Skip to content
2000
Volume 20, Issue 11
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Limbal epithelial stem cells (LESCs), which are responsible for the renewal and repair of corneal epithelium, are located in the limbus. The limbus is an important structure for maintaining the normal corneal epithelium. Damage to the limbus can lead to limbal stem cell deficiency (LSCD), a common blind-causing disease. However, the cellular composition of the limbus and the functions of various cell populations have not yet been accurately reproduced, making it difficult to reconstruct the normal structure of the limbus under disease conditions. Currently, there are mature methods for isolating and culturing various types of stem/progenitor cells from the limbus, including LESCs, limbal niche cells (LNCs), and limbal melanocytes (LMs). Successful culture of these cells helps to better investigate their biological functions, their role in sustaining corneal epithelial homeostasis, and their feasibility for basic research or clinical applications. This review summarizes the definitions, functions, and characteristics of these three types of stem/progenitor cells that can be isolated and purified from the limbus, in the hope of drawing attention to and stimulating discussion on this topic. This will help to clarify the cellular composition of the limbus, reconstruct the normal structure of the limbus, and develop innovative stem cell therapy.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X358606250414063844
2025-04-29
2026-02-05
Loading full text...

Full text loading...

/deliver/fulltext/cscr/20/11/CSCRT-20-11-04.html?itemId=/content/journals/cscr/10.2174/011574888X358606250414063844&mimeType=html&fmt=ahah

References

  1. LeblondC.P. The life history of cells in renewing systems.Am. J. Anat.1981160211315810.1002/aja.1001600202 6168194
    [Google Scholar]
  2. TsengS.C.G. Concept and application of limbal stem cells.Eye (Lond.)19893214115710.1038/eye.1989.22 2695347
    [Google Scholar]
  3. WagersA.J. WeissmanI.L. Plasticity of adult stem cells.Cell2004116563964810.1016/S0092‑8674(04)00208‑9 15006347
    [Google Scholar]
  4. PostY. CleversH. Defining Adult stem cell function at its simplest: The ability to replace lost cells through mitosis.Cell Stem Cell201925217418310.1016/j.stem.2019.07.002 31374197
    [Google Scholar]
  5. FuchsE. TumbarT. GuaschG. Socializing with the Neighbors.Cell2004116676977810.1016/S0092‑8674(04)00255‑7 15035980
    [Google Scholar]
  6. SpradlingA. Drummond-BarbosaD. KaiT. Stem cells find their niche.Nature200141468599810410.1038/35102160 11689954
    [Google Scholar]
  7. SchermerA. GalvinS. SunT.T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells.J. Cell Biol.19861031496210.1083/jcb.103.1.49 2424919
    [Google Scholar]
  8. WeissmanI.L. Translating stem and progenitor cell biology to the clinic: Barriers and opportunities.Science200028754571442144610.1126/science.287.5457.1442 10688785
    [Google Scholar]
  9. De LucaM. AiutiA. CossuG. ParmarM. PellegriniG. RobeyP.G. Advances in stem cell research and therapeutic development.Nat. Cell Biol.201921780181110.1038/s41556‑019‑0344‑z 31209293
    [Google Scholar]
  10. SchofieldR. The relationship between the spleen colony-forming cell and the haemopoietic stem cell.Blood Cells197841-2725 747780
    [Google Scholar]
  11. WaltherV. GrahamT.A. Location, location, location! The reality of life for an intestinal stem cell in the crypt.J. Pathol.201423411410.1002/path.4370 24797291
    [Google Scholar]
  12. ContiL. PollardS.M. GorbaT. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell.PLoS Biol.200539e28310.1371/journal.pbio.0030283 16086633
    [Google Scholar]
  13. KumarA. YunH. FunderburghM.L. DuY. Regenerative therapy for the Cornea.Prog. Retin. Eye Res.20228710101110.1016/j.preteyeres.2021.101011 34530154
    [Google Scholar]
  14. MajoF. RochatA. NicolasM. JaoudéG.A. BarrandonY. Oligopotent stem cells are distributed throughout the mammalian ocular surface.Nature2008456721925025410.1038/nature07406 18830243
    [Google Scholar]
  15. SunT.T. TsengS.C. LavkerR.M. Location of corneal epithelial stem cells.Nature20104637284E10E1110.1038/nature08805 20182462
    [Google Scholar]
  16. CotsarelisG. ChengS.Z. DongG. SunT.T. LavkerR.M. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells.Cell198957220120910.1016/0092‑8674(89)90958‑6 2702690
    [Google Scholar]
  17. RomanoA.C. EspanaE.M. YooS.H. BudakM.T. WolosinJ.M. TsengS.C.G. Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry.Invest. Ophthalmol. Vis. Sci.200344125125512910.1167/iovs.03‑0628 14638707
    [Google Scholar]
  18. EbatoB. FriendJ. ThoftR.A. Comparison of limbal and peripheral human corneal epithelium in tissue culture.Invest. Ophthalmol. Vis. Sci.1988291015331537 3170124
    [Google Scholar]
  19. Seyed-SafiA.G. DanielsJ.T. The limbus: Structure and function.Exp. Eye Res.202019710807410.1016/j.exer.2020.108074 32502532
    [Google Scholar]
  20. DavangerM. EvensenA. Role of the pericorneal papillary structure in renewal of corneal epithelium.Nature1971229528656056110.1038/229560a0 4925352
    [Google Scholar]
  21. SoleimaniM. CheraqpourK. KogantiR. BaharnooriS.M. DjalilianA.R. Concise review: Bioengineering of limbal stem cell niche.Bioengineering202310111110.3390/bioengineering10010111 36671683
    [Google Scholar]
  22. CollinJ. QueenR. ZertiD. A single cell atlas of human cornea that defines its development, limbal progenitor cells and their interactions with the immune cells.Ocul. Surf.20212127929810.1016/j.jtos.2021.03.010 33865984
    [Google Scholar]
  23. PolisettiN. ZenkelM. Menzel-SeveringJ. KruseF.E. Schlötzer-SchrehardtU. Cell adhesion molecules and stem cell-niche-interactions in the limbal stem cell niche.Stem Cells201634120321910.1002/stem.2191 26349477
    [Google Scholar]
  24. SuG WangW XuL Isolation and identification of limbal niche cells.J Vis Exp202320010.3791/65618 37955381
    [Google Scholar]
  25. PolisettiN. SharafL. Schlötzer-SchrehardtU. SchlunckG. ReinhardT. Efficient isolation and functional characterization of niche cells from human Corneal Limbus.Int. J. Mol. Sci.2022235275010.3390/ijms23052750 35269891
    [Google Scholar]
  26. ChenZ. de PaivaC.S. LuoL. KretzerF.L. PflugfelderS.C. LiD.Q. Characterization of putative stem cell phenotype in human limbal epithelia.Stem Cells200422335536610.1634/stemcells.22‑3‑355 15153612
    [Google Scholar]
  27. SteppM.A. ZieskeJ.D. The corneal epithelial stem cell niche.Ocul. Surf.200531152610.1016/S1542‑0124(12)70119‑2 17131002
    [Google Scholar]
  28. Di GirolamoN. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells.Prog. Retin. Eye Res.20154820322510.1016/j.preteyeres.2015.04.002 25916944
    [Google Scholar]
  29. ThoftR.A. FriendJ. The X, Y, Z hypothesis of corneal epithelial maintenance.Invest. Ophthalmol. Vis. Sci.1983241014421443 6618809
    [Google Scholar]
  30. LiD.Q. KimS. LiJ.M. Single-cell transcriptomics identifies limbal stem cell population and cell types mapping its differentiation trajectory in limbal basal epithelium of human cornea.Ocul. Surf.202120203210.1016/j.jtos.2020.12.004 33388438
    [Google Scholar]
  31. NorrickA. EsterlechnerJ. Niebergall-RothE. Process development and safety evaluation of ABCB5+ limbal stem cells as advanced-therapy medicinal product to treat limbal stem cell deficiency.Stem Cell Res. Ther.202112119410.1186/s13287‑021‑02272‑2 33741066
    [Google Scholar]
  32. RuizM. GonzálezS. BonnetC. DengS.X. Extracellular miR-6723-5p could serve as a biomarker of limbal epithelial stem/progenitor cell population.Biomark. Res.20221013610.1186/s40364‑022‑00384‑2 35642012
    [Google Scholar]
  33. YangA. KaghadM. WangY. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities.Mol. Cell19982330531610.1016/S1097‑2765(00)80275‑0 9774969
    [Google Scholar]
  34. KaoW.W.Y. Keratin expression by corneal and limbal stem cells during development.Exp. Eye Res.202020010820610.1016/j.exer.2020.108206 32882212
    [Google Scholar]
  35. WatanabeK. NishidaK. YamatoM. Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2.FEBS Lett.20045651-3610 15135043
    [Google Scholar]
  36. KsanderB.R. KolovouP.E. WilsonB.J. ABCB5 is a limbal stem cell gene required for corneal development and repair.Nature2014511750935335710.1038/nature13426 25030174
    [Google Scholar]
  37. MaticM. PetrovI.N. ChenS. WangC. WolosinJ.M. DimitrijevichS.D. Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity.Differentiation199761425126010.1046/j.1432‑0436.1997.6140251.x 9203348
    [Google Scholar]
  38. Hernáez-MoyaR. GonzálezS. UrkaregiA. PijoanJ.I. DengS.X. AndolloN. Expansion of human limbal epithelial stem/progenitor cells using different human sera: A multivariate statistical analysis.Int. J. Mol. Sci.20202117613210.3390/ijms21176132 32854428
    [Google Scholar]
  39. SharmaS.M. FuchslugerT. AhmadS. Comparative analysis of human-derived feeder layers with 3T3 fibroblasts for the ex vivo expansion of human limbal and oral epithelium.Stem Cell Rev.20128369670510.1007/s12015‑011‑9319‑6 21964568
    [Google Scholar]
  40. López-PaniaguaM. Nieto-MiguelT. de la MataA. Comparison of functional limbal epithelial stem cell isolation methods.Exp. Eye Res.2016146839410.1016/j.exer.2015.12.002 26704459
    [Google Scholar]
  41. ChenS.Y. HanB. ZhuY.T. HC-HA/PTX3 purified from amniotic membrane promotes BMP signaling in limbal niche cells to maintain quiescence of limbal epithelial progenitor/stem cells.Stem Cells201533113341335510.1002/stem.2091 26148958
    [Google Scholar]
  42. BrejchovaK. TrosanP. StudenyP. Characterization and comparison of human limbal explant cultures grown under defined and xeno-free conditions.Exp. Eye Res.2018176202810.1016/j.exer.2018.06.019 29928900
    [Google Scholar]
  43. de la MataA. Mateos-TimonedaM.A. Nieto-MiguelT. Poly-l/dl-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells.Colloids Surf. B Biointerfaces201917712112910.1016/j.colsurfb.2019.01.054 30716697
    [Google Scholar]
  44. GoldbergM.F. In vivo confocal microscopy and diagnosis of limbal stem cell deficiency. Photographing the palisades of vogt and limbal stem cells.Am. J. Ophthalmol.2013156120520610.1016/j.ajo.2013.03.032 23791376
    [Google Scholar]
  45. Schlötzer-SchrehardtU. DietrichT. SaitoK. Characterization of extracellular matrix components in the limbal epithelial stem cell compartment.Exp. Eye Res.200785684586010.1016/j.exer.2007.08.020 17927980
    [Google Scholar]
  46. FrancozM. KaramokoI. BaudouinC. LabbéA. Ocular surface epithelial thickness evaluation with spectral-domain optical coherence tomography.Invest. Ophthalmol. Vis. Sci.201152129116912310.1167/iovs.11‑7988 22025572
    [Google Scholar]
  47. HuangM. WangB. WanP. Roles of limbal microvascular net and limbal stroma in regulating maintenance of limbal epithelial stem cells.Cell Tissue Res.2015359254756310.1007/s00441‑014‑2032‑4 25398719
    [Google Scholar]
  48. KolliS. BojicS. GhareebA.E. Kurzawa-AkanbiM. FigueiredoF.C. LakoM. The role of nerve growth factor in maintaining proliferative capacity, colony-forming efficiency, and the limbal stem cell phenotype.Stem Cells201937113914910.1002/stem.2921 30599086
    [Google Scholar]
  49. LeQ. XuJ. DengS.X. The diagnosis of limbal stem cell deficiency.Ocul. Surf.2018161586910.1016/j.jtos.2017.11.002 29113917
    [Google Scholar]
  50. DengS.X. BorderieV. ChanC.C. Global consensus on definition, classification, diagnosis, and staging of limbal stem cell deficiency.Cornea201938336437510.1097/ICO.0000000000001820 30614902
    [Google Scholar]
  51. PrabhasawatP. EkpoP. UiprasertkulM. ChotikavanichS. TesavibulN. Efficacy of cultivated corneal epithelial stem cells for ocular surface reconstruction.Clin. Ophthalmol.2012614831492 23055668
    [Google Scholar]
  52. ChengJ. ZhaiH. WangJ. DuanH. ZhouQ. Long-term outcome of allogeneic cultivated limbal epithelial transplantation for symblepharon caused by severe ocular burns.BMC Ophthalmol.2017171810.1186/s12886‑017‑0403‑9 28143466
    [Google Scholar]
  53. YazdanpanahG. HaqZ. KangK. JabbehdariS. RosenblattM. DjalilianA.R. Strategies for reconstructing the limbal stem cell niche.Ocul. Surf.201917223024010.1016/j.jtos.2019.01.002 30633966
    [Google Scholar]
  54. RamaP. MatuskaS. PaganoniG. SpinelliA. De LucaM. PellegriniG. Limbal stem-cell therapy and long-term corneal regeneration.N. Engl. J. Med.2010363214715510.1056/NEJMoa0905955 20573916
    [Google Scholar]
  55. AltshulerA. Amitai-LangeA. TaraziN. Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing.Cell Stem Cell202128712481261.e810.1016/j.stem.2021.04.003 33984282
    [Google Scholar]
  56. SaghizadehM. KramerovA.A. SvendsenC.N. LjubimovA.V. Concise review: Stem cells for corneal wound healing.Stem Cells201735102105211410.1002/stem.2667 28748596
    [Google Scholar]
  57. LiG.G. ZhuY.T. XieH.T. ChenS.Y. TsengS.C.G. Mesenchymal stem cells derived from human limbal niche cells.Invest. Ophthalmol. Vis. Sci.20125395686569710.1167/iovs.12‑10300 22836771
    [Google Scholar]
  58. XieH.T. ChenS.Y. LiG.G. TsengS.C.G. Isolation and expansion of human limbal stromal niche cells.Invest. Ophthalmol. Vis. Sci.201253127928610.1167/iovs.11‑8441 22167096
    [Google Scholar]
  59. FunderburghJ.L. FunderburghM.L. DuY. Stem cells in the limbal stroma.Ocul. Surf.201614211312010.1016/j.jtos.2015.12.006 26804252
    [Google Scholar]
  60. BranchM.J. HashmaniK. DhillonP. JonesD.R.E. DuaH.S. HopkinsonA. Mesenchymal stem cells in the human corneal limbal stroma.Invest. Ophthalmol. Vis. Sci.20125395109511610.1167/iovs.11‑8673 22736610
    [Google Scholar]
  61. BasuS. HertsenbergA.J. FunderburghM.L. Human limbal biopsy–derived stromal stem cells prevent corneal scarring.Sci. Transl. Med.20146266266ra17210.1126/scitranslmed.3009644 25504883
    [Google Scholar]
  62. AcarU. PinarliF.A. AcarD.E. Effect of allogeneic limbal mesenchymal stem cell therapy in corneal healing: role of administration route.Ophthalmic Res.2015532828910.1159/000368659 25613310
    [Google Scholar]
  63. KatikireddyK.R. DanaR. JurkunasU.V. Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells.Stem Cells201432371772910.1002/stem.1541 24022965
    [Google Scholar]
  64. LiG.G. ChenS.Y. XieH.T. ZhuY.T. TsengS.C.G. Angiogenesis potential of human limbal stromal niche cells.Invest. Ophthalmol. Vis. Sci.20125373357336710.1167/iovs.11‑9414 22538425
    [Google Scholar]
  65. KureshiA.K. DziaskoM. FunderburghJ.L. DanielsJ.T. Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents.Sci. Rep.2015511618610.1038/srep16186 26531048
    [Google Scholar]
  66. GuoP. SunH. ZhangY. Limbal niche cells are a potent resource of adult mesenchymal progenitors.J. Cell. Mol. Med.20182273315332210.1111/jcmm.13635 29679460
    [Google Scholar]
  67. ZhuH. WangW. TanY. Limbal niche cells and three-dimensional matrigel-induced dedifferentiation of mature corneal epithelial cells.Invest. Ophthalmol. Vis. Sci.2022635110.1167/iovs.63.5.1 35499835
    [Google Scholar]
  68. LiG. ZhangY. CaiS. Human limbal niche cells are a powerful regenerative source for the prevention of limbal stem cell deficiency in a rabbit model.Sci. Rep.201881656610.1038/s41598‑018‑24862‑6 29700361
    [Google Scholar]
  69. KomaiY. UshikiT. The three-dimensional organization of collagen fibrils in the human cornea and sclera.Invest. Ophthalmol. Vis. Sci.199132822442258 2071337
    [Google Scholar]
  70. MorganS.R. DooleyE.P. Kamma-LorgerC. FunderburghJ.L. FunderburghM.L. MeekK.M. Early wound healing of laser in situ keratomileusis–like flaps after treatment with human corneal stromal stem cells.J. Cataract Refract. Surg.201642230230910.1016/j.jcrs.2015.09.023 27026456
    [Google Scholar]
  71. HertsenbergA.J. ShojaatiG. FunderburghM.L. MannM.M. DuY. FunderburghJ.L. Corneal stromal stem cells reduce corneal scarring by mediating neutrophil infiltration after wounding.PLoS One2017123e017171210.1371/journal.pone.0171712 28257425
    [Google Scholar]
  72. PolisettiN. Schlötzer-SchrehardtU. ReinhardT. SchlunckG. Isolation and enrichment of melanocytes from human corneal limbus using CD117 (c-Kit) as selection marker.Sci. Rep.20201011758810.1038/s41598‑020‑74869‑1 33067486
    [Google Scholar]
  73. HigaK. ShimmuraS. MiyashitaH. ShimazakiJ. TsubotaK. Melanocytes in the corneal limbus interact with K19-positive basal epithelial cells.Exp. Eye Res.200581221822310.1016/j.exer.2005.01.023 16080916
    [Google Scholar]
  74. NordlundJ J The melanocyte and the epidermal melanin unit: an expanded concept200725727110.1016/j.det.2007.04.001
    [Google Scholar]
  75. PolisettiN. GießlA. ZenkelM. Melanocytes as emerging key players in niche regulation of limbal epithelial stem cells.Ocul. Surf.20212217218910.1016/j.jtos.2021.08.006 34425298
    [Google Scholar]
  76. PolisettiN. GießlA. LiS. SorokinL. KruseF.E. Schlötzer-SchrehardtU. Laminin-511-E8 promotes efficient in vitro expansion of human limbal melanocytes.Sci. Rep.20201011107410.1038/s41598‑020‑68120‑0 32632213
    [Google Scholar]
  77. PolisettiN. ReinhardT. SchlunckG. Efficient isolation and expansion of limbal melanocytes for tissue engineering.Int. J. Mol. Sci.2023249782710.3390/ijms24097827 37175529
    [Google Scholar]
  78. DziaskoM.A. ArmerH.E. LevisH.J. ShorttA.J. TuftS. DanielsJ.T. Localisation of epithelial cells capable of holoclone formation in vitro and direct interaction with stromal cells in the native human limbal crypt.PLoS One201494e9428310.1371/journal.pone.0094283 24714106
    [Google Scholar]
  79. Bessou-TouyaS. PainC. TaïebA. PicardoM. MarescaV. Surlève-BazeilleJ-E. Chimeric human epidermal reconstructs to study the role of melanocytes and keratinocytes in pigmentation and photoprotection.J. Invest. Dermatol.199811161103110810.1046/j.1523‑1747.1998.00405.x 9856824
    [Google Scholar]
  80. LiuL. NielsenF.M. EmmersenJ. Pigmentation is associated with stemness hierarchy of progenitor cells within cultured limbal epithelial cells.Stem Cells20183691411142010.1002/stem.2857 29781179
    [Google Scholar]
  81. DziaskoM.A. TuftS.J. DanielsJ.T. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments.Exp. Eye Res.2015138707910.1016/j.exer.2015.06.026 26142953
    [Google Scholar]
  82. PellegriniG. DellambraE. GolisanoO. p63 identifies keratinocyte stem cells.Proc. Natl. Acad. Sci. USA20019863156316110.1073/pnas.061032098 11248048
    [Google Scholar]
  83. de PaivaC.S. ChenZ. CorralesR.M. PflugfelderS.C. LiD.Q. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells.Stem Cells2005231637310.1634/stemcells.2004‑0093 15625123
    [Google Scholar]
  84. ZhaoB. AllinsonS.L. MaA. BentleyA.J. MartinF.L. FullwoodN.J. Targeted cornea limbal stem/progenitor cell transfection in an organ culture model.Invest. Ophthalmol. Vis. Sci.20084983395340110.1167/iovs.07‑1263 18441310
    [Google Scholar]
  85. LaroucheD. LavoieA. PaquetC. Simard-BissonC. GermainL. Identification of epithelial stem cells in vivo and in vitro using keratin 19 and BrdU.Methods Mol. Biol.201058538340010.1007/978‑1‑60761‑380‑0_27 19908018
    [Google Scholar]
  86. SuG. GuoX. XuL. Isolation and characterization of rabbit limbal niche cells.Exp. Eye Res.202424110983810.1016/j.exer.2024.109838 38395213
    [Google Scholar]
  87. XieH.T. ChenS.Y. LiG.G. TsengS.C.G. Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation.Stem Cells201129111874188510.1002/stem.743 21948620
    [Google Scholar]
  88. TsengS.C.G. ChenS.Y. MeadO.G. TigheS. Niche regulation of limbal epithelial stem cells: HC-HA/PTX3 as surrogate matrix niche.Exp. Eye Res.202019910818110.1016/j.exer.2020.108181 32795525
    [Google Scholar]
  89. VerébZ. PóliskaS. AlbertR. Role of human corneal stroma-derived mesenchymal-like stem cells in corneal immunity and wound healing.Sci. Rep.2016612622710.1038/srep26227 27195722
    [Google Scholar]
  90. TangJ. LiQ. ChengB. JingL. Primary culture of human face skin melanocytes for the study of hyperpigmentation.Cytotechnology201466689189810.1007/s10616‑013‑9643‑6 24113919
    [Google Scholar]
  91. PittelkowM.R. ShipleyG.D. Serum‐free culture of normal human melanocytes: Growth kinetics and growth factor requirements.J. Cell. Physiol.1989140356557610.1002/jcp.1041400323 2550477
    [Google Scholar]
  92. WillemsenM. LuitenR.M. TeunissenM.B.M. Instant isolation of highly purified human melanocytes from freshly prepared epidermal cell suspensions.Pigment Cell Melanoma Res.202033576376610.1111/pcmr.12882 32285561
    [Google Scholar]
  93. LiS. ZenkelM. KruseF.E. GießlA. Schlötzer-SchrehardtU. Identification, isolation, and characterization of melanocyte precursor cells in the human limbal stroma.Int. J. Mol. Sci.2022237375610.3390/ijms23073756 35409129
    [Google Scholar]
  94. HayashiR. YamatoM. SugiyamaH. N-Cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche.Stem Cells200725228929610.1634/stemcells.2006‑0167 17008425
    [Google Scholar]
  95. LiJ. ChenS.Y. ZhaoX.Y. ZhangM.C. XieH.T. Rat limbal niche cells prevent epithelial stem/progenitor cells from differentiation and proliferation by inhibiting notch signaling pathway in vitro.Invest. Ophthalmol. Vis. Sci.20175872968297610.1167/iovs.16‑20642 28605808
    [Google Scholar]
  96. GonzálezS. UhmH. DengS.X. Notch inhibition prevents differentiation of human limbal stem/progenitor cells in vitro.Sci. Rep.2019911037310.1038/s41598‑019‑46793‑6 31316119
    [Google Scholar]
  97. HanB. ChenS.Y. ZhuY.T. TsengS.C.G. Integration of BMP/Wnt signaling to control clonal growth of limbal epithelial progenitor cells by niche cells.Stem Cell Res. (Amst.)201412256257310.1016/j.scr.2014.01.003 24530980
    [Google Scholar]
  98. SuZ. WangJ. LaiQ. ZhaoH. HouL. KIT ligand produced by limbal niche cells under control of SOX10 maintains limbal epithelial stem cell survival by activating the KIT/AKT signalling pathway.J. Cell. Mol. Med.20202420120201203110.1111/jcmm.15830 32914934
    [Google Scholar]
  99. SuannoG. GennaV.G. MauriziE. DiehA.A. GriffithM. FerrariG. Cell therapy in the cornea: The emerging role of microenvironment.Prog. Retin. Eye Res.202410210127510.1016/j.preteyeres.2024.101275 38797320
    [Google Scholar]
  100. DziaskoM.A. DanielsJ.T. Anatomical features and cell-cell interactions in the human limbal epithelial stem cell niche.Ocul. Surf.201614332233010.1016/j.jtos.2016.04.002 27151422
    [Google Scholar]
  101. BonnetC. GonzálezS. RobertsJ.S. Human limbal epithelial stem cell regulation, bioengineering and function.Prog. Retin. Eye Res.20218510095610.1016/j.preteyeres.2021.100956 33676006
    [Google Scholar]
  102. LeQ. ChauhanT. CordovaD. TsengC.H. DengS.X. Biomarkers of in vivo limbal stem cell function.Ocul. Surf.20222312313010.1016/j.jtos.2021.12.005 34902592
    [Google Scholar]
  103. BonnetC. GonzalezS. DengS.X. Limbal stem cell therapy.Curr. Opin. Ophthalmol.202435430931410.1097/ICU.0000000000001061 38813737
    [Google Scholar]
  104. ElhusseinyA.M. SoleimaniM. EleiwaT.K. Current and emerging therapies for limbal stem cell deficiency.Stem Cells Transl. Med.202211325926810.1093/stcltm/szab028 35303110
    [Google Scholar]
  105. Frucht-PeryJ. SiganosC.S. SolomonA. SchemanL. BrautbarC. ZaubermanH. Limbal cell autograft transplantation for severe ocular surface disorders.Graefes Arch. Clin. Exp. Ophthalmol.1998236858258710.1007/s004170050125 9717653
    [Google Scholar]
  106. FoglaR. PadmanabhanP. Deep anterior lamellar keratoplasty combined with autologous limbal stem cell transplantation in unilateral severe chemical injury.Cornea200524442142510.1097/01.ico.0000151550.51556.2d 15829798
    [Google Scholar]
  107. YalçindagF.N. IncelO. OzdemirO. Effectiveness of tacrolimus in high-risk limbal allo-graft transplantation.Ann. Ophthalmol. (Skokie)2008403-4152156 19230352
    [Google Scholar]
  108. LiJ.Y. CortinaM.S. GreinerM.A. Outcomes and complications of limbal stem cell allograft transplantation.Ophthalmology202413191121113110.1016/j.ophtha.2024.02.018 38678469
    [Google Scholar]
  109. PellegriniG. TraversoC.E. FranziA.T. ZingirianM. CanceddaR. De LucaM. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium.Lancet1997349905799099310.1016/S0140‑6736(96)11188‑0 9100626
    [Google Scholar]
  110. JurkunasU. JohnsL. ArmantM. Cultivated autologous limbal epithelial cell transplantation: New frontier in the treatment of limbal stem cell deficiency.Am. J. Ophthalmol.202223924426810.1016/j.ajo.2022.03.015 35314191
    [Google Scholar]
  111. CalongeM. PérezI. GalindoS. A proof-of-concept clinical trial using mesenchymal stem cells for the treatment of corneal epithelial stem cell deficiency.Transl. Res.2019206184010.1016/j.trsl.2018.11.003 30578758
    [Google Scholar]
  112. Alió del BarrioJ.L. De la MataA. De MiguelM.P. Corneal regeneration using adipose-derived mesenchymal stem cells.Cells20221116254910.3390/cells11162549 36010626
    [Google Scholar]
  113. GalindoS. de la MataA. López-PaniaguaM. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: State of the art.Stem Cell Res. Ther.20211216010.1186/s13287‑020‑02129‑0 33441175
    [Google Scholar]
  114. PietrygaK. JesseK. DrzyzgaR. Bio-printing method as a novel approach to obtain a fibrin scaffold settled by limbal epithelial cells for corneal regeneration.Sci. Rep.20241412335210.1038/s41598‑024‑73383‑y 39375390
    [Google Scholar]
  115. GurdalM. ErcanG. Barut SelverO. AberdamD. ZeugolisD.I. Development of biomimetic substrates for limbal epithelial stem cells using collagen-based films, hyaluronic acid, immortalized cells, and macromolecular crowding.Life20241412155210.3390/life14121552 39768260
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X358606250414063844
Loading
/content/journals/cscr/10.2174/011574888X358606250414063844
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test