Skip to content
2000
Volume 5, Issue 1
  • ISSN: 3050-6115
  • E-ISSN: 3050-6123

Abstract

With the increasing demand for environmental protection and safety monitoring, the development of gas sensors with high sensitivity, fast response and selectivity is imperative. Magnetic field-assisted gas sensing is gradually becoming a research hotspot. This review aims to provide an overview of magnetic-related chemiresistive gas sensing from two segments, including magnetic sensing materials and magnetic field-assisted gas sensing. The type of sensors, the classification and parameters of magnetic materials, and the various materials employed in gas sensing are summarized. The review presents the currently commonly used methods for influencing magnetic structure and properties: chemical doping, defect engineering, and heterostructure construction as well as the application of applied magnetic field in gas sensing. This paper provides the first overview of chemiresistive gas sensors from a magnetic point of view, which is crucial for the development of magnetically correlated gas sensing technology and the subsequent study of the intrinsic mechanisms.

Loading

Article metrics loading...

/content/journals/cset/10.2174/0122102981359015241211065324
2024-12-23
2025-12-27
Loading full text...

Full text loading...

References

  1. PotyrailoR.A. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet.Chem. Rev.201611619118771192310.1021/acs.chemrev.6b00187 27602947
    [Google Scholar]
  2. HeS. ShiK. LiuC. GuoB. ChenJ. ShiZ. Collaborative sensing in internet of things: A comprehensive survey.IEEE Commun. Surv. Tutor.20222431435147410.1109/COMST.2022.3187138
    [Google Scholar]
  3. LiS. ZhangH. ZhuM. KuangZ. LiX. XuF. MiaoS. ZhangZ. LouX. LiH. XiaF. Electrochemical biosensors for whole blood analysis: Recent progress, challenges, and future perspectives.Chem. Rev.2023123127953803910.1021/acs.chemrev.1c00759 37262362
    [Google Scholar]
  4. ZhouX. QiM. LiK. XueZ. WangT. Gas sensors based on nanoparticle-assembled interfaces and their application in breath detection of lung cancer.Cell Rep. Phys. Sci.202341110167810.1016/j.xcrp.2023.101678
    [Google Scholar]
  5. LiD. LiangH. ZhangY. MXene-based gas sensors: State of the art and prospects.Carbon202422611920510.1016/j.carbon.2024.119205
    [Google Scholar]
  6. DevendiranS. SastikumarD. Gas sensing based on detection of light radiation from a region of modified cladding (nanocrystalline ZnO) of an optical fiber.Opt. Laser Technol.20178918619110.1016/j.optlastec.2016.10.013
    [Google Scholar]
  7. OkazakiS. NakagawaH. AsakuraS. ShimizuH. IwamotoI. A novel method of temperature compensation for a stable combustion-type gas sensor.Sens. Actuators B Chem.2001771-232232510.1016/S0925‑4005(01)00702‑X
    [Google Scholar]
  8. JiangG. GoledzinowskiM. ComeauF.J.E. ZarrinH. LuiG. LenosJ. VeileuxA. LiuG. ZhangJ. HemmatiS. QiaoJ. ChenZ. Free‐standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors.Adv. Funct. Mater.201626111729173610.1002/adfm.201504604
    [Google Scholar]
  9. LiuS. SunH. NagarajanR. KumarJ. GuZ. ChoJ. KurupP. Dynamic chemical vapor sensing with nanofibrous film based surface acoustic wave sensors.Sens. Actuators A Phys.2011167181310.1016/j.sna.2011.02.007
    [Google Scholar]
  10. SharmaA. EadiS.B. NoothalapatiH. OtyepkaM. LeeH.D. JayaramuluK. Porous materials as effective chemiresistive gas sensors.Chem. Soc. Rev.20245352530257710.1039/D2CS00761D 38299314
    [Google Scholar]
  11. YuanH. AljneibiS.A.A.A. YuanJ. WangY. LiuH. FangJ. TangC. YanX. CaiH. GuY. PennycookS.J. TaoJ. ZhaoD. ZnO nanosheets abundant in oxygen vacancies derived from metal‐organic frameworks for ppb‐level gas sensing.Adv. Mater.20193111180716110.1002/adma.201807161 30637791
    [Google Scholar]
  12. WangY. CuiY. MengX. ZhangZ. CaoJ. A gas sensor based on Ag-modified ZnO flower-like microspheres: Temperature-modulated dual selectivity to CO and CH4.Surf. Interfaces20212410111010.1016/j.surfin.2021.101110
    [Google Scholar]
  13. ChangJ. HorprathumM. WangD. MengG. DengZ. TongB. KidkhunthodP. DaiT. LiM. LiuH. TongW. WangS. FangX. Aliovalent Sc and Li co-doping boosts the performance of p-type NiO sensor.Sens. Actuators B Chem.202132612883410.1016/j.snb.2020.128834
    [Google Scholar]
  14. WangO. KongJ. XueZ. AnB. XuJ. WangX. Tailoring the Ni–O microenvironment in amorphous-dominated highly active and stable Zn/NiO for hydrogen sulfide detection.ACS Sens.2024963233324310.1021/acssensors.4c00589 38832488
    [Google Scholar]
  15. UmarA. AlshahraniA.A. AlgarniH. KumarR. CuO nanosheets as potential scaffolds for gas sensing applications.Sens. Actuators B Chem.2017250243110.1016/j.snb.2017.04.062
    [Google Scholar]
  16. PengF. SunY. LuY. YuW. GeM. ShiJ. CongR. HaoJ. DaiN. Studies on sensing properties and mechanism of CuO nanoparticles to H2S Gas.Nanomaterials (Basel)202010477410.3390/nano10040774 32316393
    [Google Scholar]
  17. WangZ. ZhangY. LiuS. ZhangT. Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature.Sens. Actuators B Chem.201622289390310.1016/j.snb.2015.09.027
    [Google Scholar]
  18. ZhuW. XuT. LiuW. WangW. FengM. ChengY. LiY. TianY. LiX. High-performance ethanol sensor based on In2O3 nanospheres grown on silicon nanoporous pillar array.Sens. Actuators B Chem.202032412873410.1016/j.snb.2020.128734
    [Google Scholar]
  19. RiJ. LiX. ShaoC. LiuY. HanC. LiX. LiuY. Sn-doping induced oxygen vacancies on the surface of the In2O3 nanofibers and their promoting effect on sensitive NO2 detection at low temperature.Sens. Actuators B Chem.202031712819410.1016/j.snb.2020.128194
    [Google Scholar]
  20. HanC. LiX. LiuY. LiX. ShaoC. RiJ. MaJ. LiuY. Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination.J. Hazard. Mater.202140312409310.1016/j.jhazmat.2020.124093 33265068
    [Google Scholar]
  21. HuH. LiangH. FanJ. GuoL. LiH. de RooijN.F. UmarA. AlgarniH. WangY. ZhouG. Assembling hollow cactus-like ZnO nanorods with dipole-modified graphene nanosheets for practical room-temperature formaldehyde sensing.ACS Appl. Mater. Interfaces20221411131861319510.1021/acsami.1c20680 35275633
    [Google Scholar]
  22. XuY. XieJ. ZhangY. TianF. YangC. ZhengW. LiuX. ZhangJ. PinnaN. Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature.J. Hazard. Mater.202141112512010.1016/j.jhazmat.2021.125120 33485227
    [Google Scholar]
  23. QinZ. SongX. WangJ. LiX. WuC. WangX. YinX. ZengD. Development of flexible paper substrate sensor based on 2D WS2 with S defects for room-temperature NH3 gas sensing.Appl. Surf. Sci.202257315153510.1016/j.apsusc.2021.151535
    [Google Scholar]
  24. LiuJ. HuZ. ZhangY. LiH.Y. GaoN. TianZ. ZhouL. ZhangB. TangJ. ZhangJ. YiF. LiuH. MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors.Nano-Micro Lett.20201215910.1007/s40820‑020‑0394‑6 34138314
    [Google Scholar]
  25. ZhouY. GaoC. GuoY. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet–ZnO nanowire heterojunctions at room temperature.J. Mater. Chem. A Mater. Energy Sustain.2018622102861029610.1039/C8TA02679C
    [Google Scholar]
  26. ChangJ. QinC. GuoW. ZhuL. ZhangY. WangY. CaoJ. Visible light enhanced NO2 sensing performance of Au nanoparticles modified SnS2 hierarchical structure at room temperature.Sens. Actuators B Chem.202338513363310.1016/j.snb.2023.133633
    [Google Scholar]
  27. YangH. DuZ. YangY. LiX. WuQ. TangJ. WangX. ZengD. Ag intercalated SnS2 with S vacancy and expanded interlayer for enhancing NO2 sensing.Sens. Actuators B Chem.202339313414010.1016/j.snb.2023.134140
    [Google Scholar]
  28. GautamS.K. PandaS. Field effect characteristics and gas sensing properties of vertically grown PANI nanofibers.Org. Electron.202312310693810.1016/j.orgel.2023.106938
    [Google Scholar]
  29. LawaniyaS.D. KumarS. YuY. AwasthiK. Ammonia sensing properties of PPy nanostructures (urchins/flowers) towards low-cost and flexible gas sensors at room temperature.Sens. Actuators B Chem.202338213356610.1016/j.snb.2023.133566
    [Google Scholar]
  30. KambleD.B. SharmaA.K. YadavJ.B. PatilV.B. DevanR.S. JatratkarA.A. YewaleM.A. GanbavleV.V. PawarS.D. Facile chemical bath deposition method for interconnected nanofibrous polythiophene thin films and their use for highly efficient room temperature NO2 sensor application.Sens. Actuators B Chem.201724452253010.1016/j.snb.2017.01.021
    [Google Scholar]
  31. HanX. LiC. GuoM. ZhaoX. WangZ. QiH. ChenK. Fiber-optic trace gas sensing based on graphite excited photoacoustic wave.Sens. Actuators B Chem.202440813554610.1016/j.snb.2024.135546
    [Google Scholar]
  32. YanY. YangG. XuJ.L. ZhangM. KuoC.C. WangS.D. Conducting polymer-inorganic nanocomposite-based gas sensors: A review.Sci. Technol. Adv. Mater.202021176878610.1080/14686996.2020.1820845 33488297
    [Google Scholar]
  33. VermaA. GuptaR. VermaA.S. KumarT. A review of composite conducting polymer-based sensors for detection of industrial waste gases.Sens. Actuators Rep.2023510014310.1016/j.snr.2023.100143
    [Google Scholar]
  34. ReddyP.C.H. PatilS.S. ChandrasekaranS. Synthesis of novel conducting triblock copolymer poly(thiophene-co-pyrrole-co-aniline) by chemical oxidative polymerization method for gas sensor application.Synth. Met.202430611762610.1016/j.synthmet.2024.117626
    [Google Scholar]
  35. GanguK.K. MaddilaS. JonnalagaddaS.B. A review on novel composites of MWCNTs mediated semiconducting materials as photocatalysts in water treatment.Sci. Total Environ.20196461398141210.1016/j.scitotenv.2018.07.375 30235625
    [Google Scholar]
  36. PiY. JinS. LiX. TuS. LiZ. XiaoJ. Encapsulated MWCNT@MOF-derived In2S3 tubular heterostructures for boosted visible-light-driven degradation of tetracycline.Appl. Catal. B201925611788210.1016/j.apcatb.2019.117882
    [Google Scholar]
  37. WangX. ZhangY. ChenH. SunG. WangZ. HouH. HuZ. GaoQ. ZhangQ. High-capacity and cycling-stable anode for sodium ion batteries constructed from SnS2/MWCNTs nanocomposites.J. Alloys Compd.202289716302910.1016/j.jallcom.2021.163029
    [Google Scholar]
  38. ShooshtariM. SalehiA. VollebregtS. Effect of humidity on gas sensing performance of carbon nanotube gas sensors operated at room temperature.IEEE Sens. J.20212155763577010.1109/JSEN.2020.3038647
    [Google Scholar]
  39. YoungS.J. LiuY.H. LinZ.D. AhmedK. ShibleeM.D.N.I. RomanuikS. SekharP.K. ThundatT. NagaharaL. AryaS. AhmedR. FurukawaH. KhoslaA. Multi-walled carbon nanotubes decorated with silver nanoparticles for acetone gas sensing at room temperature.J. Electrochem. Soc.20201671616751910.1149/1945‑7111/abd1be
    [Google Scholar]
  40. WangJ. GaoY. ChenF. ZhangL. LiH. de RooijN.F. UmarA. LeeY.K. FrenchP.J. YangB. WangY. ZhouG. Assembly of core/shell nanospheres of amorphous hemin/acetone-derived carbonized polymer with graphene nanosheets for room-temperature NO sensing.ACS Appl. Mater. Interfaces20221447531935320110.1021/acsami.2c16769 36395355
    [Google Scholar]
  41. LiZ. YangF. YinY. Smart materials by nanoscale magnetic assembly.Adv. Funct. Mater.2020302190346710.1002/adfm.201903467
    [Google Scholar]
  42. ChangJ. QinC. ZhangY. ZhuL. ZhangY. WangY. CaoJ. Abundant active sites triggered by Co-doped SnS2 for ppb-level NO2 detection.Sens. Actuators B Chem.202339513451110.1016/j.snb.2023.134511
    [Google Scholar]
  43. ZhouF. MuZ. YuanZ. ZhuH. YanX. GaoH. MengF. ppb-Level detection of isopropanol based on porous ZnSnO3/Ag through the synergistic effects of Ag and amorphous nanocube structures.J. Mater. Chem. A Mater. Energy Sustain.20231141225032251110.1039/D3TA04933G
    [Google Scholar]
  44. WangX. ZhangW. WangX. LiX. SuiX. JiangH. LiuG. LiB. ShengY. ZhouJ. XieE. ZhangZ. Heterostructure engineering of NiO foam/In2S3 film for high-performance ethylene glycol gas sensors.Sens. Actuators B Chem.202339213411010.1016/j.snb.2023.134110
    [Google Scholar]
  45. HanS. LiL. JiC. LiuX. WangG.E. XuG. SunZ. LuoJ. Visible-photoactive perovskite ferroelectric-driven self-powered gas detection.J. Am. Chem. Soc.202314523128531286010.1021/jacs.3c03719 37263965
    [Google Scholar]
  46. SunH. CaoM. ZhangP. TianX. LuM. DuL. XueK. CuiG. Magnetic-field-enhanced H 2 S sensitivity of Cu2 O/NiO heterostructure ordered nanoarrays.ACS Sens.2022771903191110.1021/acssensors.2c00495 35729782
    [Google Scholar]
  47. AliA. ZafarH. ZiaM. ul HaqI. PhullA.R. AliJ.S. HussainA. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.Nanotechnol. Sci. Appl.20169496710.2147/NSA.S99986 27578966
    [Google Scholar]
  48. YangS.H. SonH.Y. ParkM. RhoH.W. LeeH. HuhY.M. Inhibition of PD-L1 and tumor growth in triple-negative breast cancer using a magnetic nanovector with microRNA34a.Cancer Nanotechnol.20231412110.1186/s12645‑023‑00171‑0
    [Google Scholar]
  49. NithyaR. ThirunavukkarasuA. SathyaA.B. SivashankarR. Magnetic materials and magnetic separation of dyes from aqueous solutions: A review.Environ. Chem. Lett.20211921275129410.1007/s10311‑020‑01149‑9
    [Google Scholar]
  50. JeongU. TengX. WangY. YangH. XiaY. Superparamagnetic colloids: Controlled synthesis and niche applications.Adv. Mater.2007191336010.1002/adma.200600674
    [Google Scholar]
  51. ZhangT. LuoH. ZengH. ZhangR. ShenY. Synthesis and gas-sensing characteristics of high thermostability γ-Fe2O3 power.Sens. Actuators B Chem.202332181184
    [Google Scholar]
  52. TaoS. LiuX. ChuX. ShenY. Preparation and properties of γ-Fe2O3 and Y2O3 doped γ-Fe2O3 by a sol–gel process.Sens. Actuators B Chem.1999611-3333810.1016/S0925‑4005(99)00276‑2
    [Google Scholar]
  53. TangY. LiZ. ZuX. MaJ. WangL. YangJ. DuB. YuQ. Room-temperature NH3 gas sensors based on Ag-doped γ-Fe2O3/SiO2 composite films with sub-ppm detection ability.J. Hazard. Mater.201529815416110.1016/j.jhazmat.2015.04.044 26057440
    [Google Scholar]
  54. QuF. LiuJ. WangY. WenS. ChenY. LiX. RuanS. Hierarchical Fe3O4@Co3O4 core–shell microspheres: Preparation and acetone sensing properties.Sens. Actuators B Chem.201419934635310.1016/j.snb.2014.04.003
    [Google Scholar]
  55. KimD. HongJ. ParkY.R. KimK.J. The origin of oxygen vacancy induced ferromagnetism in undoped TiO2.J. Phys. Condens. Matter2009211919540510.1088/0953‑8984/21/19/195405 21825483
    [Google Scholar]
  56. GaoD. ZhangJ. YangG. QiJ. SiM. XueD. Ferromagnetism induced by oxygen vacancies in zinc peroxide nanoparticles.J. Phys. Chem. C201111533164051641010.1021/jp201741m
    [Google Scholar]
  57. SinghR. Unexpected magnetism in nanomaterials.J. Magn. Magn. Mater.2013346587310.1016/j.jmmm.2013.07.005
    [Google Scholar]
  58. JiangF.X. ChenD. ZhouG.W. WangY.N. XuX.H. The dramatic enhancement of ferromagnetism and band gap in Fe-doped In2O3 nanodot arrays.Sci. Rep.201881241710.1038/s41598‑018‑20751‑0 29403016
    [Google Scholar]
  59. KrishnaN.S. KaleemullaS. AmarendraG. RaoN.M. KrishnamoorthiC. KuppanM. BegamM.R. ReddyD.S. OmkaramI. Structural, optical, and magnetic properties of Fe doped In2O3 powders.Mater. Res. Bull.20156148649110.1016/j.materresbull.2014.10.065
    [Google Scholar]
  60. RudraP. DambhareN.V. SrihariV. DasS. RathA.K. SahaD. MondalS. Magnetic chemiresistive Fe-doped In2 O3 nanocubes to tunably detect NO2 at ppm to ppb Concentrations.ACS Appl. Nano Mater.2024712143311434310.1021/acsanm.4c01795
    [Google Scholar]
  61. FengC. KouX. ChenB. QianG. SunY. LuG. One-pot synthesis of In doped NiO nanofibers and their gas sensing properties.Sens. Actuators B Chem.201725358459110.1016/j.snb.2017.06.115
    [Google Scholar]
  62. ShangW. WangD. ZhangB. JiangC. QuF. YangM. Aliovalent Fe(III)-doped NiO microspheres for enhanced butanol gas sensing properties.Dalton Trans.20184742151811518810.1039/C8DT03242D 30321249
    [Google Scholar]
  63. TungT.T. ChienN.V. Van DuyN. Van HieuN. NineM.J. CoghlanC.J. TranD.N.H. LosicD. Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing: The particle size effects.J. Colloid Interface Sci.201953931532510.1016/j.jcis.2018.12.077 30594006
    [Google Scholar]
  64. SankarG.R. PatilV.L. DurgadeviE. NavaneethanM. PonnusamyS. MuthamizhchelvanC. KawasakiS. PatilP.S. HayakawaY. Growth of Fe doped ZnO nanoellipsoids for selective NO2 gas sensing application.Chem. Phys. Lett.201973413672510.1016/j.cplett.2019.136725
    [Google Scholar]
  65. ZhaoS. ShenY. XiaY. PanA. LiZ. CarraroC. MaboudianR. Synthesis and gas sensing properties of NiO/ZnO heterostructured nanowires.J. Alloys Compd.202187716018910.1016/j.jallcom.2021.160189
    [Google Scholar]
  66. SunB. LvH. LiuZ. WangJ. BaiX. ZhangY. ChenJ. KanK. ShiK. Co3O4 @PEI/Ti3C2Tx MXene nanocomposites for a highly sensitive NOx gas sensor with a low detection limit.J. Mater. Chem. A Mater. Energy Sustain.20219106335634410.1039/D0TA11392A
    [Google Scholar]
  67. JiaX. YuS. ChengC. YangJ. LiY. WangS. SongH. Ag nanoparticles modified Fe3O4/reduced graphene oxide and their acetone sensing properties.Mater. Chem. Phys.202227612537810.1016/j.matchemphys.2021.125378
    [Google Scholar]
  68. SunL. SunJ. ZhangK. SunX. BaiS. ZhaoY. LuoR. LiD. ChenA. rGO functionalized α-Fe2O3/Co3O4 heterojunction for NO2 detection.Sens. Actuators B Chem.202235413119410.1016/j.snb.2021.131194
    [Google Scholar]
  69. HuJ. GuanW. XiongX. ChenY. LongH. Modulation of rGO-Co3O4 heterojunction with multi-walled carbon nanotubes for efficient ethanol detection.Sens. Actuators B Chem.202236813220210.1016/j.snb.2022.132202
    [Google Scholar]
  70. ChenB. LiP. SunL. WangY. WangB. Co3O4 Nanosheets decorated with In2O3 nanocubes with exposed 001 facets for ppb-level CO sensing.ACS Appl. Nano Mater.202258110111101910.1021/acsanm.2c02235
    [Google Scholar]
  71. DongY. YingZ. ZhangT. ZhengX. ShengW. ZhengP. Enhanced NO2 sensing performance based on Au nanocluster functionalized Co3O4 nanospheres.J. Mater. Sci. Mater. Electron.20233430202210.1007/s10854‑023‑11392‑9
    [Google Scholar]
  72. JiangQ. GuoX. WangC. JiaL. ZhaoZ. YangR. ZhangY. DengQ. Ultra-responsive and selective ethanol and acetone sensor based on Ce-doped Co3O4 microspheres assembled by submicron spheres with multilayer core-shell structure.Colloids Surf. A Physicochem. Eng. Asp.202366613130110.1016/j.colsurfa.2023.131301
    [Google Scholar]
  73. BegiA.N. HussainS. LiaqatM.J. AlsaiariN.S. OuladsmaneM. QiaoG. LiuG. Unlocking low-concentration NH3 gas sensing: An innovative MOF-derived In2O3/Co3O4 nanocomposite approach.Mater. Sci. Semicond. Process.202418110864110.1016/j.mssp.2024.108641
    [Google Scholar]
  74. PugheC. MustonenO.H.J. GibbsA.S. EtterM. LiuC. DuttonS.E. FriskneyA. HyattN.C. StenningG.B.G. MutchH.M. CoomerF.C. CussenE.J. Site-selective d10/d0 substitution in an S = 1/2 spin ladder Ba2 CuTe1– x Wx O6 (0 ≤ x ≤ 0.3).Inorg. Chem.20226194033404510.1021/acs.inorgchem.1c03655 35187928
    [Google Scholar]
  75. WangL. LiJ. WangY. ZhaoL. JiangQ. Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites.Chem. Eng. J.2012181-182727910.1016/j.cej.2011.10.088
    [Google Scholar]
  76. WangW. GumfekarS.P. JiaoQ. ZhaoB. Ferrite-grafted polyaniline nanofibers as electromagnetic shielding materials.J. Mater. Chem. C Mater. Opt. Electron. Devices2013116285110.1039/c3tc00757j
    [Google Scholar]
  77. ZhangR. QinC. BalaH. WangY. CaoJ. Recent progress in spinel ferrite (MFe2O4) chemiresistive based gas sensors.Nanomaterials (Basel)20231315218810.3390/nano13152188 37570506
    [Google Scholar]
  78. ŠutkaA. GrossK.A. Spinel ferrite oxide semiconductor gas sensors.Sens. Actuators B Chem.20162229510510.1016/j.snb.2015.08.027
    [Google Scholar]
  79. LiL. TanJ. DunM. HuangX. Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast response acetone gas sensor.Sens. Actuators B Chem.2017248859110.1016/j.snb.2017.03.119
    [Google Scholar]
  80. GaoX. WangJ. ZhangD. NieK. MaY. ZhongJ. SunX. Hollow NiFe2O4 nanospheres on carbon nanorods as a highly efficient anode material for lithium ion batteries.J. Mater. Chem. A Mater. Energy Sustain.20175105007501210.1039/C6TA11058D
    [Google Scholar]
  81. ZhouT. ZhangT. ZengY. ZhangR. LouZ. DengJ. WangL. Structure-driven efficient NiFe2O4 materials for ultra-fast response electronic sensing platform.Sens. Actuators B Chem.20182551436144410.1016/j.snb.2017.08.139
    [Google Scholar]
  82. GaoX. SunY. ZhuC. LiC. OuyangQ. ChenY. Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets.Sens. Actuators B Chem.201724666267210.1016/j.snb.2017.02.100
    [Google Scholar]
  83. LinG. WangH. LiX. LaiX. ZouY. ZhouX. LiuD. WanJ. XinH. Chestnut-like CoFe2O4@SiO2@In2O3 nanocomposite microspheres with enhanced acetone sensing property.Sens. Actuators B Chem.20182553364337310.1016/j.snb.2017.09.163
    [Google Scholar]
  84. LiX. LuD. ShaoC. LuG. LiX. LiuY. Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels.Sens. Actuators B Chem.201825843644610.1016/j.snb.2017.11.131
    [Google Scholar]
  85. MaY. LuY. GouH. ZhangW. YanS. XuX. Octahedral NiFe2O4 for high-performance gas sensor with low working temperature.Ceram. Int.20184422620262510.1016/j.ceramint.2017.11.008
    [Google Scholar]
  86. ZhangH.J. LiuL.Z. ZhangX.R. ZhangS. MengF.N. Microwave-assisted solvothermal synthesis of shape-controlled CoFe2O4 nanoparticles for acetone sensor.J. Alloys Compd.20197881103111210.1016/j.jallcom.2019.03.009
    [Google Scholar]
  87. ZhangW. ShenY. ZhangJ. BiH. ZhaoS. ZhouP. HanC. WeiD. ChengN. Low-temperatureH. Low-temperature H2S sensing performance of Cu-doped ZnFe2O4 nanoparticles with spinel structure.Appl. Surf. Sci.201947058159010.1016/j.apsusc.2018.11.164
    [Google Scholar]
  88. ZhengC. ZhangC. HeL. ZhangK. ZhangJ. JinL. AsiriA.M. AlamryK.A. ChuX. ZnFe2O4/ZnO nanosheets assembled microspheres for high performance trimethylamine gas sensing.J. Alloys Compd.202084915646110.1016/j.jallcom.2020.156461
    [Google Scholar]
  89. ZhengC. ZhangC. ZhangK. ZhangJ. JinL. AsiriA.M. AlamryK.A. HeL. ChuX. Growth of ZnFe2O4 nanosheets on reduced graphene oxide with enhanced ethanol sensing properties.Sens. Actuators B Chem.202133012928010.1016/j.snb.2020.129280
    [Google Scholar]
  90. ZhangH. GaoS. FengZ. SunZ. YanX. LiZ. YangX. PanG. YuanY. GuoL. Room temperature detection of low-concentration H2S based on CuO functionalized ZnFe2O4 porous spheres.Sens. Actuators B Chem.202236813210010.1016/j.snb.2022.132100
    [Google Scholar]
  91. Gómez MéndezE. PosadaC.M. Jaramillo OcampoJ.M. Statistical analysis of Sr substituted NiFe2O4 thin films for liquefied petroleum gas sensor applications.Mater. Sci. Eng. B202227811561410.1016/j.mseb.2022.115614
    [Google Scholar]
  92. HeL. HuJ. YuanQ. XiaZ. JinL. GaoH. FanL. ChuX. MengF. Synthesis of porous ZnFe2O4/SnO2 core-shell spheres for high-performance acetone gas sensing.Sens. Actuators B Chem.202337813312310.1016/j.snb.2022.133123
    [Google Scholar]
  93. HuJ. XiongX. GuanW. ChenY. LongH. Design and construction of core-shelled Co3O4-CoFe2O4 heterojunction for highly sensitive and selective detection of ammonia.Chem. Eng. J.202345213934610.1016/j.cej.2022.139346
    [Google Scholar]
  94. ShidpourR. ManteghianM. A density functional study of strong local magnetism creation on MoS2 nanoribbon by sulfur vacancy.Nanoscale2010281429143510.1039/b9nr00368a 20820730
    [Google Scholar]
  95. SonY.W. CohenM.L. LouieS.G. Half-metallic graphene nanoribbons.Nature2006444711734734910.1038/nature05180 17108960
    [Google Scholar]
  96. KanE. LiZ. YangJ. HouJ.G. Half-metallicity in edge-modified zigzag graphene nanoribbons.J. Am. Chem. Soc.2008130134224422510.1021/ja710407t 18331034
    [Google Scholar]
  97. XuR. LiuB. ZouX. ChengH.M. Half-metallicity in Co-doped WSe2 nanoribbons.ACS Appl. Mater. Interfaces2017944387963880110.1021/acsami.7b12196 29035024
    [Google Scholar]
  98. ZhangX. XiB. LiuY. YaoX. WuX. Antiferromagnetic semimetal in Ti-intercalated borophene heterobilayer.J. Phys. Chem. C202012484709471610.1021/acs.jpcc.9b10677
    [Google Scholar]
  99. HuangB. ClarkG. Navarro-MoratallaE. KleinD.R. ChengR. SeylerK.L. ZhongD. SchmidgallE. McGuireM.A. CobdenD.H. YaoW. XiaoD. Jarillo-HerreroP. XuX. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.Nature2017546765727027310.1038/nature22391 28593970
    [Google Scholar]
  100. GongC. LiL. LiZ. JiH. SternA. XiaY. CaoT. BaoW. WangC. WangY. QiuZ.Q. CavaR.J. LouieS.G. XiaJ. ZhangX. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals.Nature2017546765726526910.1038/nature22060 28445468
    [Google Scholar]
  101. ZakharchenkoA. GuzN. LaradjiA.M. KatzE. MinkoS. Magnetic field remotely controlled selective biocatalysis.Nat. Catal.201711738110.1038/s41929‑017‑0003‑3
    [Google Scholar]
  102. ZhangK. DingC. SheY. WuZ. ZhaoC. PanB. ZhangL. ZhouW. FanQ. CuFe2O4/MoS2 mixed-dimensional heterostructures with improved gas sensing response.Nanoscale Res. Lett.20201513210.1186/s11671‑020‑3268‑4 32016642
    [Google Scholar]
  103. PramanikM. JanaB. GhatakA. DasK. Improvement in efficiency of MoS2 nanoflower based ethylene gas sensor on transition metal doping: An experimental and theoretical investigation.Mater. Chem. Phys.202431412889210.1016/j.matchemphys.2024.128892
    [Google Scholar]
  104. KimY. KwonK.C. KangS. KimC. KimT.H. HongS.P. ParkS.Y. SuhJ.M. ChoiM.J. HanS. JangH.W. Two-dimensional NbS2 gas sensors for selective and reversible NO2 detection at room temperature.ACS Sens.2019492395240210.1021/acssensors.9b00992 31339038
    [Google Scholar]
  105. WangH. CuiZ. XiongR. WangX. SongW. GuoX. WuX. SaB. ZengD. Synergism of edge effect and interlayer engineering of VS2 on CNFs for rapid and precise NO2 detection.ACS Sens.20238103923393210.1021/acssensors.3c01526 37823841
    [Google Scholar]
  106. FeiZ. HuangB. MalinowskiP. WangW. SongT. SanchezJ. YaoW. XiaoD. ZhuX. MayA.F. WuW. CobdenD.H. ChuJ.H. XuX. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2.Nat. Mater.201817977878210.1038/s41563‑018‑0149‑7 30104669
    [Google Scholar]
  107. ChenZ. YangY. YingT. GuoJ. High- Tc ferromagnetic semiconductor in thinned 3d ising ferromagnetic metal Fe3 GaTe2.Nano Lett.2024243993100010.1021/acs.nanolett.3c04462 38190333
    [Google Scholar]
  108. NaguibM. MashtalirO. CarleJ. PresserV. LuJ. HultmanL. GogotsiY. BarsoumM.W. Two-dimensional transition metal carbides.ACS Nano2012621322133110.1021/nn204153h 22279971
    [Google Scholar]
  109. LiX. XuJ. JiangY. HeZ. LiuB. XieH. LiH. LiZ. WangY. TaiH. Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2T hybrid sensitive films based gas sensor.Sens. Actuators B Chem.202031612814410.1016/j.snb.2020.128144
    [Google Scholar]
  110. XiongZ. YangJ. GaoZ. YangQ. ShiD. Orthorhombic Mo3N2 nanobelts with improved electrochemical properties as electrode material for supercapacitors.Results Phys.20201610294110.1016/j.rinp.2020.102941
    [Google Scholar]
  111. XiaoX. UrbankowskiP. HantanasirisakulK. YangY. SasakiS. YangL. ChenC. WangH. MiaoL. TolbertS.H. BillingeS.J.L. AbruñaH.D. MayS.J. GogotsiY. Scalable synthesis of ultrathin Mn3N2 exhibiting room‐temperature antiferromagnetism.Adv. Funct. Mater.20192917180900110.1002/adfm.201809001
    [Google Scholar]
  112. ZhangZ. CaoJ. WangS. SunZ. LiJ. Enhanced sensitivity of ZnFe2O4 based on ordered magnetic moment induced by magnetic field: A new insight into mechanism.Adv. Funct. Mater.20233348230525310.1002/adfm.202305253
    [Google Scholar]
  113. CaoJ. ZhangZ. WangS. SunZ. LiJ. WangY. XuX. YeZ. ZhangH. Magnetic field assisted enhanced sensitivity of nonferromagnetic materials boosting the carrier transfer: Mechanistic studies.ACS Sens.2024994777478710.1021/acssensors.4c01170 39254107
    [Google Scholar]
  114. ChakrabortyN. PandaS.N. MishraA.K. BarmanA. MondalS. Ferromagnetic Ni1–xVxO1–y nano-clusters for NO detection at room temperature: A case of magnetic field-induced chemiresistive sensing.ACS Appl. Mater. Interfaces20221446523015231510.1021/acsami.2c15766 36375038
    [Google Scholar]
  115. KimH.J. LeeJ.H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview.Sens. Actuators B Chem.201419260762710.1016/j.snb.2013.11.005
    [Google Scholar]
/content/journals/cset/10.2174/0122102981359015241211065324
Loading
/content/journals/cset/10.2174/0122102981359015241211065324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test