Skip to content
2000
Volume 5, Issue 1
  • ISSN: 3050-6115
  • E-ISSN: 3050-6123

Abstract

The Monkeypox virus (MPXV) has recently been identified as a new global health concern and, as such, requires new therapeutic approaches. Small molecules that can self-assemble into micelles have been demonstrated to improve solubility, pharmacokinetics, and anti-viral activity. Latest results suggest that amphiphilic small molecules enhance drug delivery and, importantly, can disrupt virus envelopes, which is required for MPXV. Moreover, encapsulating amphiphilic antiviral molecules with various hydrophobic drugs will significantly enhance their therapeutic indexes. This article presents a computational strategy based on molecular docking, dynamics simulations, and drug-mate nano assembly technologies in high antiviral efficiency against MPXV. This study, in fact, proposes new pathways for developing antiviral agents through the identification of key viral proteins as targets and based on insights obtained from already existing research. Safety considerations of amphiphilic molecules in humans have also been discussed. To this end, and through the identification of key viral proteins and the application of drug design principles, we hope to progress the development of novel antiviral agents and potential treatment strategies for MPXV.

Loading

Article metrics loading...

/content/journals/cset/10.2174/0122102981357936250128074730
2025-02-03
2025-12-19
Loading full text...

Full text loading...

References

  1. ShchelkunovaG.A. ShchelkunovS.N. Smallpox, monkeypox and other human orthopoxvirus infections.Viruses202215110310.3390/v1501010336680142
    [Google Scholar]
  2. MacNeillA.L. Comparative pathology of zoonotic orthopoxviruses.Pathogens202211889210.3390/pathogens1108089236015017
    [Google Scholar]
  3. BhardwajP. SarkarS. MishraR. Mpox and related poxviruses: A literature review of evolution, pathophysiology, and clinical manifestations.Asian Pac. J. Trop. Biomed.202414831933010.4103/apjtb.apjtb_193_24
    [Google Scholar]
  4. PatelM. AdnanM. AldarhamiA. BazaidA. SaeediN. AlkayyalA. SalehF. AwadhI. SaeedA. AlshaghdaliK. Current insights into diagnosis, prevention strategies, treatment, therapeutic targets, and challenges of monkeypox (Mpox) infections in human populations.Life202313124910.3390/life1301024936676198
    [Google Scholar]
  5. KhaniE. AfshariradB. Entezari-MalekiT. Monkeypox treatment: Current evidence and future perspectives.J. Med. Virol.2023951e2822910.1002/jmv.2822936253931
    [Google Scholar]
  6. ChakrabortyS. ChandranD. MohapatraR.K. AlagawanyM. El-ShallN.A. SharmaA.K. ChakrabortyC. DhamaK. Clinical management, antiviral drugs and immunotherapeutics for treating monkeypox. An update on current knowledge and futuristic prospects.Int. J. Surg.202210510684710.1016/j.ijsu.2022.10684735995352
    [Google Scholar]
  7. OvaisM. ZhangG. LiY. Tailoring multivalent nanomedicines for monkeypox.Nano Today20235210197110.1016/j.nantod.2023.101971
    [Google Scholar]
  8. SalataC. CalistriA. ParolinC. BaritussioA. PalùG. Antiviral activity of cationic amphiphilic drugs.Expert Rev. Anti Infect. Ther.201715548349210.1080/14787210.2017.130588828286997
    [Google Scholar]
  9. KashapovR. GaynanovaG. GabdrakhmanovD. KuznetsovD. PavlovR. PetrovK. ZakharovaL. SinyashinO. Self-assembly of amphiphilic compounds as a versatile tool for construction of nanoscale drug carriers.Int. J. Mol. Sci.20202118696110.3390/ijms2118696132971917
    [Google Scholar]
  10. CorsaroC. MallamaceD. NeriG. FazioE. Hydrophilicity and hydrophobicity: Key aspects for biomedical and technological purposes.Physica A202158012618910.1016/j.physa.2021.126189
    [Google Scholar]
  11. RochaB. de MoraisL.A. VianaM.C. CarneiroG. Promising strategies for improving oral bioavailability of poor water-soluble drugs.Expert Opin. Drug Discov.202318661562710.1080/17460441.2023.221180137157841
    [Google Scholar]
  12. WangJ. Shahed-AI-MahmudM. ChenA. LiK. TanH. JoyceR. An overview of antivirals against monkeypox virus and other orthopoxviruses.J. Med. Chem.20236674468449010.1021/acs.jmedchem.3c0006936961984
    [Google Scholar]
  13. St VincentM.R. ColpittsC.C. UstinovA.V. MuqadasM. JoyceM.A. BarsbyN.L. EpandR.F. EpandR.M. KhramyshevS.A. ValuevaO.A. KorshunV.A. TyrrellD.L. SchangL.M. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses.Proc. Natl. Acad. Sci. USA201010740173391734410.1073/pnas.101002610720823220
    [Google Scholar]
  14. LeclercqL. Nardello-RatajV. A new synergistic strategy for virus and bacteria eradication: Towards universal disinfectants.Pharmaceutics20221412279110.3390/pharmaceutics1412279136559284
    [Google Scholar]
  15. SimonM. VeitM. OsterriederK. GradzielskiM. Surfactants: Compounds for inactivation of SARS-CoV-2 and other enveloped viruses.Curr. Opin. Colloid Interface Sci.20215510147910.1016/j.cocis.2021.10147934149296
    [Google Scholar]
  16. JackmanJ.A. Antiviral peptide engineering for targeting membrane-enveloped viruses: Recent progress and future directions.Biochim. Biophys. Acta Biomembr.20221864218382110.1016/j.bbamem.2021.18382134808121
    [Google Scholar]
  17. TeissierE. ZandomeneghiG. LoquetA. LavilletteD. LavergneJ.P. MontserretR. CossetF.L. BöckmannA. MeierB.H. PeninF. PécheurE.I. Mechanism of inhibition of enveloped virus membrane fusion by the antiviral drug arbidol.PLoS One201161e1587410.1371/journal.pone.001587421283579
    [Google Scholar]
  18. ArumugamG.S. DamodharanK. DobleM. ThennarasuS. Significant perspectives on various viral infections targeted antiviral drugs and vaccines including COVID-19 pandemicity.Molecular Biomedicine.2022312110.1186/s43556‑022‑00078‑z35838929
    [Google Scholar]
  19. BehzadipourY. HemmatiS. Viral prefusion targeting using entry inhibitor peptides: The case of SARS-CoV-2 and influenza A virus.Int. J. Pept. Res. Ther.20222814210.1007/s10989‑021‑10357‑y35002586
    [Google Scholar]
  20. MohamedN.A. ZupinL. MaziS.I. Al-KhatibH.A. CrovellaS. Nanomedicine as a potential tool against monkeypox.Vaccines202311242810.3390/vaccines1102042836851305
    [Google Scholar]
  21. ChakravartyM. VoraA. Nanotechnology-based antiviral therapeutics.Drug Deliv. Transl. Res.202111374878710.1007/s13346‑020‑00818‑032748035
    [Google Scholar]
  22. LaneT.R. EkinsS. Defending antiviral cationic amphiphilic drugs that may cause drug-induced phospholipidosis.J. Chem. Inf. Model.20216194125413010.1021/acs.jcim.1c0090334516123
    [Google Scholar]
  23. GuptaM.N. RoyI. Drugs, host proteins and viral proteins: How their promiscuities shape antiviral design.Biol. Rev. Camb. Philos. Soc.202196120522210.1111/brv.1265232918378
    [Google Scholar]
  24. HanL. LiangS. MuW. ZhangZ. WangL. OuyangS. YaoB. LiuY. ZhangN. Amphiphilic small molecular mates match hydrophobic drugs to form nanoassemblies based on drug-mate strategy.Asian J. Pharm. Sci.202217112913810.1016/j.ajps.2021.11.00235261649
    [Google Scholar]
  25. BhalaniD.V. NutanB. KumarA. Singh ChandelA.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics.Biomedicines2022109205510.3390/biomedicines1009205536140156
    [Google Scholar]
  26. ChuW. YangY. QinS. CaiJ. BaiM. KongH. ZhangE. Low-toxicity amphiphilic molecules linked by an aromatic nucleus show broad-spectrum antibacterial activity and low drug resistance.Chem. Commun. (Camb.)201955304307431010.1039/C9CC00857H30789174
    [Google Scholar]
  27. LemboD. DonalisioM. CivraA. ArgenzianoM. CavalliR. Nanomedicine formulations for the delivery of antiviral drugs: A promising solution for the treatment of viral infections.Expert Opin. Drug Deliv.20181519311410.1080/17425247.2017.136086328749739
    [Google Scholar]
  28. ZhouJ. KrishnanN. JiangY. FangR.H. ZhangL. Nanotechnology for virus treatment.Nano Today20213610103110.1016/j.nantod.2020.10103133519948
    [Google Scholar]
  29. GurunathanS. QasimM. ChoiY. DoJ.T. ParkC. HongK. KimJ.H. SongH. Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses?Nanomaterials2020109164510.3390/nano1009164532825737
    [Google Scholar]
  30. XuW. YangR. XueY. ChenY. LiuS. ZhangS. WangY. LiuY. ZhangH. Boosting disassembly of π–π stacked supramolecular nanodrugs under tumor microenvironment by introducing stimuli‐responsive drug‐mates.Aggregate2024e64810.1002/agt2.648
    [Google Scholar]
  31. YangJ. QinG. HuangB. SongH. SunJ. PostingsM. RenJ. QuX. ScottP. ZhaoC. Metallo-supramolecular complexes enantioselectively target monkeypox virus RNA G-quadruplex and bolster immune responses against MPXVNat. Sci. Rev2024nwae38810.1093/nsr/nwae388
    [Google Scholar]
  32. LüZ. DaiX. XuJ. LiuZ. GuoY. GaoZ. MengF. Medicinal chemistry strategies toward broad-spectrum antiviral agents to prevent next pandemics.Eur. J. Med. Chem.202427111644210.1016/j.ejmech.2024.11644238685143
    [Google Scholar]
  33. IdreesS. ChenH. PanthN. PaudelK.R. HansbroP.M. Exploring viral–host protein interactions as antiviral therapies: A computational perspective.Microorganisms202412363010.3390/microorganisms1203063038543681
    [Google Scholar]
  34. HussainA. HussainA. Finding the potential inhibitory activity of vilanterol versus budesonide towards SARS-CoV-2 Mpro: A molecular dynamics simulation approach.Coronaviruses202342e08052321665610.2174/2666796704666230508140526
    [Google Scholar]
  35. HussainA. HussainA. Computational studies of budesonide vs. vilanterol: Asthma drugs against SARS-CoV-2 Mpro.Curr. Chin. Sci.2022229710010.2174/2210298102666220214114300
    [Google Scholar]
  36. HussainA. VermaC.K. Computational drug repurposing resources and approaches for discovering novel antifungal drugs against Candida albicans N-Myristoyl transferase.J. Pure Appl. Microbiol.202115255657910.22207/JPAM.15.2.49
    [Google Scholar]
  37. HussainA. VermaC.K. A combination of pharmacophore modeling, molecular docking and virtual screening study reveals 3, 5, 7-trihydroxy-2-(3, 4, 5-trihydroxyphenyl)-4H-chromen-4-one as a potential anti-cancer agent of COT kinase.Indian J. Pharm. Educ. Res.201852469970610.5530/ijper.52.4.81
    [Google Scholar]
  38. HussainA. VermaC.K. ChouhanU. Identification of novel inhibitors against cyclin dependent kinase 9/Cyclin T1 complex as: Anti cancer agent.Saudi J. Biol. Sci.20172461229124210.1016/j.sjbs.2015.10.00328855816
    [Google Scholar]
  39. HussainA. HussainA. SabnamN. KumarV.C. ShrivastavaN. Insilico exploration of the potential inhibitory activity of DrugBank compounds against CDK7 kinase using structure-based virtual screening, molecular docking, and dynamics simulation approach.Arab. J. Chem.202316210446010.1016/j.arabjc.2022.104460
    [Google Scholar]
  40. HussainA. VermaC. Ligand- and structure-based pharmacophore modeling, docking study reveals 2-[[4-[6-(isopropylamino) pyrimidin-4-yl]-1H-pyrrolo[2,3-b] pyridin-6-yl] amino] ethanol as a potential anticancer agent of CDK9/cyclin T1 kinase.J. Cancer Res. Ther.20191551131114010.4103/jcrt.JCRT_47_1831603123
    [Google Scholar]
  41. SofianiV.H. RukerdM.R.Z. CharostadJ. PardeshenasM. GhaziR. ArefiniaN. ShafieipourS. SalajeghehF. NakhaieM. From entry to evasion: A comprehensive analysis of host-virus interactions for monkeypox.Infect. Microbes Dis.2023101097
    [Google Scholar]
  42. GongQ. WangC. ChuaiX. ChiuS. Monkeypox virus: A re-emergent threat to humans.Virol. Sin.202237447748210.1016/j.virs.2022.07.00635820590
    [Google Scholar]
  43. KhanF.A. NasimN. WangY. AlhazmiA. SanamM. Ul-HaqZ. YalamatiD. UlanovaM. JiangZ.H. Amphiphilic desmuramyl peptides for the rational design of new vaccine adjuvants: Synthesis, in vitro modulation of inflammatory response and molecular docking studies.Eur. J. Med. Chem.202120911286310.1016/j.ejmech.2020.11286333032082
    [Google Scholar]
  44. NasutionM.A.F. ToepakE.P. AlkaffA.H. TambunanU.S.F. Flexible docking-based molecular dynamics simulation of natural product compounds and Ebola virus Nucleocapsid (EBOV NP): A computational approach to discover new drug for combating Ebola.BMC Bioinformatics201819S14Suppl. 1441910.1186/s12859‑018‑2387‑830453886
    [Google Scholar]
  45. HassanH.A. AbdelwahabS.F. Al-KhdhairawiA. Al ZrkaniM.K. RehmanH.M. Abdel-RahmanI.M. El-SheikhA.A.K. AbdelhamidM.M. Exploring the therapeutic potential of galidesivir analogs against Zaire ebolavirus protein 24 (V24): Database screening, molecular docking, drug-relevant property evaluation and molecular dynamics simulations.J. Biomol. Struct. Dyn.202442136761677110.1080/07391102.2023.223672037477257
    [Google Scholar]
  46. ZhaoC. ChenH. WangF. ZhangX. Amphiphilic self-assembly peptides: Rational strategies to design and delivery for drugs in biomedical applications.Colloids Surf. B Biointerfaces202120811204010.1016/j.colsurfb.2021.11204034425532
    [Google Scholar]
  47. TamaianR. PorozovY. ShityakovS. Exhaustive in silico design and screening of novel antipsychotic compounds with improved pharmacodynamics and blood-brain barrier permeation properties.J. Biomol. Struct. Dyn.20234124148491487010.1080/07391102.2023.218417936927517
    [Google Scholar]
  48. MuthumanickamS. RamachandranB. JeyakanthanJ. JegatheswaranS. PandiB. Designing a novel drug–drug conjugate as a prodrug for breast cancer therapy: In silico insights.Mol. Divers.202411710.1007/s11030‑024‑10886‑w38833125
    [Google Scholar]
  49. RanjanR. BiswalJ.K. Monkeypox: Re-emerging zoonotic threat.Zoonotic Diseases20222423424610.3390/zoonoticdis2040019
    [Google Scholar]
  50. JohnstonS.C. LinK.L. ConnorJ.H. RuthelG. GoffA. HensleyL.E. In vitro inhibition of monkeypox virus production and spread by Interferon-β.Virol. J.201291510.1186/1743‑422X‑9‑522225589
    [Google Scholar]
  51. GalindoI. GaraigortaU. LasalaF. Cuesta-GeijoM.A. BuenoP. GilC. DelgadoR. GastaminzaP. AlonsoC. Antiviral drugs targeting endosomal membrane proteins inhibit distant animal and human pathogenic viruses.Antiviral Res.202118610499010.1016/j.antiviral.2020.10499033249093
    [Google Scholar]
  52. YadavJ. El HassaniM. SodhiJ. LauschkeV.M. HartmanJ.H. RussellL.E. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data.Drug Metab. Rev.202153220723310.1080/03602532.2021.192243533989099
    [Google Scholar]
  53. JonesS. SuryalethaK. SavithriA.V. Small molecule antivirals to nanoparticles: The need of the hour to combat pandemics.Nanotechnology Platforms for Antiviral Challenges.CRC Press2023125142
    [Google Scholar]
  54. WangB. CaoB. BeiZ.C. XuL. ZhangD. ZhaoL. SongY. WangH. Disulfide-incorporated lipid prodrugs of cidofovir: Synthesis, antiviral activity, and release mechanism.Eur. J. Med. Chem.202325811560110.1016/j.ejmech.2023.11560137390509
    [Google Scholar]
  55. ShamimM.A. SatapathyP. PadhiB.K. VeeramachaneniS.D. AkhtarN. PradhanA. AgrawalA. DwivediP. MohantyA. PradhanK.B. KabirR. RabaanA.A. AlotaibiJ. Al IsmailZ.A. AlsoliabiZ.A. Al FraijA. SahR. Rodriguez-MoralesA.J. Pharmacological treatment and vaccines in monkeypox virus: A narrative review and bibliometric analysis.Front. Pharmacol.202314114990910.3389/fphar.2023.114990937214444
    [Google Scholar]
/content/journals/cset/10.2174/0122102981357936250128074730
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test