Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Objectives

Diabetic foot (DF) poses a great challenge to us due to its poor therapeutic effect. To seek a new cure, the human dental pulp mesenchymal stem cells (hDP-MSCs) were modified by vascular endothelial growth factor A (VEGFA) and basic fibroblast growth factor (bFGF) (hEDP-MSCs) to investigate their curative effect on DF wound in animal models.

Methods

Forty-eight rats with DF constructed with streptozotocin and ligation of femoral arteries, were randomly divided into six equal groups, which respectively received an intramuscular injection of normal saline (Control group), hDP-MSCs, VEGFA-modified hDP-MSCs, bFGF- modified hDP-MSCs, hEDP-MSCs, and Ad.VEGF.FGF (Ad.FV). The tissues around DF wound were collected to investigate the level of CD31, alpha-smooth muscle actin (α-SMA), and cytokines. The expression of Notch1, Hes1, and CD105 were assessed Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) after administration.

Results

The hEDP-MSCs increased capillaries and decreased wound area (%). QRT-PCR showed that hEDP-MSCs over-expressed the mRNA of Notch1, hairy and enhancer of split 1 and CD105 in peri-wound tissue post-treatment. Meanwhile, the hEDP-MSCs expressed more CD31 and α-SMA than other groups. The hEDP-MSCs expressed more VEGFA and bFGF than hDP-MSCs, and yet less than Ad.FV. Compared with hDP-MSCs, the hEDP-MSCs down-regulated the expressions of interleukin-1 beta (IL-1β), interleukin (IL-6), and tissue necrosis factor α (TNF-a) post-treatment.

Conclusion

This study highlights the curative effect of hEDP-MSCs in the wound healing process, and demonstrates the decisive function of hEDP-MSCs in promoting angiogenesis and reducing inflammation.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X363143250221015057
2025-02-28
2025-12-08
Loading full text...

Full text loading...

References

  1. ZhangP. LuJ. JingY. TangS. ZhuD. BiY. Global epidemiology of diabetic foot ulceration: A systematic review and meta-analysis.Ann. Med.201749210611610.1080/07853890.2016.123193227585063
    [Google Scholar]
  2. YamadaY. Nakamura-YamadaS. KusanoK. BabaS. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review.Int. J. Mol. Sci.2019205113210.3390/ijms2005113230845639
    [Google Scholar]
  3. MarcoM. ValentinaI. DanieleM. ValerioD.R. AndreaP. RobertoG. LauraG. LuigiU. Peripheral arterial disease in persons with diabetic foot ulceration: A current comprehensive overview.Curr. Diabetes Rev.202117447448510.2174/157339981699920100120311133023453
    [Google Scholar]
  4. LebretonO. FelsA. CompagnonA. LazarethI. GhaffariP. ChatellierG. EmmerichJ. Michon-PasturelU. PriolletP. YannoutsosA. Amputation-free survival in the long-term follow-up and gender-related characteristics in patients revascularized for critical limb ischemia.J. Med. Vasc.2023483-410511510.1016/j.jdmv.2023.10.00237914455
    [Google Scholar]
  5. ChoN.H. ShawJ.E. KarurangaS. HuangY. da Rocha FernandesJ.D. OhlroggeA.W. MalandaB. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045.Diabetes Res. Clin. Pract.201813827128110.1016/j.diabres.2018.02.02329496507
    [Google Scholar]
  6. WangA. LvG. ChengX. MaX. WangW. GuiJ. HuJ. LuM. ChuG. ChenJ. ZhangH. JiangY. ChenY. YangW. JiangL. GengH. ZhengR. LiY. FengW. JohnsonB. WangW. ZhuD. HuY. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition).Burns Trauma20208tkaa01710.1093/burnst/tkaa01732685563
    [Google Scholar]
  7. DriverV.R. FabbiM. LaveryL.A. GibbonsG. The costs of diabetic foot: The economic case for the limb salvage team.J. Vasc. Surg.2010523Suppl.17S22S10.1016/j.jvs.2010.06.00320804928
    [Google Scholar]
  8. WangL.H. GaoS.Z. BaiX.L. ChenZ.L. YangF. An up-to-date overview of dental tissue regeneration using dental origin mesenchymal stem cells: Challenges and road ahead.Front. Bioeng. Biotechnol.20221085539610.3389/fbioe.2022.85539635497335
    [Google Scholar]
  9. ZhangS.Y. RenJ.Y. YangB. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration.World J. Stem Cells202113111625164610.4252/wjsc.v13.i11.162534909115
    [Google Scholar]
  10. GoushkiM.A. KharatZ. KehtariM. SohiA.N. AhvazH.H. RadI. HosseinZadehS. KouhkanF. KabiriM. Applications of extraembryonic tissue-derived cells in vascular tissue regeneration.Stem Cell Res. Ther.202415120510.1186/s13287‑024‑03784‑338982541
    [Google Scholar]
  11. ShekatkarM. KheurS. DeshpandeS. SanapA. KharatA. NavalakhaS. GuptaA. KheurM. BhondeR. MerchantY.P. Angiogenic potential of various oral cavity–derived mesenchymal stem cells and cell-derived secretome: A systematic review and meta-analysis.Eur. J. Dent.202418371274210.1055/s‑0043‑177631537995732
    [Google Scholar]
  12. ShahaniP. KaushalA. WaghmareG. DattaI. Biodistribution of intramuscularly-transplanted human dental pulp stem cells in immunocompetent healthy rats through NIR imaging.Cells Tissues Organs20202094-621522610.1159/00051156933333518
    [Google Scholar]
  13. GengP. ZhangY. ZhangH. DongX. YangY. ZhuX. WuC.T. WangH. HGF-modified dental pulp stem cells mitigate the inflammatory and fibrotic responses in paraquat-induced acute respiratory distress syndrome.Stem Cells Int.2021202111510.1155/2021/666283133747095
    [Google Scholar]
  14. ShekatkarM.R. KheurS.M. KharatA.H. DeshpandeS.S. SanapA.P. KheurM.G. BhondeR.R. Assessment of angiogenic potential of mesenchymal stem cells derived conditioned medium from various oral sources.J. Clin. Transl. Res.20228432333836090765
    [Google Scholar]
  15. MaksimovaN.V. MichenkoA.V. KrasilnikovaO.A. KlabukovI.D. GadaevI.Y. KrasheninnikovM.E. BelkovP.A. LyundupA.V. Mesenchymal stromal cell therapy alone does not lead to complete restoration of skin parameters in diabetic foot patients within a 3-year follow-up period.Bioimpacts2022121515535087716
    [Google Scholar]
  16. NalisaD.L. MoneruzzamanM. ChangweG.J. MobetY. LiL.P. MaY.J. JiangH.W. Stem cell therapy for diabetic foot ulcers: Theory and practice.J. Diabetes Res.2022202211210.1155/2022/602874336524153
    [Google Scholar]
  17. KimS. LeeS. JungH.S. KimS.Y. ShinS.J. KangM.K. KimE. Evaluation of the biodistribution of human dental pulp stem cells transplanted into mice.J. Endod.201844459259810.1016/j.joen.2017.12.00729370943
    [Google Scholar]
  18. Viaña-MendietaP. SánchezM.L. BenavidesJ. Rational selection of bioactive principles for wound healing applications: Growth factors and antioxidants.Int. Wound J.202219110011310.1111/iwj.1360233951280
    [Google Scholar]
  19. YuceK. The application of mesenchymal stem cells in different cardiovascular disorders: Ways of administration, and the effectors.Stem Cell Rev. Rep.20242071671169110.1007/s12015‑024‑10765‑939023739
    [Google Scholar]
  20. MaetaN. IwaiR. TakemitsuH. AkashiN. MiyabeM. Funayama-IwaiM. NakayamaY. Evaluation of skin wound healing with biosheets containing somatic stem cells in a dog model: A pilot study.Bioengineering202411543510.3390/bioengineering1105043538790301
    [Google Scholar]
  21. HuangX. YangJ. ZhangR. YeL. LiM. ChenW. Phloroglucinol derivative carbomer hydrogel accelerates MRSA-infected wounds’ healing.Int. J. Mol. Sci.20222315868210.3390/ijms2315868235955816
    [Google Scholar]
  22. LiJ. ZhaiD. LvF. YuQ. MaH. YinJ. YiZ. LiuM. ChangJ. WuC. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing.Acta Biomater.20163625426610.1016/j.actbio.2016.03.01126965395
    [Google Scholar]
  23. DerhambakhshS. MohammadiJ. ShokrgozarM.A. RabbaniH. SadeghiN. NekounamH. MohammadiS. LeeK.B. KhakbizM. Investigation of electrical stimulation on phenotypic vascular smooth muscle cells differentiation in tissue-engineered small-diameter vascular graft.Tissue Cell20238110199610.1016/j.tice.2022.10199636657256
    [Google Scholar]
  24. SpanholtzT.A. TheodorouP. HolzbachT. WutzlerS. GiuntaR.E. MachensH.G. Vascular endothelial growth factor (VEGF165) plus basic fibroblast growth factor (bFGF) producing cells induce a mature and stable vascular network-a future therapy for ischemically challenged tissue.J. Surg. Res.2011171132933810.1016/j.jss.2010.03.03320605609
    [Google Scholar]
  25. JiangT. LiuQ. XuE.C. HeS.Y. LiuH.Y. TianC. ZhangL.F. YangZ.L. Fibroblasts/three-dimensional scaffolds complexes promote wound healing in rats with skin defects.Tissue Barriers2024233454410.1080/21688370.2024.233454438544287
    [Google Scholar]
  26. ZhangY. ZhaoX. GuoC. ZhangY. ZengF. YinQ. LiZ. ShaoL. ZhouD. LiuL. The circadian system is essential for the crosstalk of VEGF-notch-mediated endothelial angiogenesis in ischemic stroke.Neurosci. Bull.20233991375139510.1007/s12264‑023‑01042‑936862341
    [Google Scholar]
  27. WangH. FangF. ZhangM. XuC. LiuJ. GaoL. ZhaoC. WangZ. ZhongY. WangX. Nuclear receptor 4A1 ameliorates renal fibrosis by inhibiting vascular endothelial growth factor A induced angiogenesis in UUO rats.Biochim. Biophys. Acta Mol. Cell Res.20241871711981310.1016/j.bbamcr.2024.11981339142522
    [Google Scholar]
  28. WangH. PeiS. FangS. JinS. DengS. ZhaoY. FengY. Irisin restores high glucose-induced cell injury in vascular endothelial cells by activating Notch pathway via Notch receptor 1.Biosci. Biotechnol. Biochem.202185102093210210.1093/bbb/zbab13734329390
    [Google Scholar]
  29. KumeT. Novel insights into the differential functions of Notch ligands in vascular formation.J. Angiogenes. Res.200911810.1186/2040‑2384‑1‑820016694
    [Google Scholar]
  30. GerhardtH. GoldingM. FruttigerM. RuhrbergC. LundkvistA. AbramssonA. JeltschM. MitchellC. AlitaloK. ShimaD. BetsholtzC. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia.J. Cell Biol.200316161163117710.1083/jcb.20030204712810700
    [Google Scholar]
  31. RocaC. AdamsR.H. Regulation of vascular morphogenesis by Notch signaling.Genes Dev.200721202511252410.1101/gad.158920717938237
    [Google Scholar]
  32. ShaoF. LiuR. TanX. ZhangQ. YeL. YanB. ZhuangY. XuJ. MSC transplantation attenuates inflammation, prevents endothelial damage and enhances the angiogenic potency of endogenous MSCs in a model of pulmonary arterial hypertension.J. Inflamm. Res.2022152087210110.2147/JIR.S35547935386223
    [Google Scholar]
  33. WeiS.T. HuangY.C. HsiehM.L. LinY.J. ShyuW.C. ChenH.C. HsiehC.H. Atypical chemokine receptor ACKR3/CXCR7 controls postnatal vasculogenesis and arterial specification by mesenchymal stem cells via Notch signaling.Cell Death Dis.202011530710.1038/s41419‑020‑2512‑232366833
    [Google Scholar]
  34. Cañedo-DorantesL. Cañedo-AyalaM. Skin acute wound healing: A comprehensive review.Int. J. Inflamm.2019201911510.1155/2019/370631531275545
    [Google Scholar]
  35. ChenJ.C. HeM.Q. Inhibition of CYP1A1 expression enhances diabetic wound healing by modulating inflammation and oxidative stress in a rat model.Tissue Cell20249010248310.1016/j.tice.2024.10248339059132
    [Google Scholar]
  36. WangK.Y. LuJ.S. SongC.Y. QiaoM. ChangM.H. LiY. LiJ.K. TangZ.L. BaoH.D. QiuY. QianB.P. Role of intercellular adhesion molecule-1 in adhesion and migration of mesenchymal stem cells in ankylosing spondylitis and its mechanisms.Zhonghua Yi Xue Za Zhi2024104252350235838951108
    [Google Scholar]
  37. JianzhenJ. XinZ. ZhenguoL. ChengguoS.U. HaiyanZ. YuqingJ. XianjunX. YunfeiC. JunZ. Efficacy of electroacupuncture stimulating Zusanli (ST36) and Xuanzhong (GB39) on synovial angiogenesis in rats with adjuvant arthritis.J. Tradit. Chin. Med.202343595596237679983
    [Google Scholar]
  38. LobovI.B. RenardR.A. PapadopoulosN. GaleN.W. ThurstonG. YancopoulosG.D. WiegandS.J. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting.Proc. Natl. Acad. Sci. USA200710493219322410.1073/pnas.061120610417296940
    [Google Scholar]
  39. HarringtonL.S. SainsonR.C.A. WilliamsC.K. TaylorJ.M. ShiW. LiJ.L. HarrisA.L. Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells.Microvasc. Res.200875214415410.1016/j.mvr.2007.06.00617692341
    [Google Scholar]
  40. LobovI. MikhailovaN. The role of Dll4/Notch signaling in normal and pathological ocular angiogenesis: Dll4 controls blood vessel sprouting and vessel remodeling in normal and pathological conditions.J. Ophthalmol.201820181810.1155/2018/356529230116629
    [Google Scholar]
  41. ZhouQ. LiB. LiJ. DLL4-Notch signalling in acute-on-chronic liver failure: State of the art and perspectives.Life Sci.202331712143810.1016/j.lfs.2023.12143836709913
    [Google Scholar]
  42. PajulaJ. LähteenvuoJ. LähteenvuoM. HonkonenK. HalonenP. HätinenO.P. KuivanenA. HeikkiläM. NurroJ. HartikainenJ. Ylä-HerttualaS. Adenoviral VEGF-DΔN ΔC gene therapy for myocardial ischemia.Front. Bioeng. Biotechnol.20221099922610.3389/fbioe.2022.99922636619378
    [Google Scholar]
  43. YamashitaM. NiisatoM. KawasakiY. KaramanS. RobciucM.R. ShibataY. IshidaY. NishioR. MasudaT. SugaiT. OnoM. TuderR.M. AlitaloK. YamauchiK. VEGF-C/VEGFR-3 signalling in macrophages ameliorates acute lung injury.Eur. Respir. J.2022594210088010.1183/13993003.00880‑202134446463
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X363143250221015057
Loading
/content/journals/cscr/10.2174/011574888X363143250221015057
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test