Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Introduction

Human menstrual blood stem cells (huMenSCs) appear to be pre-clinically safe but a controlled phase I clinical trial is required to determine safety for clinical applications.

Methods

HuMenSCs established from healthy donors were free of bacteria, mycoplasma, chlamydia, and endotoxin. P3 (passage 3) huMenSCs expressed the mesenchymal stem cell markers. P6 huMenSCs were developmental multipotential and could translocated into the uterine subepithelial stroma after intrauterine transplantation. After 10 and 15 passages, the huMenSCs kept normal karyotypes.

Results

Gene expression showed that compared with the human umbilical cords mesenchymal stem cells (huMSCs), the huMenSCs affected the stromal cells more effectively. The huMenSCs possibly enhanced the stromal cell multiplication and “decidualization” process initiated by Igfbp1.

Conclusion

Expression of , , , , and were significantly increased in the stromal cells of the huMenSCs transplanted uterine.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X344947250221103039
2025-02-28
2026-02-05
Loading full text...

Full text loading...

References

  1. SabehE.M. AfrinS. SinghB. Miyashita-IshiwataM. BorahayM. Uterine stem cells and benign gynecological disorders: Role in pathobiology and therapeutic implications.Stem Cell Rev. Rep.202117380382010.1007/s12015‑020‑10075‑w33155150
    [Google Scholar]
  2. WangH.S. HungS.C. PengS.T. HuangC.C. WeiH.M. GuoY.J. FuY.S. LaiM.C. ChenC.C. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord.Stem Cells20042271330133710.1634/stemcells.2004‑001315579650
    [Google Scholar]
  3. BorlonganC.V. KanekoY. MakiM. YuS.J. AliM. AllicksonJ.G. SanbergC.D. Kuzmin-NicholsN. SanbergP.R. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke.Stem Cells Dev.201019443945210.1089/scd.2009.034019860544
    [Google Scholar]
  4. PatelA.N. ParkE. KuzmanM. BenettiF. SilvaF.J. AllicksonJ.G. Multipotent menstrual blood stromal stem cells: Isolation, characterization, and differentiation.Cell Transplant.200817330331110.3727/09636890878415392218522233
    [Google Scholar]
  5. HurC. RehmerJ. FlycktR. FalconeT. Uterine factor infertility: A clinical review.Clin. Obstet. Gynecol.201962225727010.1097/GRF.000000000000044831021928
    [Google Scholar]
  6. EgashiraM. HirotaY. Uterine receptivity and embryo–uterine interactions in embryo implantation: Lessons from mice.Reprod. Med. Biol.201312412713210.1007/s12522‑013‑0153‑129699140
    [Google Scholar]
  7. RamathalC.Y. BagchiI.C. TaylorR.N. BagchiM.K. Endometrial decidualization: Of mice and men.Semin. Reprod. Med.20102811726
    [Google Scholar]
  8. ZhaoM. ZhangW.Q. LiuJ.L. A study on regional differences in decidualization of the mouse uterus.Reproduction2017153564565310.1530/REP‑16‑048628250238
    [Google Scholar]
  9. Ochoa-BernalM.A. FazleabasA.T. Physiologic events of embryo implantation and decidualization in human and non-human primates.Int. J. Mol. Sci.2020216197310.3390/ijms2106197332183093
    [Google Scholar]
  10. HembergerM. HannaC.W. DeanW. Mechanisms of early placental development in mouse and humans.Nat. Rev. Genet.2020211274310.1038/s41576‑019‑0169‑431534202
    [Google Scholar]
  11. ShararaF.I. LeleaL.L. RahmanS. KlebanoffJ.S. MoawadG.N. A narrative review of platelet-rich plasma (PRP) in reproductive medicine.J. Assist. Reprod. Genet.20213851003101210.1007/s10815‑021‑02146‑933723748
    [Google Scholar]
  12. ZhangS. ZhangR. YinX. LuY. ChengH. PanY. LiuY. LinJ. MenSCs transplantation improve the viability of injured endometrial cells through activating PI3K/Akt pathway.Reprod. Sci.202330113325333810.1007/s43032‑023‑01282‑037308799
    [Google Scholar]
  13. MaH. LiuM. LiY. WangW. YangK. LuL. HeM. DengT. LiM. WuD. Intrauterine transplantation of autologous menstrual blood stem cells increases endometrial thickness and pregnancy potential in patients with refractory intrauterine adhesion.J. Obstet. Gynaecol. Res.202046112347235510.1111/jog.1444932856391
    [Google Scholar]
  14. TanJ. LiP. WangQ. LiY. LiX. ZhaoD. XuX. KongL. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome.Hum. Reprod.201631122723272910.1093/humrep/dew23527664218
    [Google Scholar]
  15. ArezooN. MohammadH. MalihezamanM. Tissue engineering of mouse uterus using menstrual blood stem cells (MenSCs) and decellularized uterine scaffold.Stem Cell Res. Ther.202112147510.1186/s13287‑021‑02543‑y34425893
    [Google Scholar]
  16. LiuT. HuangY. ZhangJ. QinW. ChiH. ChenJ. YuZ. ChenC. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model.Stem Cells Dev.201423131548155710.1089/scd.2013.037124593672
    [Google Scholar]
  17. NooryP. NavidS. ZanganehB.M. TalebiA. Borhani-HaghighiM. GholamiK. ManshadiM.D. AbbasiM. Human menstrual blood stem cell-derived granulosa cells participate in ovarian follicle formation in a rat model of premature ovarian failure in vivo.Cell. Reprogram.201921524925910.1089/cell.2019.002031596622
    [Google Scholar]
  18. WangT TanJ Therapeutic effect of menstrual blood stem cells in rats with thin endometrium.Zhejiang. Da. Xue. Xue. Bao. Yi. Xue. Ban.2023521132310.3724/zdxbyxb‑2022‑0509
    [Google Scholar]
  19. PetsaA. GarganiS. FelesakisA. GrigoriadisN. GrigoriadisI. Effectiveness of protocol for the isolation of Wharton’s Jelly stem cells in large-scale applications. In Vitro Cell. Dev. Biol. Anim.2009451057357610.1007/s11626‑009‑9227‑0
    [Google Scholar]
  20. AllicksonJG SanchezA YefimenkoN BorlonganCV SanbergPR Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood.Open Stem. Cell. J.20113201141010.2174/1876893801103010004
    [Google Scholar]
  21. ClercqD.K. HennesA. VriensJ. Isolation of mouse endometrial epithelial and stromal cells for in vitro decidualization.J. Vis. Exp.2017e5516812110.3791/55168‑v28287563
    [Google Scholar]
  22. RuanZ.B. ZhuL.I. YinY.G. ChenG.E.C.A.I. Karyotype stability of human umbilical cord-derived mesenchymal stem cells during in vitro culture.Exp. Ther. Med.2014851508151210.3892/etm.2014.197725289050
    [Google Scholar]
  23. FarhanS. PeresE. PellandD. WauteletS. NemeK. MikulandricN. RuemenappK. TrappM.A. SzymanskiS. JanakiramanN. Impact of gender: Female related donor versus male matched unrelated donor on peripheral blood allogeneic stem cell transplant for male recipients.Blood201412421587810.1182/blood.V124.21.5878.5878
    [Google Scholar]
  24. LoebLJZAP The experimental proof changes in the uterine decidua of guinea pig after mating.Zentralbl. Allg. Pathol.1907185635
    [Google Scholar]
  25. ChengX. LiuJ. ShanH. SunL. HuangC. YanQ. JiangR. DingL. JiangY. ZhouJ. YanG. SunH. Activating transcription factor 3 promotes embryo attachment via up-regulation of leukemia inhibitory factor in vitro.Reprod. Biol. Endocrinol.20171514210.1186/s12958‑017‑0260‑728577574
    [Google Scholar]
  26. BensonG.V. LimH. PariaB.C. SatokataI. DeyS.K. MaasR.L. Mechanisms of reduced fertility in Hoxa-10 mutant mice: Uterine homeosis and loss of maternal Hoxa-10 expression.Development199612292687269610.1242/dev.122.9.26878787743
    [Google Scholar]
  27. LimH. MaL. MaW. MaasR.L. DeyS.K. Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse.Mol. Endocrinol.19991361005101710.1210/mend.13.6.028410379898
    [Google Scholar]
  28. KelleherAM PengW PruJK PruCA DeMayoFJ SpencerTE Forkhead box a2 (FOXA2) is essential for uterine function and fertility.Proc. Nat. Acad. Sci.20171146E1018E102610.1073/pnas.1618433114
    [Google Scholar]
  29. TangX. ZhengH. XuH. WangM. KangX. WuZ. NR4A1 Affects endometrial receptivity by participating in mesenchymal–epithelial transition of endometrial stromal cells.Reprod. Sci.202229113314210.1007/s43032‑021‑00792‑z34773204
    [Google Scholar]
  30. ShiJ.W. YangH.L. LaiZ.Z. ShenH.H. QinX.Y. QiuX.M. WangY. WuJ.N. LiM.Q. WISP2/IGF1 promotes the survival of DSCs and impairs the cytotoxicity of decidual NK cells.Reproduction2021161442543610.1530/REP‑20‑065833561006
    [Google Scholar]
  31. ShiJ.W. LaiZ.Z. YangH.L. ZhouW.J. ZhaoX.Y. XieF. LiuS.P. ChenW.D. ZhangT. YeJ.F. ZhouX.Y. LiM.Q. An IGF1-expressing endometrial stromal cell population is associated with human decidualization.BMC Biol.202220127610.1186/s12915‑022‑01483‑036482461
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X344947250221103039
Loading
/content/journals/cscr/10.2174/011574888X344947250221103039
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test