Skip to content
2000
image of Human Wharton’s Jelly Mesenchymal Stem Cells and their Extracellular Vesicles in the Management of Bleomycin-induced Lung Injury in Model Animals: A Comparative Preclinical Study Focused on Histomorphometric Analysis

Abstract

Introduction

Pulmonary fibrosis, a condition characterized by excessive lung tissue scarring, remains a significant therapeutic challenge. Given the potential of human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs) and their small extracellular vesicles (hWJ-MSC-EVs) as minimally invasive and scalable therapeutic options for pulmonary fibrosis in clinical settings, this study investigates the potential of hWJ-MSCs and hWJ-MSC-EVs in mitigating bleomycin-induced lung injury in C57BL/6J mice.

Methods

hWJ-MSCs were cultured and characterized for their ability to differentiate into osteogenic, adipogenic, and chondrogenic lineages. EVs were successfully induced serum starvation, purified using ultracentrifugation, and characterized for their protein and nucleic acid content, size distribution, and EV markers. A bleomycin-induced pulmonary fibrosis model was established in C57BL/6J mice. Mice were monitored for weight loss, mortality, and lung fibrosis severity following treatment with hWJ-MSCs and hWJ-MSC-EVs. Histological analysis and Ashcroft scoring were used to assess lung fibrosis.

Results

Bleomycin administration in mice resulted in significant weight loss, increased mortality, and severe lung fibrosis, as demonstrated by histological analysis and Ashcroft scoring. Treatment with hWJ-MSCs and hWJ-MSC-EVs significantly alleviated these symptoms. Mice receiving these treatments exhibited improved body weight, enhanced survival rates, and reduced lung fibrosis, with notable improvements in alveolar structure and decreased fibrotic tissue deposition.

Conclusions

These findings highlight the potential of hWJ-MSCs and hWJ-MSC-EVs as therapeutic agents in treating pulmonary fibrosis by reducing inflammation and promoting lung tissue repair, offering a potential new avenue for regenerative therapy in severe lung diseases. Future research directions involve elucidating the molecular pathways involved in tissue repair, optimizing therapeutic delivery, and conducting comprehensive clinical evaluations.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X366742250417065341
2025-04-25
2025-11-05
Loading full text...

Full text loading...

References

  1. Huang W.J. Tang X.X. Virus infection induced pulmonary fibrosis. J. Transl. Med. 2021 19 1 496 10.1186/s12967‑021‑03159‑9 34876129
    [Google Scholar]
  2. Long M.E. Mallampalli R.K. Horowitz J.C. Pathogenesis of pneumonia and acute lung injury. Clin. Sci. 2022 136 10 747 769 10.1042/CS20210879 35621124
    [Google Scholar]
  3. Maher T.M. Bendstrup E. Dron L. Langley J. Smith G. Khalid J.M. Patel H. Kreuter M. Global incidence and prevalence of idiopathic pulmonary fibrosis. Respir. Res. 2021 22 1 197 10.1186/s12931‑021‑01791‑z 34233665
    [Google Scholar]
  4. Ali R.M.M. Ghonimy M.B.I. Post-COVID-19 pneumonia lung fibrosis: A worrisome sequelae in surviving patients. Egypt. J. Radiol. Nucl. Med. 2021 52 1 101 10.1186/s43055‑021‑00484‑3
    [Google Scholar]
  5. Dabrowska S. Andrzejewska A. Janowski M. Lukomska B. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: Therapeutic outlook for inflammatory and degenerative diseases. Front. Immunol. 2021 11 591065 10.3389/fimmu.2020.591065 33613514
    [Google Scholar]
  6. Wu J. Yang Z. Wang D. Xiao Y. Shao J. Ren K. Human umbilical cord mesenchymal stem cell-derived exosome regulates intestinal type 2 immunity. Curr. Stem Cell Res. Ther. 2024 19 38779734
    [Google Scholar]
  7. Davies J.E. Walker J.T. Keating A. Concise review: Wharton’s jelly: The rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl. Med. 2017 6 7 1620 1630 10.1002/sctm.16‑0492 28488282
    [Google Scholar]
  8. Li X. Peng B. Zhu X. Wang P. Xiong Y. Liu H. Sun K. Wang H. Ou L. Wu Z. Liu X. He H. Mo S. Peng X. Tian Y. Zhang R. Yang L. Changes in related circular RNAs following ERβ knockdown and the relationship to rBMSC osteogenesis. Biochem. Biophys. Res. Commun. 2017 493 1 100 107 10.1016/j.bbrc.2017.09.068 28919414
    [Google Scholar]
  9. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  10. Lin S.Q. Wang K. Pan X.H. Ruan G.P. Mechanisms of stem cells and their secreted exosomes in the treatment of autoimmune diseases. Curr. Stem Cell Res. Ther. 2024 19 11 1415 1428 10.2174/011574888X271344231129053003 38311916
    [Google Scholar]
  11. Liao W. Li X. Tang X. Human umbilical cord mesenchymal stem cells alleviate chronic salpingitis by modulating macrophage-associated inflammatory factors. Curr. Stem Cell Res. Ther. 2024 19 11 1442 1448 10.2174/011574888X261128231108043931 38173206
    [Google Scholar]
  12. Tian C. Lv G. Ye L. Zhao X. Chen M. Ye Q. Li Q. Zhao J. Zhu X. Pan X. Efficacy and mechanism of highly active umbilical cord mesenchymal stem cells in the treatment of osteoporosis in rats. Curr. Stem Cell Res. Ther. 2025 20 1 91 102 10.2174/011574888X284911240131100909 38357953
    [Google Scholar]
  13. Chen H.X. Xu H.J. Zhang W. Luo Z.Y. Zhang Z.X. Shi H.H. Dong Y-C. Xue Z-J. Ben Y. An S-J. HucMSCs-derived exosomes protect against 6-hydroxydopamine-induced Parkinson’s disease in rats by inhibiting Caspase-3 expression and suppressing apoptosis. Curr. Stem Cell Res. Ther. 2024 19 10.2174/011574888X301827240613063513
    [Google Scholar]
  14. Zhang K. Cheng K. Stem cell-derived exosome versus stem cell therapy. Nat Rev Bioeng 2023 1 9 608 609 10.1038/s44222‑023‑00064‑2 37359776
    [Google Scholar]
  15. Han C. Zhou J. Liang C. Liu B. Pan X. Zhang Y. Wang Y. Yan B. Xie W. Liu F. Yu X.Y. Li Y. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater. Sci. 2019 7 7 2920 2933 10.1039/C9BM00101H 31090763
    [Google Scholar]
  16. Shen H. Yoneda S. Abu-Amer Y. Guilak F. Gelberman R.H. Stem cell‐derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. J. Orthop. Res. 2020 38 1 117 127 10.1002/jor.24406 31286564
    [Google Scholar]
  17. Nooshabadi V.T. Khanmohamadi M. Valipour E. Mahdipour S. Salati A. Malekshahi Z.V. Shafei S. Amini E. Farzamfar S. Ai J. Impact of exosome‐loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model. J. Biomed. Mater. Res. A 2020 108 11 2138 2149 10.1002/jbm.a.36959 32319166
    [Google Scholar]
  18. Zhou Y. Xu H. Xu W. Wang B. Wu H. Tao Y. Zhang B. Wang M. Mao F. Yan Y. Gao S. Gu H. Zhu W. Qian H. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013 4 2 34 10.1186/scrt194 23618405
    [Google Scholar]
  19. Zargar M.J. Kaviani S. Vasei M. Soufi Zomorrod M. Heidari Keshel S. Soleimani M. Therapeutic role of mesenchymal stem cell-derived exosomes in respiratory disease. Stem Cell Res. Ther. 2022 13 1 194 10.1186/s13287‑022‑02866‑4 35550188
    [Google Scholar]
  20. Feng Y. Guo K. Jiang J. Lin S. Mesenchymal stem cell-derived exosomes as delivery vehicles for non-coding RNAs in lung diseases. Biomed. Pharmacother. 2024 170 116008 10.1016/j.biopha.2023.116008 38071800
    [Google Scholar]
  21. Zhou X. Liu Y. Xie J. Wen Z. Yang J. Zhang H. Zhou Z. Zhang J. Cui H. Ma J. MSC-derived extracellular vesicles against pulmonary fibrosis of rodent model: A meta-analysis. Curr. Stem Cell Res. Ther. 2025 20 1 72 82 10.2174/1574888X18666230817111559 37592780
    [Google Scholar]
  22. B Moore B. Lawson W.E. Oury T.D. Sisson T.H. Raghavendran K. Hogaboam C.M. B. Moore B Animal models of fibrotic lung disease. Am. J. Respir. Cell Mol. Biol. 2013 49 2 167 179 10.1165/rcmb.2013‑0094TR 23526222
    [Google Scholar]
  23. Moeller A. Ask K. Warburton D. Gauldie J. Kolb M. The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 2008 40 3 362 382 10.1016/j.biocel.2007.08.011 17936056
    [Google Scholar]
  24. Dominici M. Le Blanc K. Mueller I. Slaper-Cortenbach I. Marini F.C. Krause D.S. Deans R.J. Keating A. Prockop D.J. Horwitz E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular Therapy position statement. Cytotherapy 2006 8 4 315 317 10.1080/14653240600855905 16923606
    [Google Scholar]
  25. Geetha G. Mesenchymal stem cell culture in aligned porous hydroxyapatite scaffolds using a multiwell plate bioreactor for bone tissue engineering. MedComm – Future Med 2022 1 1 e17
    [Google Scholar]
  26. Chhoy P. Brown C.W. Amante J.J. Mercurio A.M. Protocol for the separation of extracellular vesicles by ultracentrifugation from in vitro cell culture models. STAR Protocols 2021 2 1 100303 10.1016/j.xpro.2021.100303 33554138
    [Google Scholar]
  27. Haraszti R.A. Miller R. Dubuke M.L. Rockwell H.E. Coles A.H. Sapp E. Didiot M.C. Echeverria D. Stoppato M. Sere Y.Y. Leszyk J. Alterman J.F. Godinho B.M.D.C. Hassler M.R. McDaniel J. Narain N.R. Wollacott R. Wang Y. Shaffer S.A. Kiebish M.A. DiFiglia M. Aronin N. Khvorova A. Serum deprivation of mesenchymal stem cells improves exosome activity and alters lipid and protein composition. iScience 2019 16 230 241 10.1016/j.isci.2019.05.029 31195240
    [Google Scholar]
  28. Willms E. Johansson H.J. Mäger I. Lee Y. Blomberg K.E.M. Sadik M. Alaarg A. Smith C.I.E. Lehtiö J. EL Andaloussi S. Wood M.J.A. Vader P. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 2016 6 1 22519 10.1038/srep22519 26931825
    [Google Scholar]
  29. Shekari F. Alibhai F.J. Baharvand H. Börger V. Bruno S. Davies O. Giebel B. Gimona M. Salekdeh G.H. Martin-Jaular L. Mathivanan S. Nelissen I. Nolte-’t Hoen E. O’Driscoll L. Perut F. Pluchino S. Pocsfalvi G. Salomon C. Soekmadji C. Staubach S. Torrecilhas A.C. Shelke G.V. Tertel T. Zhu D. Théry C. Witwer K. Nieuwland R. Cell culture‐derived extracellular vesicles: Considerations for reporting cell culturing parameters. J. Extracell. Biol. 2023 2 10 e115 10.1002/jex2.115 38939735
    [Google Scholar]
  30. Welsh J.A. Goberdhan D.C.I. O’Driscoll L. Buzas E.I. Blenkiron C. Bussolati B. Cai H. Di Vizio D. Driedonks T.A.P. Erdbrügger U. Falcon-Perez J.M. Fu Q.L. Hill A.F. Lenassi M. Lim S.K. Mahoney M.G. Mohanty S. Möller A. Nieuwland R. Ochiya T. Sahoo S. Torrecilhas A.C. Zheng L. Zijlstra A. Abuelreich S. Bagabas R. Bergese P. Bridges E.M. Brucale M. Burger D. Carney R.P. Cocucci E. Crescitelli R. Hanser E. Harris A.L. Haughey N.J. Hendrix A. Ivanov A.R. Jovanovic-Talisman T. Kruh-Garcia N.A. Ku’ulei-Lyn Faustino V. Kyburz D. Lässer C. Lennon K.M. Lötvall J. Maddox A.L. Martens-Uzunova E.S. Mizenko R.R. Newman L.A. Ridolfi A. Rohde E. Rojalin T. Rowland A. Saftics A. Sandau U.S. Saugstad J.A. Shekari F. Swift S. Ter-Ovanesyan D. Tosar J.P. Useckaite Z. Valle F. Varga Z. van der Pol E. van Herwijnen M.J.C. Wauben M.H.M. Wehman A.M. Williams S. Zendrini A. Zimmerman A.J. Théry C. Witwer K.W. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024 13 2 e12404 10.1002/jev2.12404 38326288
    [Google Scholar]
  31. Kim S.N. Lee J.S. Yang H.S. Cho J.W. Kwon S.J. Kim Y.B. Her J.D. Cho K.H. Song C.W. Lee K.H. Dose-response effects of bleomycin on inflammation and pulmonary fibrosis in mice. Toxicol. Res. 2010 26 3 217 222 10.5487/TR.2010.26.3.217 24278527
    [Google Scholar]
  32. Giri J. Galipeau J. Mesenchymal stromal cell therapeutic potency is dependent upon viability, route of delivery, and immune match. Blood Adv. 2020 4 9 1987 1997 10.1182/bloodadvances.2020001711 32384543
    [Google Scholar]
  33. Ashcroft T. Simpson J.M. Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol. 1988 41 4 467 470 10.1136/jcp.41.4.467 3366935
    [Google Scholar]
  34. Hübner R.H. Gitter W. Eddine El Mokhtari N. Mathiak M. Both M. Bolte H. Freitag-Wolf S. Bewig B. Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques 2008 44 4 507 517, 514-517 10.2144/000112729 18476815
    [Google Scholar]
  35. Krishnan A. Muthusamy S. Fernandez F.B. Kasoju N. Mesenchymal stem cell-derived extracellular vesicles in the management of covid19-associated lung injury: A review on publications, clinical trials and patent landscape. Tissue Eng. Regen. Med. 2022 19 4 659 673 10.1007/s13770‑022‑00441‑9 35384633
    [Google Scholar]
  36. Reiner A.T. Witwer K.W. van Balkom B.W.M. de Beer J. Brodie C. Corteling R.L. Gabrielsson S. Gimona M. Ibrahim A.G. de Kleijn D. Lai C.P. Lötvall J. del Portillo H.A. Reischl I.G. Riazifar M. Salomon C. Tahara H. Toh W.S. Wauben M.H.M. Yang V.K. Yang Y. Yeo R.W.Y. Yin H. Giebel B. Rohde E. Lim S.K. Concise review: Developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl. Med. 2017 6 8 1730 1739 10.1002/sctm.17‑0055 28714557
    [Google Scholar]
  37. Valadi H. Ekström K. Bossios A. Sjöstrand M. Lee J.J. Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007 9 6 654 659 10.1038/ncb1596 17486113
    [Google Scholar]
  38. Zhang Y. Zhangdi H. Nie X. Wang L. Wan Z. Jin H. Pu R. Liang M. Chang Y. Gao Y. Zhang H. Jin S. Exosomes derived from BMMSCs mitigate the hepatic fibrosis via anti-pyroptosis pathway in a cirrhosis model. Cells 2022 11 24 4004 10.3390/cells11244004 36552767
    [Google Scholar]
  39. Kowal J. Arras G. Colombo M. Jouve M. Morath J.P. Primdal-Bengtson B. Dingli F. Loew D. Tkach M. Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA 2016 113 8 E968 E977 10.1073/pnas.1521230113 26858453
    [Google Scholar]
  40. Zhang C. Liao W. Li W. Li M. Xu X. Sun H. Xue Y. Liu L. Qiu J. Zhang C. Zhang X. Ye J. Du J. Deng D.Y.B. Deng W. Li T. Human umbilical cord mesenchymal stem cells derived extracellular vesicles alleviate salpingitis by promoting M1–to–M2 transformation. Front. Physiol. 2023 14 1131701 10.3389/fphys.2023.1131701 36875046
    [Google Scholar]
  41. Gilhodes J.C. Julé Y. Kreuz S. Stierstorfer B. Stiller D. Wollin L. Quantification of pulmonary fibrosis in a bleomycin mouse model using automated histological image analysis. PLoS One 2017 12 1 e0170561 10.1371/journal.pone.0170561
    [Google Scholar]
  42. Decologne N. Wettstein G. Kolb M. Margetts P. Garrido C. Camus P. Bonniaud P. Bleomycin induces pleural and subpleural fibrosis in the presence of carbon particles. Eur. Respir. J. 2010 35 1 176 185 10.1183/09031936.00181808 19574324
    [Google Scholar]
  43. Tashiro J. Rubio G.A. Limper A.H. Williams K. Elliot S.J. Ninou I. Aidinis V. Tzouvelekis A. Glassberg M.K. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front. Med. 2017 4 118 10.3389/fmed.2017.00118 28804709
    [Google Scholar]
  44. Matthay M.A. Goolaerts A. Howard J.P. Woo Lee J. Mesenchymal stem cells for acute lung injury: Preclinical evidence. Crit. Care Med. 2010 38 10 Suppl. S569 S573 10.1097/CCM.0b013e3181f1ff1d 21164399
    [Google Scholar]
  45. Rubio G.A. Elliot S.J. Wikramanayake T.C. Xia X. Pereira-Simon S. Thaller S.R. Glinos G.D. Jozic I. Hirt P. Pastar I. Tomic-Canic M. Glassberg M.K. Mesenchymal stromal cells prevent bleomycin‐induced lung and skin fibrosis in aged mice and restore wound healing. J. Cell. Physiol. 2018 233 8 5503 5512 10.1002/jcp.26418 29271488
    [Google Scholar]
  46. Mansouri N. Willis G.R. Fernandez-Gonzalez A. Reis M. Nassiri S. Mitsialis S.A. Kourembanas S. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight 2019 4 21 e128060 10.1172/jci.insight.128060 31581150
    [Google Scholar]
  47. Li R. Xiao C. Liu H. Huang Y. Dilger J.P. Lin J. Effects of local anesthetics on breast cancer cell viability and migration. BMC Cancer 2018 18 1 666 10.1186/s12885‑018‑4576‑2 29914426
    [Google Scholar]
  48. Liu H. Dilger J.P. Lin J. Effects of local anesthetics on cancer cells. Pharmacol. Ther. 2020 212 107558 10.1016/j.pharmthera.2020.107558 32343985
    [Google Scholar]
  49. Jin Z. Zhang W. Liu H. Ding A. Lin Y. Wu S.X. Lin J. Potential therapeutic application of local anesthetics in cancer treatment. Recent Patents Anticancer Drug Discov. 2022 17 4 326 342 10.2174/1574892817666220119121204 35043766
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X366742250417065341
Loading
/content/journals/cscr/10.2174/011574888X366742250417065341
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test