Skip to content
2000
Volume 20, Issue 11
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Mesenchymal stem cells (MSCs) were able to restore ovarian function in premature ovarian insufficiency (POI), which can be largely attributed to the paracrine effects of MSCs therapy. However, the function and mechanism of MSC-derived exosomes transplantation for POI are not fully understood.

Objectives

To investigate the efficacy and underlying mechanisms of human placental derived MSCs derived exosomes (hpMSC-Exos) xenotransplantation in incremental load training-induced POI.

Method

The incremental exercise treadmill training was employed for constructing the POI rat model. hpMSC-Exos were administered to POI rats by tail vein injection. The ovarian function was assessed based on histological analysis and hormone levels. Ovarian function parameters, follicle counts, oocyte aging, granulosa cell apoptosis, and follicular microenvironment were evaluated.

Results

The tracking of hpMSC-Exos indicated that they generally colonized the ovarian tissues. hpMSC-Exos transplantation increased telomere length and telomerase activity, reduced oxidative stress, downregulated the Bax and caspase-3 gene expression, upregulated the Bcl-2 gene expression, and increased the insulin-like growth factor 1 (Igf-1) and vascular endothelial growth factor (VEGF) expression level. Furthermore, the findings showed that the follicle-stimulating hormone (FSH) level and FSH to luteinizing hormone (LH) ratio were decreased, whereas the population of follicles significantly increased after transplantation.

Conclusion

hpMSC-Exos transplantation was observed to improve the function of the injured ovarian tissues in the incremental load training-induced POI rats. Furthermore, the mechanisms of hpMSC-Exos are related to delaying aging in the oocyte, reducing apoptosis of granulosa cells, and regulating the follicular microenvironment.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X330007250504205644
2025-05-12
2026-02-05
Loading full text...

Full text loading...

References

  1. WebberL. DaviesM. AndersonR. BartlettJ. BraatD. CartwrightB. CifkovaR. de Muinck Keizer-SchramaS. HogervorstE. JanseF. LiaoL. VlaisavljevicV. ZillikensC. VermeulenN. ESHRE Guideline: Management of women with premature ovarian insufficiency.Hum. Reprod.201631592693710.1093/humrep/dew02727008889
    [Google Scholar]
  2. MachuraP. GrymowiczM. RudnickaE. PiętaW. Calik-KsepkaA. SkórskaJ. SmolarczykR. Premature ovarian insufficiency: Hormone replacement therapy and management of long-term consequences.Przegl. Menopauz.201817313513810.5114/pm.2018.7855930357030
    [Google Scholar]
  3. ZhangQ. HuangY. SunJ. GuT. ShaoX. LaiD. Immunomodulatory effect of human amniotic epithelial cells on restoration of ovarian function in mice with autoimmune ovarian disease.Acta Biochim. Biophys. Sin. (Shanghai)201951884585510.1093/abbs/gmz06531287492
    [Google Scholar]
  4. TamuraH. NakamuraY. KorkmazA. ManchesterL.C. TanD.X. SuginoN. ReiterR.J. Melatonin and the ovary: Physiological and pathophysiological implications.Fertil. Steril.200992132834310.1016/j.fertnstert.2008.05.01618804205
    [Google Scholar]
  5. MelloneS. ZavattaroM. VurchioD. RonzaniS. CaputoM. LeoneI. ProdamF. GiordanoM. A long contiguous stretch of homozygosity disclosed a novel STAG3 biallelic pathogenic variant causing primary ovarian insufficiency: A case report and review of the literature.Genes20211211170910.3390/genes1211170934828315
    [Google Scholar]
  6. MoraJ FenwickM CastleL Baithun M. Ryder T.A. MobberleyM. CarzanigaR. Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles.Biol Reprod.201286515310.1095/biolreprod.111.096156
    [Google Scholar]
  7. RowleyJ.E. AmargantF. ZhouL.T. GalligosA. SimonL.E. PritchardM.T. DuncanF.E. Low molecular weight hyaluronan induces an inflammatory response in ovarian stromal cells and impairs gamete development in vitro.Int. J. Mol. Sci.2020213103610.3390/ijms2103103632033185
    [Google Scholar]
  8. ThomsonJ.A. OdoricoJ.S. Human embryonic stem cell and embryonic germ cell lines.Trends Biotechnol.2000182535710.1016/S0167‑7799(99)01410‑910652509
    [Google Scholar]
  9. NanC. GuoL. ZhaoZ. MaS. LiuJ. YanD. SongG. LiuH. Tetramethylpyrazine induces differentiation of human umbilical cord-derived mesenchymal stem cells into neuron-like cells in vitro.Int. J. Oncol.20164862287229410.3892/ijo.2016.344927035275
    [Google Scholar]
  10. DingL. YanG. WangB. XuL. GuY. RuT. CuiX. LeiL. LiuJ. ShengX. WangB. ZhangC. YangY. JiangR. ZhouJ. KongN. LuF. ZhouH. ZhaoY. ChenB. HuY. DaiJ. SunH. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility.Sci. China Life Sci.201861121554156510.1007/s11427‑017‑9272‑229546669
    [Google Scholar]
  11. FuX. HeY. XieC. LiuW. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage.Cytotherapy200810435336310.1080/1465324080203592618574768
    [Google Scholar]
  12. GhadamiM. El-DemerdashE. ZhangD. SalamaS.A. BinhazimA.A. ArchibongA.E. ChenX. BallardB.R. SairamM.R. Al-HendyA. Bone marrow transplantation restores follicular maturation and steroid hormones production in a mouse model for primary ovarian failure.PLoS One201273e3246210.1371/journal.pone.003246222412875
    [Google Scholar]
  13. SuJ. DingL. ChengJ. YangJ. LiX. YanG. SunH. DaiJ. HuY. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency.Hum. Reprod.20163151075108610.1093/humrep/dew04126965432
    [Google Scholar]
  14. ZhouY. YamamotoY. XiaoZ. OchiyaT. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity.J. Clin. Med.201987102510.3390/jcm807102531336889
    [Google Scholar]
  15. SimonsM. RaposoG. Exosomes – vesicular carriers for intercellular communication.Curr. Opin. Cell Biol.200921457558110.1016/j.ceb.2009.03.00719442504
    [Google Scholar]
  16. JooH.S. SuhJ.H. LeeH.J. BangE.S. LeeJ.M. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent.Int. J. Mol. Sci.202021372710.3390/ijms2103072731979113
    [Google Scholar]
  17. XuY. GuoS. WeiC. LiH. ChenL. YinC. ZhangC. The comparison of adipose stem cell and placental stem cell in secretion characteristics and in facial antiaging.Stem Cells Int.201620161731583010.1155/2016/731583027057176
    [Google Scholar]
  18. CardilloG.M. De-PaulaV.J.R. IkenagaE.H. CostaL.R. CatanoziS. SchaefferE.L. GattazW.F. KerrD.S. ForlenzaO.V. Chronic lithium treatment increases telomere length in parietal cortex and hippocampus of triple-transgenic alzheimer’s disease mice.J. Alzheimers Dis.20186319310110.3233/JAD‑17083829614649
    [Google Scholar]
  19. YangM. LinL. ShaC. LiT. ZhaoD. WeiH. ChenQ. LiuY. ChenX. XuW. LiY. ZhuX. Bone marrow mesenchymal stem cell-derived exosomal miR-144-5p improves rat ovarian function after chemotherapy-induced ovarian failure by targeting PTEN.Lab. Invest.2020100334235210.1038/s41374‑019‑0321‑y31537899
    [Google Scholar]
  20. NelsonL.M. Clinical practice. Primary ovarian insufficiency.N. Engl. J. Med.2009360660661410.1056/NEJMcp080869719196677
    [Google Scholar]
  21. ZhangC. The roles of different stem cells in premature ovarian failure.Curr. Stem Cell Res. Ther.202015647348110.2174/1574888X1466619031412300630868961
    [Google Scholar]
  22. YangW. ZhangJ. XuB. HeY. LiuW. LiJ. ZhangS. LinX. SuD. WuT. LiJ. HucMSC-derived exosomes mitigate the age-related retardation of fertility in female mice.Mol. Ther.20202841200121310.1016/j.ymthe.2020.02.00332097602
    [Google Scholar]
  23. RudnickaE. KruszewskaJ. KlickaK. KowalczykJ. GrymowiczM. SkórskaJ. PiętaW. SmolarczykR. Premature ovarian insufficiency – aetiopathology, epidemiology, and diagnostic evaluation.Przegl. Menopauz.201817310510810.5114/pm.2018.7855030357004
    [Google Scholar]
  24. LeeE. HanS.E. ParkM.J. KimH.J. KimH.G. KimC.W. JooB.S. LeeK.S. Establishment of effective mouse model of premature ovarian failure considering treatment duration of anticancer drugs and natural recovery time.J. Menopausal Med.201824319620310.6118/jmm.2018.24.3.19630671413
    [Google Scholar]
  25. Ben-AharonI. Bar-JosephH. TzarfatyG. KuchinskyL. RizelS. StemmerS.M. ShalgiR. Doxorubicin-induced ovarian toxicity.Reprod. Biol. Endocrinol.2010812010.1186/1477‑7827‑8‑2020202194
    [Google Scholar]
  26. ChangE.M. LimE. YoonS. JeongK. BaeS. LeeD.R. YoonT.K. ChoiY. LeeW.S. Cisplatin induces overactivation of the dormant primordial follicle through PTEN/AKT/FOXO3a pathway which leads to loss of ovarian reserve in mice.PLoS One20151012e014424510.1371/journal.pone.014424526656301
    [Google Scholar]
  27. MiyakeT. TaguchiO. IkedaH. SatoY. TakeuchiS. NishizukaY. Acute oocyte loss in experimental autoimmune oophoritis as a possible model of premature ovarian failure.Am. J. Obstet. Gynecol.1988158118619210.1016/0002‑9378(88)90808‑33337168
    [Google Scholar]
  28. GhadamiM. El-DemerdashE. SalamaS.A. BinhazimA.A. ArchibongA.E. ChenX. BallardB.R. SairamM.R. Al-HendyA. Toward gene therapy of premature ovarian failure: intraovarian injection of adenovirus expressing human FSH receptor restores folliculogenesis in FSHR(-/-) FORKO mice.Mol. Hum. Reprod.201016424125010.1093/molehr/gaq00320086006
    [Google Scholar]
  29. DurlingerA.L.L. KramerP. KarelsB. de JongF.H. UilenbroekJ.T.J. GrootegoedJ.A. ThemmenA.P.N. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary.Endocrinology1999140125789579610.1210/endo.140.12.720410579345
    [Google Scholar]
  30. NassR. HelmK.D. EvansW.S. Physiological and pathophysiological alterations of the neuroendocrine components of the reproductive axis.Yen & Jaffe’s Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management.7th ed StraussJ.F. BarbieriR.L. BeijingScience Press201444549110.1016/B978‑1‑4557‑2758‑2.00021‑4
    [Google Scholar]
  31. MaroteA. TeixeiraF.G. Mendes-PinheiroB. SalgadoA.J. MSCs-derived exosomes: Cell-secreted nanovesicles with regenerative potential. Front. Pharmacol.2016723110.3389/fphar.2016.0023127536241
    [Google Scholar]
  32. LiuS. JiaY. MengS. LuoY. YangQ. PanZ. Mechanisms of and potential medications for oxidative stress in ovarian granulosa cells: A review.Int. J. Mol. Sci.20232411920510.3390/ijms2411920537298157
    [Google Scholar]
  33. GleicherN. WeghoferA. BaradD.H. Defining ovarian reserve to better understand ovarian aging.Reprod. Biol. Endocrinol.2011912310.1186/1477‑7827‑9‑2321299886
    [Google Scholar]
  34. ShestakovaI.G. RadzinskyV.E. KhamoshinaM.B. Occult form of premature ovarian insufficiency.Gynecol. Endocrinol.201632sup2303210.1080/09513590.2016.123267627759460
    [Google Scholar]
  35. IliodromitiS. Iglesias SanchezC. MessowC.M. CruzM. Garcia VelascoJ. NelsonS.M. Excessive age-related decline in functional ovarian reserve in infertile women: Prospective cohort of 15,500 women.J. Clin. Endocrinol. Metab.201610193548355410.1210/jc.2015‑427927383114
    [Google Scholar]
  36. Yamada-FukunagaT. YamadaM. HamataniT. ChikazawaN. OgawaS. AkutsuH. MiuraT. MiyadoK. TarínJ.J. KujiN. UmezawaA. YoshimuraY. Age-associated telomere shortening in mouse oocytes.Reprod. Biol. Endocrinol.201311110810.1186/1477‑7827‑11‑10824261933
    [Google Scholar]
  37. PolonioA.M. Chico-SordoL. Córdova-OrizI. MedranoM. García-VelascoJ.A. VarelaE. Impact of ovarian aging in reproduction: From telomeres and mice models to ovarian rejuvenation.Yale J. Biol. Med.202093456156933005120
    [Google Scholar]
  38. VarelaE. SchneiderR.P. OrtegaS. BlascoM.A. Different telomere-length dynamics at the inner cell mass versus established embryonic stem (ES) cells.Proc. Natl. Acad. Sci. USA201110837152071521210.1073/pnas.110541410821873233
    [Google Scholar]
  39. SchaetzleinS. Lucas-HahnA. LemmeE. KuesW.A. DorschM. MannsM.P. NiemannH. RudolphK.L. Telomere length is reset during early mammalian embryogenesis.Proc. Natl. Acad. Sci. USA2004101218034803810.1073/pnas.040240010115148368
    [Google Scholar]
  40. Eichenlaub-RitterU. WieczorekM. LükeS. SeidelT. Age related changes in mitochondrial function and new approaches to study redox regulation in mammalian oocytes in response to age or maturation conditions.Mitochondrion201111578379610.1016/j.mito.2010.08.01120817047
    [Google Scholar]
  41. BarnesR.P. FouquerelE. OpreskoP.L. The impact of oxidative DNA damage and stress on telomere homeostasis.Mech. Ageing Dev.2019177374510.1016/j.mad.2018.03.01329604323
    [Google Scholar]
  42. JiangH.L. CaoL.Q. ChenH.Y. Protective effects ROS up-regulation on premature ovarian failure by suppressing ROS-TERT signal pathway.Eur. Rev. Med. Pharmacol. Sci.201822196198620410.26355/eurrev_201810_1602530338789
    [Google Scholar]
  43. CagnoneG.L.M. TsaiT.S. MakanjiY. MatthewsP. GouldJ. BonkowskiM.S. ElgassK.D. WongA.S.A. WuL.E. McKenzieM. SinclairD.A. JohnJ.C.S. Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency.Sci. Rep.2016612322910.1038/srep2322926987907
    [Google Scholar]
  44. SchootsM.H. GordijnS.J. ScherjonS.A. van GoorH. HillebrandsJ.L. Oxidative stress in placental pathology.Placenta20186915316110.1016/j.placenta.2018.03.00329622278
    [Google Scholar]
  45. LenazG. Mitochondria and reactive oxygen species. Which role in physiology and pathology?Adv. Exp. Med. Biol.20129429313610.1007/978‑94‑007‑2869‑1_522399420
    [Google Scholar]
  46. KalmbachK. AntunesD. KohlrauschF. KeefeD. Telomeres and female reproductive aging.Semin. Reprod. Med.201533638939510.1055/s‑0035‑156782326629734
    [Google Scholar]
  47. VasilopoulosE. FragkiadakiP. KallioraC. FragouD. DoceaA. VakonakiE. TsoukalasD. CalinaD. BugaA. GeorgiadisG. MamoulakisC. MakrigiannakisA. SpandidosD. TsatsakisA. The association of female and male infertility with telomere length (Review).Int. J. Mol. Med.201944237538910.3892/ijmm.2019.422531173155
    [Google Scholar]
  48. YangY. TangX. YaoT. ZhangY. ZhongY. WuS. WangY. PanZ. Metformin protects ovarian granulosa cells in chemotherapy-induced premature ovarian failure mice through AMPK/PPAR-γ/SIRT1 pathway.Sci. Rep.2024141144710.1038/s41598‑024‑51990‑z38228655
    [Google Scholar]
  49. WangX. YangJ. LiH. MuH. ZengL. CaiS. SuP. LiH. ZhangL. XiangW. miR-484 mediates oxidative stress-induced ovarian dysfunction and promotes granulosa cell apoptosis via SESN2 downregulation.Redox Biol.20236210268410.1016/j.redox.2023.10268436963287
    [Google Scholar]
  50. GuoJ. GaoX. LinZ. WuW. HuangL. DongH. ChenJ. LuJ. FuY. WangJ. MaY. ChenX. WuZ. HeF. YangS. LiaoL. ZhengF. TanJ. BMSCs reduce rat granulosa cell apoptosis induced by cisplatin and perimenopause.BMC Cell Biol.20131411810.1186/1471‑2121‑14‑1823510080
    [Google Scholar]
  51. NelsonLR BulunSE Estrogen production and action.J. Am Acad Dermatol. 2001453S11610.1067/mjd.2001.117432
    [Google Scholar]
  52. SunB. MaY. WangF. HuL. SunY. miR-644-5p carried by bone mesenchymal stem cell-derived exosomes targets regulation of p53 to inhibit ovarian granulosa cell apoptosis.Stem Cell Res. Ther.201910136010.1186/s13287‑019‑1442‑331783913
    [Google Scholar]
  53. TianW. HeoS. KimD.W. KimI.S. AhnD. TaeH.J. KimM.K. ParkB.Y. Ethanol extract of maclura tricuspidata fruit protects SH-SY5Y neuroblastoma cells against H2O2-induced oxidative damage via inhibiting MAPK and NF-κB signaling.Int. J. Mol. Sci.20212213694610.3390/ijms2213694634203307
    [Google Scholar]
  54. LiZ. ZhangM. ZhengJ. TianY. ZhangH. TanY. LiQ. ZhangJ. HuangX. Human umbilical cord mesenchymal stem cell-derived exosomes improve ovarian function and proliferation of premature ovarian insufficiency by regulating the hippo signaling pathway.Front. Endocrinol. (Lausanne)20211271190210.3389/fendo.2021.71190234456868
    [Google Scholar]
  55. LiewS.H. VaithiyanathanK. CookM. BouilletP. ScottC.L. KerrJ.B. StrasserA. FindlayJ.K. HuttK.J. Loss of the proapoptotic BH3-only protein BCL-2 modifying factor prolongs the fertile life span in female mice.Biol. Reprod.20149047710.1095/biolreprod.113.11694724571986
    [Google Scholar]
  56. ChenJ.F. YuB.X. YuR. MaL. LvX.Y. ChengY. MaQ. Monoclonal antibody Zt/g4 targeting RON receptor tyrosine kinase enhances chemosensitivity of bladder cancer cells to Epirubicin by promoting G1/S arrest and apoptosis.Oncol. Rep.201737272172810.3892/or.2017.535628075465
    [Google Scholar]
  57. LvJ. ZhangF. ZhaiC. WangG. QuY. Bag-1 silence sensitizes non-small cell lung cancer cells to cisplatin through multiple gene pathways.OncoTargets Ther.2019128977898910.2147/OTT.S21818231802907
    [Google Scholar]
  58. WangW. LiuY. ZhaoL. Tambulin targets histone deacetylase 1 inhibiting cell growth and inducing apoptosis in human lung squamous cell carcinoma.Front. Pharmacol.202011118810.3389/fphar.2020.0118832903420
    [Google Scholar]
  59. HeM. SunH.G. HaoJ.Y. LiY.L. YuJ.K. YanY.Y. ZhaoL. LiN. WangY. BaiX.F. YuZ.J. ZhengZ.H. MiX.Y. WangE.H. WeiM.J. RNA interference-mediated FANCF silencing sensitizes OVCAR3 ovarian cancer cells to adriamycin through increased adriamycin-induced apoptosis dependent on JNK activation.Oncol. Rep.20132951721172910.3892/or.2013.229523440494
    [Google Scholar]
  60. KhanM.S. AlomariA. TabrezS. HassanI. WahabR. BhatS.A. AlafaleqN.O. AltwaijryN. ShaikG.M. ZaidiS.K. NouhW. AlokailM.S. IsmaelM.A. Anticancer potential of biogenic silver nanoparticles: A mechanistic study.Pharmaceutics202113570710.3390/pharmaceutics1305070734066092
    [Google Scholar]
  61. ZhangL. MaY. XieX. DuC. ZhangY. QinS. XuJ. WangC. YangY. XiaG. Human pluripotent stem cell-mesenchymal stem cell-derived exosomes promote ovarian granulosa cell proliferation and attenuate cell apoptosis induced by cyclophosphamide in a POI-like mouse model.Molecules2023285211210.3390/molecules2805211236903358
    [Google Scholar]
  62. GengZ ChenH ZouG Yuan L. Liu P. LiB. NieX. Jing F. Zhang K. Human amniotic fluid mesenchymal stem cell-derived exosomes inhibit apoptosis in ovarian granulosa cell via miR-369-3p/YAF2/PDCD5/p53 Pathway.Oxid Med Cell Longev.20222022369584810.1155/2022/3695848
    [Google Scholar]
  63. GuoY. XueL. TangW. XiongJ. ChenD. DaiY. WuC. WeiS. DaiJ. WuM. WangS. Ovarian microenvironment: Challenges and opportunities in protecting against chemotherapy-associated ovarian damage.Hum. Reprod. Update202430561464710.1093/humupd/dmae02038942605
    [Google Scholar]
  64. AhmedT.A. AhmedS.M. El-GammalZ. ShoumanS. AhmedA. MansourR. El-BadriN. Oocyte aging: The role of cellular and environmental factors and impact on female fertility.Adv. Exp. Med. Biol.2019124710912310.1007/5584_2019_45631802446
    [Google Scholar]
  65. PascualiN. ScottiL. Di PietroM. OubiñaG. BasD. MayM. Gómez MuñozA. CuasnicúP.S. CohenD.J. TesoneM. AbramovichD. ParborellF. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure.Hum. Reprod.201833584485910.1093/humrep/dey04529534229
    [Google Scholar]
  66. LeungD.W. CachianesG. KuangW.J. GoeddelD.V. FerraraN. Vascular endothelial growth factor is a secreted angiogenic mitogen.Science198924649351306130910.1126/science.24799862479986
    [Google Scholar]
  67. SengerD.R. GalliS.J. DvorakA.M. PerruzziC.A. HarveyV.S. DvorakH.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.Science1983219458798398510.1126/science.68235626823562
    [Google Scholar]
  68. KosakaN. SudoN. MiyamotoA. ShimizuT. Vascular endothelial growth factor (VEGF) suppresses ovarian granulosa cell apoptosis in vitro.Biochem. Biophys. Res. Commun.2007363373373710.1016/j.bbrc.2007.09.06117904528
    [Google Scholar]
  69. IijimaK. JiangJ.Y. ShimizuT. SasadaH. SatoE. Acceleration of follicular development by administration of vascular endothelial growth factor in cycling female rats.J. Reprod. Dev.200551116116810.1262/jrd.51.16115750308
    [Google Scholar]
  70. ShimizuT JiangJY IijimaK MiyabayashiK. OgawaY. Sasada H. SatoE. Induction of follicular development by direct single injection of vascular endothelial growth factor gene fragments into the ovary of miniature gilts.Biol Reprod.2003694138810.1095/biolreprod.103.016311
    [Google Scholar]
  71. Oliver J.E. Aitman T.J. Powell J.F. Wilson C.A. Clayton R.N. Insulin-like growth factor I gene expression in the rat ovary is confined to the granulosa cells of developing follicles.Endocrinology. 19891246267110.1210/endo‑124‑6‑2671
    [Google Scholar]
  72. JalalieL. RezaieM.J. JaliliA. RezaeeM.A. VahabzadehZ. RahmaniM.R. KarimipoorM. HakhamaneshiM.S. Distribution of the CM-Dil-labeled human umbilical cord vein mesenchymal stem cells migrated to the cyclophosphamide-injured ovaries in C57BL/6 mice.Iran. Biomed. J.201923320020810.29252/ibj.23.3.20030797224
    [Google Scholar]
  73. HayesE. WinstonN. StoccoC. Molecular crosstalk between insulin-like growth factors and follicle-stimulating hormone in the regulation of granulosa cell function.Reprod. Med. Biol.2024231e1257510.1002/rmb2.1257538571513
    [Google Scholar]
  74. TaketaniT. YamagataY. TakasakiA. MatsuokaA. TamuraH. SuginoN. Effects of growth hormone and insulin-like growth factor 1 on progesterone production in human luteinized granulosa cells.Fertil. Steril.200890374474810.1016/j.fertnstert.2007.07.130417953960
    [Google Scholar]
  75. ZhouJ. KumarT.R. MatzukM.M. BondyC. Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary.Mol. Endocrinol.199711131924193310.1210/mend.11.13.00329415397
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X330007250504205644
Loading
/content/journals/cscr/10.2174/011574888X330007250504205644
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test