Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Introduction

Mesenchymal stem cells derived from umbilical cord blood (UCB-MSCs) have a well-known role in fastening the wound healing process due to their less immune rejection, anti-inflammatory effects, and their role in cellular growth. Campesterol is a nutritional phytosterol with extensive health values and a competitor of cholesterol in the blood. Campesterol shares some anti-inflammatory effects its regulation of inflammatory markers by inhibiting the pro-inflammatory cytokines (including TNF-α, TGF-β1, and IL-6) levels.

Method

The purpose of this study was to assess the ameliorative role of combined therapy (campesterol and UCB-MSCs) in wound healing without immune rejection. The study comprised both and experiments. analysis included assessments of the cell viability of campesterol on UCBMSCs using MTT, crystal blue, trypan blue, and cell scratch assays. For trials, superficial burn wounds were created on Sprague Dawley rats to evaluate the effects of campesterol, UCB-MSCs, and their combination on healing outcomes. Tissue regeneration progress in the wound vicinity was assessed using H&E staining and ELISA (inflammatory and growth markers) analysis.

Result

Results of experiments indicated that campesterol at concentrations of 10µg, 20µg, and 30µg demonstrated the most efficient cell viability. Moreover, a 30ug dose of campesterol along with UCBMSCs was further applied, leading to smooth and uncomplicated healing in the animal models. H&E staining showed nearly normal skin tissue while hematological and biochemical markers were near to control. Serum levels of tissue growth promoter factors, including VEGF and collagen-3, were higher, and pro-inflammatory markers (such as TGF-β1, TNF-α, and IL-6) were lower at the same time.

Conclusion

The results of the combined (MSCs and campesterol) therapy showed enhanced wound healing abilities. However, further studies are recommended to explore new aspects of this promising therapeutic approach of UCB-MSCs along with steroid derivative campesterol.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X345915250317063656
2025-04-03
2026-02-05
Loading full text...

Full text loading...

References

  1. JinY. LiS. YuQ. ChenT. LiuD. Application of stem cells in regeneration medicine.MedComm202344e29110.1002/mco2.291 37337579
    [Google Scholar]
  2. MehtaP. KetharJ. Stem cells and regenerative medicine in the treatment of musculoskeletal disorders.J Stud Res202312210.47611/jsrhs.v12i2.4223
    [Google Scholar]
  3. DortajH. AlizadehA.A. AzarpiraN. TayebiL. Non-invasive imaging modalities for stem cells tracking in osteoarthritis.Regen. Eng. Transl. Med.202410191810.1007/s40883‑023‑00305‑1
    [Google Scholar]
  4. ShahP. AghazadehM. RajasinghS. DixonD. JainV. RajasinghJ. Stem cells in regenerative dentistry: Current understanding and future directions.J Oral Biosci202466228829910.1016/j.job.2024.02.006 38403241
    [Google Scholar]
  5. ÖhnstedtE. Lofton TomeniusH. VågesjöE. PhillipsonM. The discovery and development of topical medicines for wound healing.Expert Opin. Drug Discov.201914548549710.1080/17460441.2019.1588879 30870037
    [Google Scholar]
  6. Do ThiXP ThânU DinhDT ThiMN DoXH In vitro angiogenesis capacity of mesenchymal stem cells derived from umbilical cord blood and adipose tissue.Viet J Physiol202226310.54928/vjop.v26i3.115
    [Google Scholar]
  7. MishraS. SevakJ.K. DasA. ArimbasseriG.A. BhatnagarS. GopinathS.D. Umbilical cord tissue is a robust source for mesenchymal stem cells with enhanced myogenic differentiation potential compared to cord blood.Sci. Rep.20201011897810.1038/s41598‑020‑75102‑9 33149204
    [Google Scholar]
  8. ShuT. LiJ. GuJ. Long noncoding RNA UCA1 promotes the chondrogenic differentiation of human bone marrow mesenchymal stem cells via regulating PARP1 ubiquitination.Stem Cells202442875276210.1093/stmcls/sxae038 38829368
    [Google Scholar]
  9. TabasiA. BarikrowN. Differentiation of mesenchymal stem cells isolated from the amniotic membrane and umbilical cord to osteocytes and the expression of RunX2, Osteonectin, ALP genes.J Curr Biomed Rep202233
    [Google Scholar]
  10. RashnonejadA. ErcanG. GunduzC. AkdemirA. TiftikciogluY.O. Comparative analysis of human UCB and adipose tissue derived mesenchymal stem cells for their differentiation potential into brown and white adipocytes.Mol. Biol. Rep.201845323324410.1007/s11033‑018‑4156‑1 29453764
    [Google Scholar]
  11. NalisaD.L. MoneruzzamanM. ChangweG.J. Stem cell therapy for diabetic foot ulcers: Theory and practice.J. Diabetes Res.20222022111210.1155/2022/6028743 36524153
    [Google Scholar]
  12. MaksimovaN.V. MichenkoA.V. KrasilnikovaO.A. Mesenchymal stromal cell therapy alone does not lead to complete restoration of skin parameters in diabetic foot patients within a 3-year follow-up period.Bioimpacts20221215155 35087716
    [Google Scholar]
  13. SmirnovaA. YatsenkoE. BaranovskiiD. KlabukovI. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: The risk of senescent drift induction in secretome-based therapeutics.Mil. Med. Res.20231016010.1186/s40779‑023‑00498‑0 38031201
    [Google Scholar]
  14. TekinayS.H. TekinayA.B. Stem cells and nanofibers for skin regeneration and wound healing.Adv. Exp. Med. Biol.20241470193010.1007/5584_2024_814 38904750
    [Google Scholar]
  15. JiangY. XuX. XiaoL. WangL. QiangS. The role of microRNA in the inflammatory response of wound healing.Front. Immunol.20221385241910.3389/fimmu.2022.852419 35386721
    [Google Scholar]
  16. GaoX. GoreckaJ. CheemaU. GuY. WuY. DardikA. Induced pluripotent stem cells in wound healing.Recent Advances in iPSCs for Therapy.Academic Press2021Vol. 326929010.1016/B978‑0‑12‑822229‑4.00003‑6
    [Google Scholar]
  17. ChowL. JohnsonV. ImpastatoR. CoyJ. StrumpfA. DowS. Antibacterial activity of human mesenchymal stem cells mediated directly by constitutively secreted factors and indirectly by activation of innate immune effector cells.Stem Cells Transl. Med.20209223524910.1002/sctm.19‑0092 31702119
    [Google Scholar]
  18. EsfandiyariR. HalabianR. BehzadiE. SedighianH. JafariR. Imani FooladiA.A. Performance evaluation of antimicrobial peptide ll-37 and hepcidin and β-defensin-2 secreted by mesenchymal stem cells.Heliyon2019510e0265210.1016/j.heliyon.2019.e02652 31687504
    [Google Scholar]
  19. RenZ. ZhengX. YangH. Human umbilical-cord mesenchymal stem cells inhibit bacterial growth and alleviate antibiotic resistance in neonatal imipenem-resistant Pseudomonas aeruginosa infection.Innate Immun.202026321522110.1177/1753425919883932 31623477
    [Google Scholar]
  20. HirakawaM.P. TjahjonoN. LightY.K. Upregulation of CD14 in mesenchymal stromal cells accelerates lipopolysaccharide-induced response and enhances antibacterial properties.iScience202225210375910.1016/j.isci.2022.103759 35141503
    [Google Scholar]
  21. JohnsonV. Immune Modulatory and Antimicrobial Properties of Mesenchymal Stromal Cells Delivered Systemically.Doctoral dissertation, Colorado State University2020
    [Google Scholar]
  22. PlatJ. BrufauG. Dallinga-ThieG.M. DasselaarM. MensinkR.P. A plant stanol yogurt drink alone or combined with a low-dose statin lowers serum triacylglycerol and non-HDL cholesterol in metabolic syndrome patients.J. Nutr.200913961143114910.3945/jn.108.103481 19403719
    [Google Scholar]
  23. AmaniH. HabibeyR. HajmiresmailS.J. LatifiS. Pazoki-ToroudiH. AkhavanO. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries.J. Mater. Chem. B Mater. Biol. Med.20175489452947610.1039/C7TB01689A 32264560
    [Google Scholar]
  24. ShibataM. ChanputW. Anti-inflammatory activity of rice phytosterols and gamma-oryzanol in THP-1 macrophages.Proceeding of 56th Kasetsart University Annual ConferenceBangkok, Thailand201875462
    [Google Scholar]
  25. Freitas da SilvaF.E. das Chagas Lima Pinto F, Loiola Pessoa OD, Marques da Fonseca A, Martins da Costa JG, Pinheiro Santiago GM. Campesterol semi‐synthetic derivatives as potential antibacterial: In vitro and in silico evaluation.Chem. Biodivers.2023207e20230053610.1002/cbdv.202300536 37335297
    [Google Scholar]
  26. UttuA.J. SallauM.S. IbrahimH. IyunO.R.A. Isolation, characterization, and docking studies of campesterol and β-sitosterol from Strychnos innocua (Delile) root bark.J. Taibah Univ. Med. Sci.202318356657810.1016/j.jtumed.2022.12.003 36818166
    [Google Scholar]
  27. SerraM.B. BarrosoW.A. SilvaN.N. From inflammation to current and alternative therapies involved in wound healing.Int. J. Inflamm.20172017111710.1155/2017/3406215 28811953
    [Google Scholar]
  28. PavelT.I. ChircovC. RădulescuM. GrumezescuA.M. Regenerative wound dressings for skin cancer.Cancers (Basel)20201210295410.3390/cancers12102954 33066077
    [Google Scholar]
  29. NevesL.M.G. WilgusT.A. BayatA. In vitro, ex vivo, and in vivo approaches for investigation of skin scarring: Human and animal models.Adv. Wound Care (New Rochelle)20231229711610.1089/wound.2021.0139 34915768
    [Google Scholar]
  30. CooperT.K. MeyerholzD.K. BeckA.P. Relevant conditions and pathology of laboratory mice, rats, gerbils, Guinea pigs, hamsters, naked mole rats, and rabbits.ILAR J.2021621-27713210.1093/ilar/ilab022 34979559
    [Google Scholar]
  31. BártoloI. ReisR.L. MarquesA.P. CerqueiraM.T. Keratinocyte growth factor-based strategies for wound re-epithelialization.Tissue Eng. Part B Rev.202228366567610.1089/ten.teb.2021.0030 34238035
    [Google Scholar]
  32. ProdromosC.C. FinkleS. LotusJ. The aggregated data from normal saline placebo arms of hyaluronic acid and other knee injection studies for OA can be used as a control group for single-armed knee injection studies.Int. J. Orthop. (Hong Kong)20241023239
    [Google Scholar]
  33. KlabukovI. ShestakovaV. KrasilnikovaO. Refinement of animal experiments: Replacing traumatic methods of laboratory animal marking with non-invasive alternatives.Animals (Basel)20231322345210.3390/ani13223452 38003070
    [Google Scholar]
  34. ZhouL. McDonaldC.A. YawnoT. Feasibility of cord blood collection for autologous cell therapy applications in extremely preterm infants.Cytotherapy202325545846210.1016/j.jcyt.2023.01.001 36740465
    [Google Scholar]
  35. ReutherS. FloegelK. CeustersG. AlbertiniV. BaranJ. DempkeW. Contamination rate of cryopreserved umbilical cord blood is inversely correlated with volume of sample collected and is also dependent on delivery mode.Stem Cells Transl. Med.202211660461210.1093/stcltm/szac020 35486383
    [Google Scholar]
  36. RenZ. XuF. WangJ. Safety and feasibility of umbilical cord blood collection from preterm neonates after delayed cord clamping for the use of improving preterm complications.Am. J. Transl. Res.202113545534560 34150035
    [Google Scholar]
  37. AbidF. SaleemM. MullerC. Anti-proliferative and apoptosis-inducing activity of Acacia Modesta and Opuntia Monocantha extracts on HeLa cells.Asian Pac. J. Cancer Prev.202021103125313110.31557/APJCP.2020.21.10.3125 33112576
    [Google Scholar]
  38. NguyenL.T. TranN.T. ThanU.T.T. Optimization of human umbilical cord blood-derived mesenchymal stem cell isolation and culture methods in serum- and xeno-free conditions.Stem Cell Res. Ther.20221311510.1186/s13287‑021‑02694‑y 35012671
    [Google Scholar]
  39. MaqboolT. AwanS.J. MalikS. HadiF. ShehzadiS. TariqK. In-vitro anti-proliferative, apoptotic and antioxidative activities of medicinal herb Kalonji (Nigella sativa).Curr. Pharm. Biotechnol.201920151288130810.2174/1389201020666190821144633 31433749
    [Google Scholar]
  40. HadiF. AwanS.J. TayyebA. Hepato-protective role of itraconazole mediated cytochrome p450 pathway inhibition in liver fibrosis.Pak. J. Pharm. Sci.2020336 Supplementary27512758 33879433
    [Google Scholar]
  41. SakamotoM. MorimotoN. OginoS. Preparation of partial-thickness burn wounds in rodents using a new experimental burning device.Ann. Plast. Surg.201676665265810.1097/SAP.0000000000000655 27176561
    [Google Scholar]
  42. SharmaR. YeshwanteS. ValléQ. Rat burn model to study full-thickness cutaneous thermal burn and infection.J. Vis. Exp.2022186186e6434510.3791/64345‑v 36094269
    [Google Scholar]
  43. El-ShaerA.J. BadrH.A. AlSadekD.M. The combined effect of the human umbilical cord blood with chitosan scaffold on the full-thickness wound healing process in rats.Iraqi J. Vet. Sci.202337239140310.33899/ijvs.2022.134782.2404
    [Google Scholar]
  44. WeiJ. TongK. WangH. WenY. ChenL. Dosage, efficacy, and safety of intra-articular vancomycin for prophylaxis of periprosthetic joint infection caused by methicillin-resistant Staphylococcus aureus after total knee arthroplasty in a rat model.Antimicrob. Agents Chemother.2022662e01641e2110.1128/AAC.01641‑21 34807762
    [Google Scholar]
  45. JameelF. KhanI. MalickT.S. Single dose human perinatal stem cells accelerate healing of cold‐induced rat burn wound.Cell Biochem. Funct.2024423e400810.1002/cbf.4008 38613198
    [Google Scholar]
  46. KantV. GopalA. PathakN.N. KumarP. TandanS.K. KumarD. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats.Int. Immunopharmacol.201420232233010.1016/j.intimp.2014.03.009 24675438
    [Google Scholar]
  47. GushikenL.F.S. HussniC.A. BastosJ.K. Skin wound healing potential and mechanisms of the hydroalcoholic extract of leaves and oleoresin of Copaifera langsdorffii Desf. Kuntze in rats.Evid. Based Complement. Alternat. Med.201720171658927010.1155/2017/6589270 28928790
    [Google Scholar]
  48. BaumfeldD. BaumfeldT. MacedoB. ZambelliR. LopesF. NeryC. Factors related to amputation level and wound healing in diabetic patients.Acta Ortop. Bras.201826534234510.1590/1413‑785220182605173445 30464719
    [Google Scholar]
  49. NazirS. DoggarS. AfzalH.S. MaqboolT. Stem cells types, their sources and role in cardiac regeneration.J. Pharm. Negat. Results20233831384110.47750/pnr.2023.14.02.448
    [Google Scholar]
  50. WahediH.M. JeongM. ChaeJ.K. DoS.G. YoonH. KimS.Y. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo.Phytomedicine201728192610.1016/j.phymed.2017.02.005 28478809
    [Google Scholar]
  51. ZhangY. PanY. LiuY. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition.Stem Cell Res. Ther.202112143410.1186/s13287‑021‑02517‑0 34344478
    [Google Scholar]
  52. SidhomE. PilmaneM. KreicbergaI. Molecular events in the Wharton’s jelly and blood vessels of human umbilical cord.Pap. Anthropol.201726211310.12697/poa.2017.26.2.12
    [Google Scholar]
  53. EvtyuginD.D. EvtuguinD.V. CasalS. DominguesM.R. Advances and challenges in plant sterol research: Fundamentals, analysis, applications and production.Molecules20232818652610.3390/molecules28186526 37764302
    [Google Scholar]
  54. ShahzadN. KhanW. MdS. Phytosterols as a natural anticancer agent: Current status and future perspective.Biomed. Pharmacother.20178878679410.1016/j.biopha.2017.01.068 28157655
    [Google Scholar]
  55. JamalzadehL. Cytotoxic effects of some common organic solvents on MCF-7, RAW-264.7 and human umbilical vein endothelial cells.Avicenna Journal of Medical Biochemistry201610.17795/ajmb‑33453
    [Google Scholar]
  56. BaeH. ParkS. YangC. SongG. LimW. Disruption of endoplasmic reticulum and ROS production in human ovarian cancer by campesterol.Antioxidants202110337910.3390/antiox10030379 33802602
    [Google Scholar]
  57. BatarfiW.A. Mohd YunusM.H. HamidA.A. The effect of hydroxytyrosol in type II epithelial-mesenchymal transition in human skin wound healing.Molecules2023286265210.3390/molecules28062652 36985625
    [Google Scholar]
  58. KaleciB. KoyuturkM. Efficacy of resveratrol in the wound healing process by reducing oxidative stress and promoting fibroblast cell proliferation and migration.Dermatol. Ther.2020336e1435710.1111/dth.14357 32996685
    [Google Scholar]
  59. TwarużekM. ZastempowskaE. SoszczyńskaE. AłtynI. The use of in vitro assays for the assessment of cytotoxicity on the example of MTT test.Acta Universitatis Lodziensis Folia Biologica et Oecologica2018141233210.1515/fobio‑2017‑0006
    [Google Scholar]
  60. BahugunaA. KhanI. BajpaiV.K. KangS.C. MTT assay to evaluate the cytotoxic potential of a drug.Bangladesh J. Pharmacol.201712211511810.3329/bjp.v12i2.30892
    [Google Scholar]
  61. FeoktistovaM GeserickP LeverkusM Crystal violet assay for determining viability of cultured cells.Cold Spring Harb Protoc201620164pdb.prot08737910.1101/pdb.prot087379
    [Google Scholar]
  62. RadstakeW.E. GautamK. Van RompayC. Comparison of in vitro scratch wound assay experimental procedures.Biochem. Biophys. Rep.20233310142310.1016/j.bbrep.2023.101423 36647554
    [Google Scholar]
  63. Castellano-PellicenaI. ThorntonM.J. Isolation of epidermal keratinocytes from human skin: The scratch-wound assay for assessment of epidermal keratinocyte migration.Methods Mol. Biol.2020215411210.1007/978‑1‑0716‑0648‑3_1 32314203
    [Google Scholar]
  64. MartinottiS. RanzatoE. Scratch wound healing assay.Methods Mol. Biol.202021092552910.1007/7651_2019_259 31414347
    [Google Scholar]
  65. NieC. YuH. WangX. LiX. WeiZ. ShiX. Pro-inflammatory effect of obesity on rats with burn wounds.PeerJ20208e1049910.7717/peerj.10499 33354433
    [Google Scholar]
  66. SteinstraesserL. BurkhardO. FanM.H. Burn wounds infected with Pseudomonas aeruginosa triggers weight loss in rats.BMC Surg.2005511910.1186/1471‑2482‑5‑19 16168063
    [Google Scholar]
  67. TavelliL. BarootchiS. StefaniniM. ZucchelliG. GiannobileW.V. WangH.L. Wound healing dynamics, morbidity, and complications of palatal soft‐tissue harvesting.Periodontol. 200020239219011910.1111/prd.12466 36583690
    [Google Scholar]
  68. EmingS.A. WynnT.A. MartinP. Inflammation and metabolism in tissue repair and regeneration.Science201735663421026103010.1126/science.aam7928 28596335
    [Google Scholar]
  69. DekoninckS. BlanpainC. Stem cell dynamics, migration and plasticity during wound healing.Nat. Cell Biol.2019211182410.1038/s41556‑018‑0237‑6 30602767
    [Google Scholar]
  70. PotekaevN.N. BorzykhO.B. MedvedevG.V. The role of extracellular matrix in skin wound healing.J. Clin. Med.20211024594710.3390/jcm10245947 34945243
    [Google Scholar]
  71. PetkovicM. SørensenA.E. LealE.C. CarvalhoE. DalgaardL.T. Mechanistic actions of microRNAs in diabetic wound healing.Cells2020910222810.3390/cells9102228 33023156
    [Google Scholar]
  72. KhalidM. PetroianuG. AdemA. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives.Biomolecules202212454210.3390/biom12040542 35454131
    [Google Scholar]
  73. SemolaO. Effect of Advanced Glycation End Products on Regulation of Placental Growth Factor.Master's thesis, Oklahoma State University2019
    [Google Scholar]
  74. YarmohammadiF. MehriS. NajafiN. Salar AmoliS. HosseinzadehH. The protective effect of Azadirachta indica (neem) against metabolic syndrome: A review.Iran. J. Basic Med. Sci.2021243280292 33995939
    [Google Scholar]
  75. CastañoO. Pérez-AmodioS. Navarro-RequenaC. Mateos-TimonedaM.Á. EngelE. Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms.Adv. Drug Deliv. Rev.20181299511710.1016/j.addr.2018.03.012 29627369
    [Google Scholar]
  76. LiuC. XuY. LuY. Mesenchymal stromal cells pretreated with proinflammatory cytokines enhance skin wound healing via IL-6-dependent M2 polarization.Stem Cell Res. Ther.202213141410.1186/s13287‑022‑02934‑9 35964139
    [Google Scholar]
  77. MaH. SiuW.S. KoonC.M. The Application of Adipose Tissue-Derived Mesenchymal Stem Cells (ADMSCs) and a twin-herb formula to the rodent wound healing model: Use alone or together?Int. J. Mol. Sci.2023242137210.3390/ijms24021372 36674885
    [Google Scholar]
  78. KarimiM. MaghsoudZ. HalabianR. Effect of preconditioned mesenchymal stem cells with nisin prebiotic on the expression of wound healing factors such as TGF-β1, FGF-2, IL-1, IL-6, and IL-10.Regen. Eng. Transl. Med.202171304010.1007/s40883‑021‑00194‑2
    [Google Scholar]
  79. PutraA. AlifI. HamraN. MSC-released TGF-ß regulate a-SMA expression of myofibroblast during wound healing.J. Stem Cells Regen. Med.2020162737910.46582/jsrm.1602011 33414583
    [Google Scholar]
  80. KinbaraT. ShirasakiF. KawaraS. InagakiY. de CrombruggheB. TakeharaK. Transforming growth factor‐β isoforms differently stimulate proα2 (I) collagen gene expression during wound healing process in transgenic mice.J. Cell. Physiol.2002190337538110.1002/jcp.10046 11857453
    [Google Scholar]
  81. NazirS. MobasharA. AnjumI. ChaudharyW.A. TariqN. DarS.R. Mechanistic evaluation of anti-arthritic effects of campesterol through downregulation of TNF-α, IL1β, IL-6, NF-κB, MMP 3,COX I and COX II and upregulation of IL-4.Research Square202310.21203/rs.3.rs‑3053739/v1
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X345915250317063656
Loading
/content/journals/cscr/10.2174/011574888X345915250317063656
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): campesterol; collagen-3; IL-6; skin regeneration; TGF-β1; TNF-α; UCB-MSCs; VEGF; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test