Skip to content
2000
image of A Comprehensive Review of Machine Learning-based Clustering Methods for Single-Cell RNA Sequencing Data: Advantages and Challenges

Abstract

The rapid development of single-cell RNA sequencing (scRNA-seq) technology has provided unprecedented opportunities to explore cell heterogeneity and function. However, the high dimensionality, sparsity, and noise inherent in scRNA-seq data present significant challenges for traditional clustering methods. This review aims to summarize machine learning-based clustering techniques for scRNA-seq data, including Traditional Methods, Graph-based Methods, Ensemble Methods, Deep Learning Methods, and Other Methods, with a focus on discussing the advantages, limitations, and challenges of these approaches. We first discuss key preprocessing steps such as normalization, dropout imputation, and dimensionality reduction, which are essential for addressing data sparsity and improving clustering performance. Furthermore, the review introduces commonly used clustering performance evaluation metrics, including Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), silhouette score, and marker gene validation. We also compare six distinct clustering methods across six datasets, evaluating the consistency in clustering accuracy with the selected methods. Our findings indicate that deep learning-based methods generally outperform other clustering methods in capturing complex relationships within the data, especially in high-dimensional and noisy datasets. However, challenges remain in areas such as computational efficiency, scalability for large-scale datasets, and handling batch effects. In this review, we systematically summarize the advantages and challenges of machine learning-based clustering algorithms. This work provides valuable insights and ideas for the development of new tools in the scRNA-seq clustering field and also helps address the numerous challenges faced in the downstream analysis of single-cell sequencing data.

Loading

Article metrics loading...

/content/journals/cset/10.2174/0130506115393405250919155253
2025-10-23
2025-12-23
Loading full text...

Full text loading...

References

  1. Xiang L. Rao J. Yuan J. Xie T. Yan H. Single-cell RNA-sequencing: Opening new horizons for breast cancer research. Int. J. Mol. Sci. 2024 25 17 9482 10.3390/ijms25179482 39273429
    [Google Scholar]
  2. He Z. Lan Y. Zhou X. Yu B. Zhu T. Yang F. Fu L.Y. Chao H. Wang J. Feng R.X. Zuo S. Lan W. Chen C. Chen M. Zhao X. Hu K. Chen D. Single-cell transcriptome analysis dissects lncRNA-associated gene networks in Arabidopsis. Plant Commun. 2024 5 2 10.1016/j.xplc.2023.100717 37715446
    [Google Scholar]
  3. Wang Z. Ding H. Zou Q. Identifying cell types to interpret scRNA-seq data: How, why and more possibilities. Brief. Funct. Genomics 2020 19 4 286 291 10.1093/bfgp/elaa003 32232401
    [Google Scholar]
  4. Kanter I. Dalerba P. Kalisky T. A cluster robustness score for identifying cell subpopulations in single cell gene expression datasets from heterogeneous tissues and tumors. Bioinformatics 2019 35 6 962 971 10.1093/bioinformatics/bty708
    [Google Scholar]
  5. Fang Q. Su D.W. Ng W. Feng J.L. “An effective biclustering-based framework for identifying cell subpopulations from scRNA-seq data”, IEEE/ACM Trans Comput. Biol. Bioinform. 2021 18 6 2249 2260 10.1109/TCBB.2020.2979717
    [Google Scholar]
  6. Jovic D. Liang X. Zeng H. Lin L. Xu F. Luo Y. Single‐cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022 12 3 10.1002/ctm2.694 35352511
    [Google Scholar]
  7. Vandereyken K. Sifrim A. Thienpont B. Voet T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 2023 24 8 494 515 10.1038/s41576‑023‑00580‑2 36864178
    [Google Scholar]
  8. Baysoy A. Bai Z. Satija R. Fan R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 2023 24 10 695 713 10.1038/s41580‑023‑00615‑w 37280296
    [Google Scholar]
  9. Chang X. Zheng Y. Xu K. Single-Cell RNA Sequencing: Technological progress and biomedical application in cancer research. Mol. Biotechnol. 2024 66 7 1497 1519 10.1007/s12033‑023‑00777‑0 37322261
    [Google Scholar]
  10. Yu W. Wang C. Shang Z. Tian J. Unveiling novel insights in prostate cancer through single-cell RNA sequencing. Front Oncol 2023 13 10.3389/fonc.2023.1224913 37746302
    [Google Scholar]
  11. Li P.H. Kong X.Y. He Y.Z. Liu Y. Peng X. Li Z.H. Xu H. Luo H. Park J. Recent developments in application of single-cell RNA sequencing in the tumour immune microenvironment and cancer therapy. Mil. Med. Res. 2022 9 1 52 10.1186/s40779‑022‑00414‑y 36154923
    [Google Scholar]
  12. Mižíková I. Thébaud B. Looking at the developing lung in single-cell resolution. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021 320 5 L680 L687 10.1152/ajplung.00385.2020 33205990
    [Google Scholar]
  13. Samelak-Czajka A. Marszałek-Zeńczak M. Jackowiak P. Sequencing the transcriptome of single cells: A path to discovering cellular biodiversity. Postepy Biochem. 2024 70 2 190 203 10.18388/pb.2021_532 39083470
    [Google Scholar]
  14. Jin S.P. Lee K. Bang Y.J. Jeon Y.H. Jung S. Choi S.J. Lee J.S. Kim J. Guttman-Yassky E. Park C.G. Kim H.J. Hong S. Lee D.H. Mapping the immune cell landscape of severe atopic dermatitis by single‐cell RNA ‐seq. Allergy 2024 79 6 1584 1597 10.1111/all.16121 38817208
    [Google Scholar]
  15. Wang J. Zhu N. Su X. Gao Y. Yang R. Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front Immunol 14 2024 10.3389/fimmu.2023.1264774] 38347955
    [Google Scholar]
  16. Jameson G. Robinson M.W. Insights into human intrahepatic nk cell function from single cell RNA sequencing datasets. Front Immunol 2021 12 10.3389/fimmu.2021.649311] 33828559
    [Google Scholar]
  17. Haim-Vilmovsky L. High-Throughput Single-Cell Real-Time Quantitative PCR Analysis. Methods Mol. Biol. 2019 1979 177 183 10.1007/978‑1‑4939‑9240‑9_11 31028638
    [Google Scholar]
  18. Wang X. He Y. Zhang Q. Ren X. Zhang Z. Direct comparative analyses of 10x genomics chromium and smart-seq2. Genomics Proteomics Bioinformatics 2021 19 2 253 266 10.1016/j.gpb.2020.02.005 33662621
    [Google Scholar]
  19. Ziegenhain C. Vieth B. Parekh S. Reinius B. Guillaumet-Adkins A. Smets M. Leonhardt H. Heyn H. Hellmann I. Enard W. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 2017 65 4 631 643.e4 10.1016/j.molcel.2017.01.023 28212749
    [Google Scholar]
  20. Xu C. Cai L. Gao J. An efficient scRNA-seq dropout imputation method using graph attention network. BMC Bioinformatics 2021 22 1 582 10.1186/s12859‑021‑04493‑x 34876032
    [Google Scholar]
  21. Xu J. Cui L. Zhuang J. Meng Y. Bing P. He B. Tian G. Kwok Pui C. Wu T. Wang B. Yang J. Evaluating the performance of dropout imputation and clustering methods for single-cell RNA sequencing data. Comput. Biol. Med 2022 146 10.1016/j.compbiomed.2022.105697] 35697529
    [Google Scholar]
  22. Luecken M.D. Theis F.J. Current best practices in single‐cell RNA‐seq analysis: a tutorial. Mol. Syst. Biol. 2019 15 6 10.15252/msb.20188746 31217225
    [Google Scholar]
  23. Ryu Y. Han G.H. Jung E. Hwang D. Integration of single-cell rna-seq datasets: A review of computational methods. Mol. Cells 2023 46 2 106 119 10.14348/molcells.2023.0009 36859475
    [Google Scholar]
  24. Peng X. Zhu X. Wang J. Li R. Comparison of gene selection methods for clustering single-cell RNA-seq data. Curr. Bioinform. 2023 18 1 1 11 10.2174/1574893618666221103114320
    [Google Scholar]
  25. Calderer G. Kuijjer M.L. Community detection in large-scale bipartite biological networks. Front Genet 2021 12 10.3389/fgene.2021.649440] 33968132
    [Google Scholar]
  26. Li R. Guan J. Zhou S. Single-cell RNA-seq data clustering: A survey with performance comparison study. J. Bioinform. Comput. Biol. 2020 18 4 10.1142/S0219720020400053 32795134
    [Google Scholar]
  27. Soneson C. Robinson M.D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 2018 15 4 255 261 10.1038/nmeth.4612 29481549
    [Google Scholar]
  28. Risso D. Normalization of Single-Cell RNA-Seq Data. Methods Mol. Biol. 2021 2284 303 329 10.1007/978‑1‑0716‑1307‑8_17 33835450
    [Google Scholar]
  29. Cuevas-Diaz Duran R. Wei H. Wu J. Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets. BMC Genomics 2024 25 1 444 10.1186/s12864‑024‑10364‑5 38711017
    [Google Scholar]
  30. Bacher R. Normalization for Single-Cell RNA-Seq Data Analysis. Methods Mol. Biol. 2019 1935 11 23 10.1007/978‑1‑4939‑9057‑3_2 30758817
    [Google Scholar]
  31. Cao Y. Kitanovski S. Küppers R. Hoffmann D. UMI or not UMI, that is the question for scRNA-seq zero-inflation. Nat. Biotechnol. 2021 39 2 158 159 10.1038/s41587‑020‑00810‑6 33526946
    [Google Scholar]
  32. Guo M. Xu Y. Single-cell transcriptome analysis using sincera pipeline. Methods Mol. Biol. 2018 1751 209 222 10.1007/978‑1‑4939‑7710‑9_15 29508300
    [Google Scholar]
  33. Wang Y. Yu Z. Li S. Bian C. Liang Y. Wong K.C. Li X. scBGEDA: Deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Bioinformatics 2023 39 2 10.1093/bioinformatics/btad075 36734596
    [Google Scholar]
  34. Petegrosso R. Li Z. Kuang R. Machine learning and statistical methods for clustering single-cell RNA-sequencing data. Brief. Bioinform. 2020 21 4 1209 1223 10.1093/bib/bbz063 31243426
    [Google Scholar]
  35. Chen G. Ning B. Shi T. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis. Front. Genet. 2019 10 317 10.3389/fgene.2019.00317 31024627
    [Google Scholar]
  36. Wang Y. Li K. Zhang R. Fan Y. Huang L. Zhou F. GraCEImpute: A novel graph clustering autoencoder approach for imputation of single-cell RNA-seq data. Comput. Biol. Med 2025 184 10.1016/j.compbiomed.2024.109400] 39561511
    [Google Scholar]
  37. Wu W. Liu Y. Dai Q. Yan X. Wang Z. G2S3: A gene graph-based imputation method for single-cell RNA sequencing data. PLOS Comput. Biol. 2021 17 5 10.1371/journal.pcbi.1009029 34003861
    [Google Scholar]
  38. J. žurauskienė, and C. Yau, “pcaReduce: Hierarchical clustering of single cell transcriptional profiles”. BMC Bioinformatics 2016 17 1 140 10.1186/s12859‑016‑0984‑y 27005807
    [Google Scholar]
  39. Zhang J.M. Fan J. Fan H.C. Rosenfeld D. Tse D.N. An interpretable framework for clustering single-cell RNA-Seq datasets. BMC Bioinformatics 2018 19 1 93 10.1186/s12859‑018‑2092‑7 29523077
    [Google Scholar]
  40. Li H. Courtois E.T. Sengupta D. Tan Y. Chen K.H. Goh J.J.L. Kong S.L. Chua C. Hon L.K. Tan W.S. Wong M. Choi P.J. Wee L.J.K. Hillmer A.M. Tan I.B. Robson P. Prabhakar S. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 2017 49 5 708 718 10.1038/ng.3818 28319088
    [Google Scholar]
  41. Zhou B. Jin W. Visualization of Single Cell RNA-Seq Data Using t-SNE in R. Methods Mol. Biol. 2020 2117 159 167 10.1007/978‑1‑0716‑0301‑7_8 31960377
    [Google Scholar]
  42. Zeisel A. Muñoz-Manchado A.B. Codeluppi S. Lönnerberg P. La Manno G. Juréus A. Marques S. Munguba H. He L. Betsholtz C. Rolny C. Castelo-Branco G. Hjerling-Leffler J. Linnarsson S. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 2015 347 6226 1138 1142 10.1126/science.aaa1934 25700174
    [Google Scholar]
  43. Yang L. Liu J. Lu Q. Riggs A.D. Wu X. SAIC: an iterative clustering approach for analysis of single cell RNA-seq data BMC Genomics 18 S6 suppl. Suppl. 6 689 2017 10.1186/s12864‑017‑4019‑5 28984204
    [Google Scholar]
  44. Gan Y. Li N. Zou G. Xin Y. Guan J. Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method BMC Med. Genomics 11 S6 suppl.Suppl. 6 117 2018 10.1186/s12920‑018‑0433‑z 30598115
    [Google Scholar]
  45. Butler A. Hoffman P. Smibert P. Papalexi E. Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018 36 5 411 420 10.1038/nbt.4096 29608179
    [Google Scholar]
  46. Hinton G.E. Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006 313 5786 504 507 10.1126/science.1127647 16873662
    [Google Scholar]
  47. Zhao S. Zhang L. Liu X. AE-TPGG: A novel autoencoder-based approach for single-cell RNA-seq data imputation and dimensionality reduction. Front. Comput. Sci. 2023 17 3 10.1007/s11704‑022‑2011‑y 36320820
    [Google Scholar]
  48. Kiselev V.Y. Kirschner K. Schaub M.T. Andrews T. Yiu A. Chandra T. Natarajan K.N. Reik W. Barahona M. Green A.R. Hemberg M. SC3: Consensus clustering of single-cell RNA-seq data. Nat. Methods 2017 14 5 483 486 10.1038/nmeth.4236 28346451
    [Google Scholar]
  49. Marco E. Karp R.L. Guo G. Robson P. Hart A.H. Trippa L. Yuan G.C. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc. Natl. Acad. Sci. USA 2014 111 52 E5643 E5650 10.1073/pnas.1408993111 25512504
    [Google Scholar]
  50. Zhang H. Lee C.A.A. Li Z. Garbe J.R. Eide C.R. Petegrosso R. Kuang R. Tolar J. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. PLOS Comput. Biol. 2018 14 4 10.1371/journal.pcbi.1006053 29630593
    [Google Scholar]
  51. Guan J. Li R.Y. Wang J. GRACE: A Graph-based cluster ensemble approach for single-cell rna-seq Data Clustering. IEEE Access 2020 8 166730 166741 10.1109/ACCESS.2020.3022718
    [Google Scholar]
  52. Lin P. Troup M. Ho J.W.K. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 2017 18 1 59 10.1186/s13059‑017‑1188‑0 28351406
    [Google Scholar]
  53. Lin E. Liu B. Lac L. Fung D.L.X. Leung C.K. Hu P. scGMM-VGAE: A Gaussian mixture model-based variational graph autoencoder algorithm for clustering single-cell RNA-seq data Mach Learn Sci.Technol 4 3 2023 10.1088/2632‑2153/acd7c3
    [Google Scholar]
  54. Wang Z. Jin S. Liu G. Zhang X. Wang N. Wu D. Hu Y. Zhang C. Jiang Q. Xu L. Wang Y. DTWscore: Differential expression and cell clustering analysis for time-series single-cell RNA-seq data. BMC Bioinformatics 2017 18 1 270 10.1186/s12859‑017‑1647‑3 28535748
    [Google Scholar]
  55. Wang H.Y. Zhao J.P. Zheng C.H. Su Y.S. scGMAAE: Gaussian mixture adversarial autoencoders for diversification analysis of scRNA-seq data. Brief. Bioinform. 2023 24 1 10.1093/bib/bbac585 36592058
    [Google Scholar]
  56. Wang B. Ramazzotti D. De Sano L. Zhu J. Pierson E. Batzoglou S. SIMLR: A Tool for Large‐Scale Genomic Analyses by Multi‐Kernel Learning. Proteomics 2018 18 2 10.1002/pmic.201700232 29265724
    [Google Scholar]
  57. Xu C. Su Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 2015 31 12 1974 1980 10.1093/bioinformatics/btv088 25805722
    [Google Scholar]
  58. Wolf F.A. Angerer P. Theis F.J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018 19 1 15 10.1186/s13059‑017‑1382‑0 29409532
    [Google Scholar]
  59. Satija R. Farrell J.A. Gennert D. Schier A.F. Regev A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 2015 33 5 495 502 10.1038/nbt.3192 25867923
    [Google Scholar]
  60. Cai X. Zhang W. Zheng X. Xu Y. Li Y. scEM: A new ensemble framework for predicting cell type composition based on scrna-Seq Data. Interdiscip. Sci. 2024 16 2 304 317 10.1007/s12539‑023‑00601‑y 38368575
    [Google Scholar]
  61. Ciortan M. Defrance M. Contrastive self-supervised clustering of scRNA-seq data. BMC Bioinformatics 2021 22 1 280 10.1186/s12859‑021‑04210‑8 34044773
    [Google Scholar]
  62. Gan Y. Huang X. Zou G. Zhou S. Guan J. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network. Brief. Bioinform. 2022 23 2 10.1093/bib/bbac018 35172334
    [Google Scholar]
  63. Tian T. Wan J. Song Q. Wei Z. Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat. Mach. Intell. 2019 1 4 191 198 10.1038/s42256‑019‑0037‑0
    [Google Scholar]
  64. Wang J. Ma A. Chang Y. Gong J. Jiang Y. Qi R. Wang C. Fu H. Ma Q. Xu D. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nat. Commun. 2021 12 1 1882 10.1038/s41467‑021‑22197‑x 33767197
    [Google Scholar]
  65. Ciortan M. Defrance M. GNN-based embedding for clustering scRNA-seq data. Bioinformatics 2022 38 4 1037 1044 10.1093/bioinformatics/btab787 34850828
    [Google Scholar]
  66. Lopez R. Regier J. Cole M.B. Jordan M.I. Yosef N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 2018 15 12 1053 1058 10.1038/s41592‑018‑0229‑2 30504886
    [Google Scholar]
  67. Grønbech C.H. Vording M.F. Timshel P.N. Sønderby C.K. Pers T.H. Winther O. scVAE: Variational auto-encoders for single-cell gene expression data. Bioinformatics 2020 36 16 4415 4422 10.1093/bioinformatics/btaa293 32415966
    [Google Scholar]
  68. Tian S.W. Ni J.C. Wang Y.T. Zheng C.H. Ji C.M. scGCC: Graph contrastive clustering with neighborhood augmentations for scrna-seq data analysis. IEEE J. Biomed. Health Inform. 2023 27 12 6133 6143 10.1109/JBHI.2023.3319551 37751336
    [Google Scholar]
  69. Slovin S. Carissimo A. Panariello F. Grimaldi A. Bouché V. Gambardella G. Cacchiarelli D. Single-cell rna sequencing analysis: A step-by-step overview. Methods Mol. Biol. 2021 2284 343 365 10.1007/978‑1‑0716‑1307‑8_19 33835452
    [Google Scholar]
  70. Zheng G.X.Y. Terry J.M. Belgrader P. Ryvkin P. Bent Z.W. Wilson R. Ziraldo S.B. Wheeler T.D. McDermott G.P. Zhu J. Gregory M.T. Shuga J. Montesclaros L. Underwood J.G. Masquelier D.A. Nishimura S.Y. Schnall-Levin M. Wyatt P.W. Hindson C.M. Bharadwaj R. Wong A. Ness K.D. Beppu L.W. Deeg H.J. McFarland C. Loeb K.R. Valente W.J. Ericson N.G. Stevens E.A. Radich J.P. Mikkelsen T.S. Hindson B.J. Bielas J.H. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 2017 8 1 14049 10.1038/ncomms14049 28091601
    [Google Scholar]
  71. Frey B.J. Dueck D. Clustering by passing messages between data points. Science 2007 315 5814 972 976 10.1126/science.1136800 17218491
    [Google Scholar]
  72. Li B. Peng C. You Z. Zhang X. Zhang S. Single-cell RNA-sequencing data clustering using variational graph attention auto-encoder with self-supervised leaning. Brief. Bioinform. 2023 24 6 10.1093/bib/bbad383 37898127
    [Google Scholar]
  73. Cheng Y. Ma X. scGAC: A graph attentional architecture for clustering single-cell RNA-seq data. Bioinformatics 2022 38 8 2187 2193 10.1093/bioinformatics/btac099 35176138
    [Google Scholar]
  74. Wang L. Li W. Zhou F. Yu K. Feng C. Zhao D. nsDCC: Dual-level contrastive clustering with nonuniform sampling for scRNA-seq data analysis. Brief. Bioinform. 2024 25 6 10.1093/bib/bbae477 39327063
    [Google Scholar]
  75. Shu Z. Xia M. Tan K. Zhang Y. Yu Z. Multi-level multi-view network based on structural contrastive learning for scRNA-seq data clustering. Brief. Bioinform. 2024 25 6 10.1093/bib/bbae562 39494609
    [Google Scholar]
  76. Du L. Han R. Liu B. Wang Y. Li J. ScCCL: Single-cell data clustering based on self-supervised contrastive learning. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2023 20 3 2233 2241 10.1109/TCBB.2023.3241129 37022258
    [Google Scholar]
  77. Abadi S.A.R. Laghaee S.P. Koohi S. An optimized graph-based structure for single-cell RNA-seq cell-type classification based on non-linear dimension reduction. BMC Genomics 2023 24 1 227 10.1186/s12864‑023‑09344‑y 37127578
    [Google Scholar]
  78. Nagel D. Diez G. Stock G. Accurate estimation of the normalized mutual information of multidimensional data. J. Chem. Phys. 2024 161 5 10.1063/5.0217960 39092935
    [Google Scholar]
  79. Yu B. Chen C. Qi R. Zheng R. Skillman-Lawrence P.J. Wang X. Ma A. Gu H. scGMAI: A Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder. Brief. Bioinform. 2021 22 4 10.1093/bib/bbaa316 33300547
    [Google Scholar]
  80. Fang Z. Zheng R. Li M. scMAE: A masked autoencoder for single-cell RNA-seq clustering. Bioinformatics 2024 40 1 10.1093/bioinformatics/btae020 38230824
    [Google Scholar]
  81. Wang H. Zhao J. Zheng C. Su Y. scDSSC: Deep sparse subspace clustering for scRNA-seq Data. PLOS Comput. Biol. 2022 18 12 10.1371/journal.pcbi.1010772 36534702
    [Google Scholar]
  82. Meng X. Zhang Y. Xu X. Zhang K. Feng B. scSFCL:Deep clustering of scRNA-seq data with subspace feature confidence learning. Comput. Biol. Chem 2025 114 10.1016/j.compbiolchem.2024.108292] 39591807
    [Google Scholar]
  83. Meng R. Yin S. Sun J. Hu H. Zhao Q. scAAGA: Single cell data analysis framework using asymmetric autoencoder with gene attention. Comput. Biol. Med 2023 165 10.1016/j.compbiomed.2023.107414] 37660567
    [Google Scholar]
  84. Liu T. Jia C. Bi Y. Guo X. Zou Q. Li F. scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks. Brief. Bioinform. 2024 25 6 10.1093/bib/bbae486 39373051
    [Google Scholar]
  85. Pan X. Li Z. Qin S. Yu M. Hu H. ScLRTC: Imputation for single-cell RNA-seq data via low-rank tensor completion. BMC Genomics 2021 22 1 860 10.1186/s12864‑021‑08101‑3 34844559
    [Google Scholar]
  86. Laghaee S. Eskandarian M. Fereidoon M. Koohi S. scVAG: Unified single-cell clustering via variational-autoencoder integration with Graph Attention Autoencoder. Heliyon 2024 10 23 10.1016/j.heliyon.2024.e40732 39687165
    [Google Scholar]
  87. Feng X. Fang F. Long H. Zeng R. Yao Y. Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks. Front Genet 2022 13 10.3389/fgene.2022.1003711] 36568390
    [Google Scholar]
  88. Feng X. Zhang H. Lin H. Long H. Single-cell RNA-seq data analysis based on directed graph neural network. Methods 2023 211 48 60 10.1016/j.ymeth.2023.02.008 36804214
    [Google Scholar]
  89. Cheng Y. Ma X. Yuan L. Sun Z. Wang P. Evaluating imputation methods for single-cell RNA-seq data. BMC Bioinformatics 2023 24 1 302 10.1186/s12859‑023‑05417‑7 37507764
    [Google Scholar]
  90. Lin Z. Laska E. Siegel C. A general iterative clustering algorithm. Stat. Anal. Data Min. 2022 15 4 433 446 10.1002/sam.11573 36061078
    [Google Scholar]
  91. Leary J.R. Xu Y. Morrison A.B. Jin C. Shen E.C. Kuhlers P.C. Su Y. Rashid N.U. Yeh J.J. Peng X.L. S ub- C luster I dentification through S emi- S upervised O ptimization of R are-Cell S ilhouettes (SCISSORS) in single-cell RNA-sequencing. Bioinformatics 2023 39 8 10.1093/bioinformatics/btad449 37498558
    [Google Scholar]
  92. Ntranos V. Kamath G.M. Zhang J.M. Pachter L. Tse D.N. Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biol. 2016 17 1 112 10.1186/s13059‑016‑0970‑8 27230763
    [Google Scholar]
  93. Grün D. Lyubimova A. Kester L. Wiebrands K. Basak O. Sasaki N. Clevers H. van Oudenaarden A. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 2015 525 7568 251 255 10.1038/nature14966 26287467
    [Google Scholar]
  94. Baran Y. Doğan B. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies. Comput. Biol. Med 2023 155 10.1016/j.compbiomed.2023.106634] 36774895
    [Google Scholar]
  95. Ji M. Chen D. Zhao X. Huang F. Guan X. Wen X. Wang J. Shao J. Xie J. Shan D. Cao S. Chen C. Chen H. Isolation of Leydig cells from adult rat testes by magnetic‐activated cell sorting protocol based on prolactin receptor expression. Andrology 2022 10 6 1197 1207 10.1111/andr.13211 35735181
    [Google Scholar]
  96. Deng Q. Ramsköld D. Reinius B. Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 2014 343 6167 193 196 10.1126/science.1245316 24408435
    [Google Scholar]
  97. Yan L. Yang M. Guo H. Yang L. Wu J. Li R. Liu P. Lian Y. Zheng X. Yan J. Huang J. Li M. Wu X. Wen L. Lao K. Li R. Qiao J. Tang F. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 2013 20 9 1131 1139 10.1038/nsmb.2660 23934149
    [Google Scholar]
  98. Pollen A.A. Nowakowski T.J. Shuga J. Wang X. Leyrat A.A. Lui J.H. Li N. Szpankowski L. Fowler B. Chen P. Ramalingam N. Sun G. Thu M. Norris M. Lebofsky R. Toppani D. Kemp D.W. Wong M. Clerkson B. Jones B.N. Wu S. Knutsson L. Alvarado B. Wang J. Weaver L.S. May A.P. Jones R.C. Unger M.A. Kriegstein A.R. West J.A.A. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 2014 32 10 1053 1058 10.1038/nbt.2967 25086649
    [Google Scholar]
  99. Biase F.H. Cao X. Zhong S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res. 2014 24 11 1787 1796 10.1101/gr.177725.114 25096407
    [Google Scholar]
  100. Goolam M. Scialdone A. Graham S.J.L. Macaulay I.C. Jedrusik A. Hupalowska A. Voet T. Marioni J.C. Zernicka-Goetz M. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 2016 165 1 61 74 10.1016/j.cell.2016.01.047 27015307
    [Google Scholar]
  101. Patel A.P. Tirosh I. Trombetta J.J. Shalek A.K. Gillespie S.M. Wakimoto H. Cahill D.P. Nahed B.V. Curry W.T. Martuza R.L. Louis D.N. Rozenblatt-Rosen O. Suvà M.L. Regev A. Bernstein B.E. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014 344 6190 1396 1401 10.1126/science.1254257 24925914
    [Google Scholar]
/content/journals/cset/10.2174/0130506115393405250919155253
Loading
/content/journals/cset/10.2174/0130506115393405250919155253
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test