Skip to content
2000
image of HuMenSCs Initiate the Uterus Stromal Decidualization in Mouse

Abstract

Introduction

Human menstrual blood stem cells (huMenSCs) appear to be pre-clinically safe but a controlled phase I clinical trial is required to determine safety for clinical applications.

Methods

HuMenSCs established from healthy donors were free of bacteria, mycoplasma, chlamydia, and endotoxin. P3 (passage 3) huMenSCs expressed the mesenchymal stem cell markers. P6 huMenSCs were developmental multipotential and could translocated into the uterine subepithelial stroma after intrauterine transplantation. After 10 and 15 passages, the huMenSCs kept normal karyotypes.

Results

Gene expression showed that compared with the human umbilical cords mesenchymal stem cells (huMSCs), the huMenSCs affected the stromal cells more effectively. The huMenSCs possibly enhanced the stromal cell multiplication and “decidualization” process initiated by Igfbp1.

Conclusion

Expression of , , , , and were significantly increased in the stromal cells of the huMenSCs transplanted uterine.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X344947250221103039
2025-02-28
2025-09-15
Loading full text...

Full text loading...

References

  1. Sabeh E.M. Afrin S. Singh B. Miyashita-Ishiwata M. Borahay M. Uterine stem cells and benign gynecological disorders: Role in pathobiology and therapeutic implications. Stem Cell Rev. Rep. 2021 17 3 803 820 10.1007/s12015‑020‑10075‑w 33155150
    [Google Scholar]
  2. Wang H.S. Hung S.C. Peng S.T. Huang C.C. Wei H.M. Guo Y.J. Fu Y.S. Lai M.C. Chen C.C. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 2004 22 7 1330 1337 10.1634/stemcells.2004‑0013 15579650
    [Google Scholar]
  3. Borlongan C.V. Kaneko Y. Maki M. Yu S.J. Ali M. Allickson J.G. Sanberg C.D. Kuzmin-Nichols N. Sanberg P.R. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev. 2010 19 4 439 452 10.1089/scd.2009.0340 19860544
    [Google Scholar]
  4. Patel A.N. Park E. Kuzman M. Benetti F. Silva F.J. Allickson J.G. Multipotent menstrual blood stromal stem cells: Isolation, characterization, and differentiation. Cell Transplant. 2008 17 3 303 311 10.3727/096368908784153922 18522233
    [Google Scholar]
  5. Hur C. Rehmer J. Flyckt R. Falcone T. Uterine factor infertility: A clinical review. Clin. Obstet. Gynecol. 2019 62 2 257 270 10.1097/GRF.0000000000000448 31021928
    [Google Scholar]
  6. Egashira M. Hirota Y. Uterine receptivity and embryo–uterine interactions in embryo implantation: Lessons from mice. Reprod. Med. Biol. 2013 12 4 127 132 10.1007/s12522‑013‑0153‑1 29699140
    [Google Scholar]
  7. Ramathal C.Y. Bagchi I.C. Taylor R.N. Bagchi M.K. Endometrial decidualization: Of mice and men. Semin. Reprod. Med. 2010 28 1 17 26
    [Google Scholar]
  8. Zhao M. Zhang W.Q. Liu J.L. A study on regional differences in decidualization of the mouse uterus. Reproduction 2017 153 5 645 653 10.1530/REP‑16‑0486 28250238
    [Google Scholar]
  9. Ochoa-Bernal M.A. Fazleabas A.T. Physiologic events of embryo implantation and decidualization in human and non-human primates. Int. J. Mol. Sci. 2020 21 6 1973 10.3390/ijms21061973 32183093
    [Google Scholar]
  10. Hemberger M. Hanna C.W. Dean W. Mechanisms of early placental development in mouse and humans. Nat. Rev. Genet. 2020 21 1 27 43 10.1038/s41576‑019‑0169‑4 31534202
    [Google Scholar]
  11. Sharara F.I. Lelea L.L. Rahman S. Klebanoff J.S. Moawad G.N. A narrative review of platelet-rich plasma (PRP) in reproductive medicine. J. Assist. Reprod. Genet. 2021 38 5 1003 1012 10.1007/s10815‑021‑02146‑9 33723748
    [Google Scholar]
  12. Zhang S. Zhang R. Yin X. Lu Y. Cheng H. Pan Y. Liu Y. Lin J. MenSCs transplantation improve the viability of injured endometrial cells through activating PI3K/Akt pathway. Reprod. Sci. 2023 30 11 3325 3338 10.1007/s43032‑023‑01282‑0 37308799
    [Google Scholar]
  13. Ma H. Liu M. Li Y. Wang W. Yang K. Lu L. He M. Deng T. Li M. Wu D. Intrauterine transplantation of autologous menstrual blood stem cells increases endometrial thickness and pregnancy potential in patients with refractory intrauterine adhesion. J. Obstet. Gynaecol. Res. 2020 46 11 2347 2355 10.1111/jog.14449 32856391
    [Google Scholar]
  14. Tan J. Li P. Wang Q. Li Y. Li X. Zhao D. Xu X. Kong L. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Hum. Reprod. 2016 31 12 2723 2729 10.1093/humrep/dew235 27664218
    [Google Scholar]
  15. Arezoo N. Mohammad H. Malihezaman M. Tissue engineering of mouse uterus using menstrual blood stem cells (MenSCs) and decellularized uterine scaffold. Stem Cell Res. Ther. 2021 12 1 475 10.1186/s13287‑021‑02543‑y 34425893
    [Google Scholar]
  16. Liu T. Huang Y. Zhang J. Qin W. Chi H. Chen J. Yu Z. Chen C. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev. 2014 23 13 1548 1557 10.1089/scd.2013.0371 24593672
    [Google Scholar]
  17. Noory P. Navid S. Zanganeh B.M. Talebi A. Borhani-Haghighi M. Gholami K. Manshadi M.D. Abbasi M. Human menstrual blood stem cell-derived granulosa cells participate in ovarian follicle formation in a rat model of premature ovarian failure in vivo. Cell. Reprogram. 2019 21 5 249 259 10.1089/cell.2019.0020 31596622
    [Google Scholar]
  18. Wang T Tan J Therapeutic effect of menstrual blood stem cells in rats with thin endometrium. Zhejiang. Da. Xue. Xue. Bao. Yi. Xue. Ban. 2023 52 1 13 23 10.3724/zdxbyxb‑2022‑0509
    [Google Scholar]
  19. Petsa A. Gargani S. Felesakis A. Grigoriadis N. Grigoriadis I. Effectiveness of protocol for the isolation of Wharton’s Jelly stem cells in large-scale applications. In Vitro Cell. Dev. Biol. Anim. 2009 45 10 573 576 10.1007/s11626‑009‑9227‑0
    [Google Scholar]
  20. Allickson JG Sanchez A Yefimenko N Borlongan CV Sanberg PR Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood. Open Stem. Cell. J. 2011 3 2011 4 10 10.2174/1876893801103010004
    [Google Scholar]
  21. Clercq D.K. Hennes A. Vriens J. Isolation of mouse endometrial epithelial and stromal cells for in vitro decidualization. J. Vis. Exp. 2017 e55168 121 10.3791/55168‑v 28287563
    [Google Scholar]
  22. Ruan Z.B. Zhu L.I. Yin Y.G. Chen G.E.C.A.I. Karyotype stability of human umbilical cord-derived mesenchymal stem cells during in vitro culture. Exp. Ther. Med. 2014 8 5 1508 1512 10.3892/etm.2014.1977 25289050
    [Google Scholar]
  23. Farhan S. Peres E. Pelland D. Wautelet S. Neme K. Mikulandric N. Ruemenapp K. Trapp M.A. Szymanski S. Janakiraman N. Impact of gender: Female related donor versus male matched unrelated donor on peripheral blood allogeneic stem cell transplant for male recipients. Blood 2014 124 21 5878 10.1182/blood.V124.21.5878.5878
    [Google Scholar]
  24. Loeb LJZAP The experimental proof changes in the uterine decidua of guinea pig after mating. Zentralbl. Allg. Pathol. 1907 18 563 5
    [Google Scholar]
  25. Cheng X. Liu J. Shan H. Sun L. Huang C. Yan Q. Jiang R. Ding L. Jiang Y. Zhou J. Yan G. Sun H. Activating transcription factor 3 promotes embryo attachment via up-regulation of leukemia inhibitory factor in vitro. Reprod. Biol. Endocrinol. 2017 15 1 42 10.1186/s12958‑017‑0260‑7 28577574
    [Google Scholar]
  26. Benson G.V. Lim H. Paria B.C. Satokata I. Dey S.K. Maas R.L. Mechanisms of reduced fertility in Hoxa-10 mutant mice: Uterine homeosis and loss of maternal Hoxa-10 expression. Development 1996 122 9 2687 2696 10.1242/dev.122.9.2687 8787743
    [Google Scholar]
  27. Lim H. Ma L. Ma W. Maas R.L. Dey S.K. Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Mol. Endocrinol. 1999 13 6 1005 1017 10.1210/mend.13.6.0284 10379898
    [Google Scholar]
  28. Kelleher AM Peng W Pru JK Pru CA DeMayo FJ Spencer TE Forkhead box a2 (FOXA2) is essential for uterine function and fertility. Proc. Nat. Acad. Sci. 2017 114 6 E1018 E1026 10.1073/pnas.1618433114
    [Google Scholar]
  29. Tang X. Zheng H. Xu H. Wang M. Kang X. Wu Z. NR4A1 Affects endometrial receptivity by participating in mesenchymal–epithelial transition of endometrial stromal cells. Reprod. Sci. 2022 29 1 133 142 10.1007/s43032‑021‑00792‑z 34773204
    [Google Scholar]
  30. Shi J.W. Yang H.L. Lai Z.Z. Shen H.H. Qin X.Y. Qiu X.M. Wang Y. Wu J.N. Li M.Q. WISP2/IGF1 promotes the survival of DSCs and impairs the cytotoxicity of decidual NK cells. Reproduction 2021 161 4 425 436 10.1530/REP‑20‑0658 33561006
    [Google Scholar]
  31. Shi J.W. Lai Z.Z. Yang H.L. Zhou W.J. Zhao X.Y. Xie F. Liu S.P. Chen W.D. Zhang T. Ye J.F. Zhou X.Y. Li M.Q. An IGF1-expressing endometrial stromal cell population is associated with human decidualization. BMC Biol. 2022 20 1 276 10.1186/s12915‑022‑01483‑0 36482461
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X344947250221103039
Loading
/content/journals/cscr/10.2174/011574888X344947250221103039
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test