y. Wu Y. Li M. Gao T. Lu T. Bian Z. Su L. E-eye and FT-NIR combined with multivariate algorithms to rapidly evaluate the dynamic changes in the quality of Gastrodia elata during steaming process. Food Chem. 2024 439 138148 10.1016/j.foodchem.2023.138148 38064826
    [Google Scholar]
  79. Li Y. Liu X.Q. Liu S.S. Liu D. Wang X. Wang Z.M. Transformation mechanisms of chemical ingredients in steaming process of Gastrodia elata Blume. Molecules 2019 24 17 3159 10.3390/molecules24173159 31480235
    [Google Scholar]
  80. Ai Z Lin Y Xie Y Effect of high-humidity hot air impingement steaming on cistanche deserticola slices: Drying characteristics, weight loss, microstructure, color, and active components. Front Nutr. 2022 9 824822 10.3389/fnut.2022.824822
    [Google Scholar]
  81. Huang J. Lai L. Su Y. Chen J. Li P. Du B. Probiotic-fermented ginger-processed Gastrodia elata BI. Ameliorates AlCl3-induced cognitive dysfunction in an Alzheimer’s disease rat model by regulating the gut microbiota and CREB/BDNF pathway. Food Res. Int. 2025 207 116087 10.1016/j.foodres.2025.116087 40086974
    [Google Scholar]
  82. Kang C.Z. Yang W.Z. Zhou L. Jiang J.Y. Lv C.G. Wang S. Zhou T. Yang Y. Huang L.Q. Guo L.P. [Quality changes in Gastrodia Rhizoma of different origins and forms before and after sulfur fumigation Zhongguo Zhongyao Zazhi 2018 43 2 254 260 10.19540/j.cnki.cjcmm.20171023.009 29552841
    [Google Scholar]
  83. Ning Z.W. Mao C.Q. Lu T.L. Ji D. Liu J. Ji L. Yang H. Wang F.Q. Effects of different processing methods on effective components and sulfur dioxide residue in Gastrodiae Rhizoma. Zhongguo Zhongyao Zazhi 2014 39 15 2814 2818 10.4268/cjcmm20141505 25423814
    [Google Scholar]
  84. Guan J. Chen Z. Guo L. Cui X. Xu T. Wan F. Zhou T. Wang C. Yang Y. Evaluate how steaming and sulfur fumigation change the microstructure, physicochemical properties and in vitro digestibility of Gastrodia elata Bl. starch. Front. Nutr. 2023 9 1087453 10.3389/fnut.2022.1087453 36687729
    [Google Scholar]
  85. Hu J Feng Y Zhong H Impact of climate change on the geographical distribution and niche dynamics of Gastrodia elata. PeerJ 2023 11 e15741 10.7717/peerj.15741
    [Google Scholar]
  86. Costantini E.A.C. Mocali S. Soil health, soil genetic horizons and biodiversity #. J. Plant Nutr. Soil Sci. 2022 185 1 24 34 10.1002/jpln.202100437
    [Google Scholar]
/content/journals/cset/10.2174/0122102981383897251016093520
Loading
/content/journals/cset/10.2174/0122102981383897251016093520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test