Skip to content
2000
Volume 20, Issue 11
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Cell therapy involves transplantation of cells to replace damaged tissues and cells and is used in regenerative medicine. Since its introduction, numerous cell therapy modalities have been developed to treat various diseases, and cell therapy has shifted the paradigm of the treatment of degenerative and refractory diseases. However, it faces limitations in terms of long-term therapeutic effects and efficiency. To overcome these challenges, the concept of co-transplantation, which utilizes two different cell sources, has been proposed. Stem cell-based co-transplantation approaches have been extensively studied both experimentally and clinically for various diseases, including graft-versus-host disease (GVHD), infertility, acute liver failure (ALF), and myocardial infarction (MI). These have yielded improved transplantation efficiency and stability compared to single-cell transplantation methods. This review examines the development and effectiveness of co-transplantation through its application in four diseases. Additionally, it discusses the clinical applicability of co-transplantation, explores future research directions, and highlights its potential benefits.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X359983250408105711
2025-05-22
2025-12-16
Loading full text...

Full text loading...

/deliver/fulltext/cscr/20/11/CSCRT-20-11-02.html?itemId=/content/journals/cscr/10.2174/011574888X359983250408105711&mimeType=html&fmt=ahah

References

  1. El-KadiryA.E.H. RafeiM. ShammaaR. Cell therapy: Types, regulation, and clinical benefits.Front. Med.2021875602910.3389/fmed.2021.756029 34881261
    [Google Scholar]
  2. AtillaE. KilicP. GurmanG. Cellular therapies: Day by day, all the way.Transfus. Apheresis Sci.201857218719610.1016/j.transci.2018.04.019 29685392
    [Google Scholar]
  3. KharbikarB.N. MohindraP. DesaiT.A. Biomaterials to enhance stem cell transplantation.Cell Stem Cell202229569272110.1016/j.stem.2022.04.002 35483364
    [Google Scholar]
  4. BacakovaL. ZarubovaJ. TravnickovaM. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells – A review.Biotechnol. Adv.20183641111112610.1016/j.biotechadv.2018.03.011 29563048
    [Google Scholar]
  5. Petrus-ReurerS. RomanoM. HowlettS. JonesJ.L. LombardiG. Saeb-ParsyK. Immunological considerations and challenges for regenerative cellular therapies.Commun. Biol.20214179810.1038/s42003‑021‑02237‑4 34172826
    [Google Scholar]
  6. YamanakaS. Pluripotent stem cell-based cell therapy—promise and challenges.Cell Stem Cell202027452353110.1016/j.stem.2020.09.014 33007237
    [Google Scholar]
  7. WuJ. LiT. GuoM. Treating a type 2 diabetic patient with impaired pancreatic islet function by personalized endoderm stem cell-derived islet tissue.Cell Discov.20241014510.1038/s41421‑024‑00662‑3 38684699
    [Google Scholar]
  8. AlnasserS.M. Stem cell challenge in cancer progression, oncology and therapy.Gene202284014674810.1016/j.gene.2022.146748 35868413
    [Google Scholar]
  9. PengY-L. ChenJ. HuH. LiuW. LiangW. WangJ. Research progress of cell treatment strategy in Parkinson’s disease.Neuroscience Applied2024310406110.1016/j.nsa.2024.104061
    [Google Scholar]
  10. LimJ.M. LeeM. LeeE.J. GongS.P. LeeS.T. Stem cell engineering: Limitation, alternatives, and insight.Ann. N. Y. Acad. Sci.201112291899810.1111/j.1749‑6632.2011.06093.x 21793843
    [Google Scholar]
  11. VolarevicV. MarkovicB.S. GazdicM. Ethical and safety issues of stem cell-based therapy.Int. J. Med. Sci.2018151364510.7150/ijms.21666 29333086
    [Google Scholar]
  12. HuX.M. ZhangQ. ZhouR.X. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications.World J. Stem Cells202113538641510.4252/wjsc.v13.i5.386 34136072
    [Google Scholar]
  13. AndoT. TachibanaT. TanakaM. Impact of graft sources on immune reconstitution and survival outcomes following allogeneic stem cell transplantation.Blood Adv.20204240841910.1182/bloodadvances.2019001021 31990335
    [Google Scholar]
  14. FreitagJ. BatesD. WickhamJ. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: A randomized controlled trial.Regen. Med.201914321323010.2217/rme‑2018‑0161 30762487
    [Google Scholar]
  15. DeoD. MarchioniM. RaoP. Mesenchymal stem/stromal cells in organ transplantation.Pharmaceutics202214479110.3390/pharmaceutics14040791 35456625
    [Google Scholar]
  16. YuS. YuS. LiuH. LiaoN. LiuX. Enhancing mesenchymal stem cell survival and homing capability to improve cell engraftment efficacy for liver diseases.Stem Cell Res. Ther.202314123510.1186/s13287‑023‑03476‑4 37667383
    [Google Scholar]
  17. MeiL. YuweiY. WeipingL. Strategy for clinical setting of co-transplantation of mesenchymal stem cells and pancreatic islets.Cell Transplant.2024330963689724125943310.1177/09636897241259433 38877672
    [Google Scholar]
  18. MüllerI. KordowichS. HolzwarthC. Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation.Blood Cells Mol. Dis.2008401253210.1016/j.bcmd.2007.06.021 17869550
    [Google Scholar]
  19. LazarusH.M. KocO.N. DevineS.M. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients.Biol. Blood Marrow Transplant.200511538939810.1016/j.bbmt.2005.02.001 15846293
    [Google Scholar]
  20. RingdénO. UzunelM. RasmussonI. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease.Transplantation200681101390139710.1097/01.tp.0000214462.63943.14 16732175
    [Google Scholar]
  21. XiongY.Y. FanQ. HuangF. Mesenchymal stem cells versus mesenchymal stem cells combined with cord blood for engraftment failure after autologous hematopoietic stem cell transplantation: A pilot prospective, open-label, randomized trial.Biol. Blood Marrow Transplant.201420223624210.1016/j.bbmt.2013.11.002 24216182
    [Google Scholar]
  22. MarkovA. ThangaveluL. AravindhanS. RETRACTED ARTICLE: Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders.Stem Cell Res. Ther.202112119210.1186/s13287‑021‑02265‑1 33736695
    [Google Scholar]
  23. BallL.M. BernardoM.E. RoelofsH. Cotransplantation of ex vivo–expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation.Blood200711072764276710.1182/blood‑2007‑04‑087056 17638847
    [Google Scholar]
  24. ZhouH. GuoM. BianC. Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: Clinical report.Biol. Blood Marrow Transplant.201016340341210.1016/j.bbmt.2009.11.006 19925878
    [Google Scholar]
  25. Sánchez-GuijoF. Caballero-VelázquezT. López-VillarO. Sequential third-party mesenchymal stromal cell therapy for refractory acute graft-versus-host disease.Biol. Blood Marrow Transplant.201420101580158510.1016/j.bbmt.2014.06.015 24952358
    [Google Scholar]
  26. MeuwissenH.J. GattiR.A. TerasakiP.I. HongR. GoodR.A. Treatment of lymphopenic hypogammaglobulinemia and bone-marrow aplasia by transplantation of allogeneic marrow. Crucial role of histocompatiility matching.N. Engl. J. Med.19692811369169710.1056/NEJM196909252811302 4186068
    [Google Scholar]
  27. HuSW. CotliarJ. Acute graft-versus-host disease following hematopoietic stem-cell transplantation.Dermatol. Ther.201124441142310.1111/j.1529‑8019.2011.01436.x 21910799
    [Google Scholar]
  28. ShawkatováI. BojtárováE. KováčováM. Individual HLA alleles and risk of graft-versus-host disease after haematopoietic stem cell transplantation from HLA-identical siblings.Biologia202075112045205210.2478/s11756‑020‑00510‑1
    [Google Scholar]
  29. Al-KadhimiZ. GulZ. ChenW. High incidence of severe acute graft-versus-host disease with tacrolimus and mycophenolate mofetil in a large cohort of related and unrelated allogeneic transplantation patients.Biol. Blood Marrow Transplant.201420797998510.1016/j.bbmt.2014.03.016 24709007
    [Google Scholar]
  30. BleakleyM. SehgalA. SeropianS. Naive T-cell depletion to prevent chronic graft-versus-host disease.J. Clin. Oncol.202240111174118510.1200/JCO.21.01755 35007144
    [Google Scholar]
  31. BroersA.E.C. de JongC.N. BakuninaK. Posttransplant cyclophosphamide for prevention of graft-versus-host disease: Results of the prospective randomized HOVON-96 trial.Blood Adv.20226113378338510.1182/bloodadvances.2021005847 35143644
    [Google Scholar]
  32. Bolaños-MeadeJ. HamadaniM. WuJ. Post-transplantation cyclophosphamide-based graft-versus-host disease prophylaxis.N. Engl. J. Med.2023388252338234810.1056/NEJMoa2215943 37342922
    [Google Scholar]
  33. GotoT. MurataM. NishidaT. Phase I clinical trial of intra-bone marrow cotransplantation of mesenchymal stem cells in cord blood transplantation.Stem Cells Transl. Med.202110454255310.1002/sctm.20‑0381 33314650
    [Google Scholar]
  34. ZhangA. XiongY. XuF. IL-1β enhances human placenta-derived mesenchymal stromal cells ability to mediate Th1/Th2 and Th1/CD4+IL-10+ T cell balance and regulates its adhesion, proliferation and migration via PD-L1.Cell. Immunol.202035210411310.1016/j.cellimm.2020.104113 32331794
    [Google Scholar]
  35. LiuZ. MiF. HanM. Bone marrow-derived mesenchymal stem cells inhibit CD8+ T cell immune responses via PD-1/PD-L1 pathway in multiple myeloma.Clin. Exp. Immunol.20212051536210.1111/cei.13594 33735518
    [Google Scholar]
  36. BattiwallaM. HemattiP. Mesenchymal stem cells in hematopoietic stem cell transplantation.Cytotherapy200911550351510.1080/14653240903193806 19728189
    [Google Scholar]
  37. TianY. DengY.B. HuangY.J. WangY. Bone marrow-derived mesenchymal stem cells decrease acute graft-versus-host disease after allogeneic hematopoietic stem cells transplantation.Immunol. Invest.2008371294210.1080/08820130701410223 18214798
    [Google Scholar]
  38. LiZ.Y. WangC.Q. LuG. PanX.Y. XuK.L. Effects of bone marrow mesenchymal stem cells on hematopoietic recovery and acute graft-versus-host disease in murine allogeneic umbilical cord blood transplantation model.Cell Biochem. Biophys.201470111512210.1007/s12013‑014‑9866‑y 24696072
    [Google Scholar]
  39. ZhaoK. LouR. HuangF. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation.Biol. Blood Marrow Transplant.20152119710410.1016/j.bbmt.2014.09.030 25300866
    [Google Scholar]
  40. Fernández-GarcíaM. YañezR.M. Sánchez-DomínguezR. Mesenchymal stromal cells enhance the engraftment of hematopoietic stem cells in an autologous mouse transplantation model.Stem Cell Res. Ther.20156116510.1186/s13287‑015‑0155‑5 26345192
    [Google Scholar]
  41. KurtzbergJ. ProckopS. TeiraP. Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients.Biol. Blood Marrow Transplant.201420222923510.1016/j.bbmt.2013.11.001 24216185
    [Google Scholar]
  42. BaderP. KuçiZ. BakhtiarS. Effective treatment of steroid and therapy-refractory acute graft-versus-host disease with a novel mesenchymal stromal cell product (MSC-FFM).Bone Marrow Transplant.201853785286210.1038/s41409‑018‑0102‑z 29379171
    [Google Scholar]
  43. BonigH. KuçiZ. KuçiS. Children and adults with refractory acute graft-versus-host disease respond to treatment with the mesenchymal stromal cell preparation “MSC-FFM”—outcome report of 92 patients.Cells2019812157710.3390/cells8121577 31817480
    [Google Scholar]
  44. MurataM. TerakuraS. WakeA. Off-the-shelf bone marrow-derived mesenchymal stem cell treatment for acute graft-versus-host disease: Real-world evidence.Bone Marrow Transplant.202156102355236610.1038/s41409‑021‑01304‑y 33976381
    [Google Scholar]
  45. LombardoG. LechanteurC. BriquetA. Co-infusion of mesenchymal stromal cells to prevent GVHD after allogeneic hematopoietic cell transplantation from HLA-mismatched unrelated donors after reduced-intensity conditioning: A double-blind randomized study and literature review.Stem Cell Res. Ther.202415146110.1186/s13287‑024‑04064‑w 39627816
    [Google Scholar]
  46. HuangR. ChenT. WangS. Mesenchymal stem cells for prophylaxis of chronic graft-vs-host disease after haploidentical hematopoietic stem cell transplant.JAMA Oncol.202410222022610.1001/jamaoncol.2023.5757 38153755
    [Google Scholar]
  47. NaganoM.C. Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice.Biol. Reprod.200369270170710.1095/biolreprod.103.016352 12700185
    [Google Scholar]
  48. BrinsterR.L. AvarbockM.R. Germline transmission of donor haplotype following spermatogonial transplantation.Proc. Natl. Acad. Sci. USA19949124113031130710.1073/pnas.91.24.11303 7972054
    [Google Scholar]
  49. GanguliN. WadhwaN. UsmaniA. An efficient method for generating a germ cell depleted animal model for studies related to spermatogonial stem cell transplantation.Stem Cell Res. Ther.20167114210.1186/s13287‑016‑0405‑1 27659063
    [Google Scholar]
  50. CiccarelliM. GiassettiM.I. MiaoD. Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males.Proc. Natl. Acad. Sci. USA202011739241952420410.1073/pnas.2010102117 32929012
    [Google Scholar]
  51. TakashimaS. Kanatsu-ShinoharaM. TanakaT. TakehashiM. MorimotoH. ShinoharaT. Rac mediates mouse spermatogonial stem cell homing to germline niches by regulating transmigration through the blood-testis barrier.Cell Stem Cell20119546347510.1016/j.stem.2011.08.011 22056142
    [Google Scholar]
  52. MikkolaM. SironenA. KoppC. Transplantation of normal boar testicular cells resulted in complete focal spermatogenesis in a boar affected by the immotile short-tail sperm defect.Reprod. Domest. Anim.200641212412810.1111/j.1439‑0531.2006.00651.x 16519717
    [Google Scholar]
  53. HerridM. VignarajanS. DaveyR. DobrinskiI. HillJ.R. Successful transplantation of bovine testicular cells to heterologous recipients.Reproduction2006132461762410.1530/rep.1.01125 17008473
    [Google Scholar]
  54. HerridM. OlejnikJ. JacksonM. Irradiation enhances the efficiency of testicular germ cell transplantation in sheep.Biol. Reprod.200981589890510.1095/biolreprod.109.078279 19571259
    [Google Scholar]
  55. HerridM. DaveyR. StockwellS. A shorter interval between irradiation of recipient testis and germ cell transplantation is detrimental to recovery of fertility in rams.Int. J. Androl.2011345pt150151210.1111/j.1365‑2605.2010.01113.x 21447118
    [Google Scholar]
  56. StockwellS. HillJ.R. DaveyR. HerridM. LehnertS.A. Transplanted germ cells persist long-term in irradiated ram testes.Anim. Reprod. Sci.20131423-413714010.1016/j.anireprosci.2013.09.012 24139695
    [Google Scholar]
  57. KadamP. NtemouE. BaertY. Van LaereS. Van SaenD. GoossensE. Co-transplantation of mesenchymal stem cells improves spermatogonial stem cell transplantation efficiency in mice.Stem Cell Res. Ther.20189131710.1186/s13287‑018‑1065‑0 30463610
    [Google Scholar]
  58. KadamP. NtemouE. OnofreJ. Van SaenD. GoossensE. Does co-transplantation of mesenchymal and spermatogonial stem cells improve reproductive efficiency and safety in mice?Stem Cell Res. Ther.201910131010.1186/s13287‑019‑1420‑9 31640769
    [Google Scholar]
  59. MedranoJ.V. AcimovicI. Navarro-GomezlechonA. Timing of spermatogonial stem cell transplantation affects the spermatogenic recovery outcome in mice.In Vitro Cell. Dev. Biol. Anim.2021571212910.1007/s11626‑020‑00531‑9 33420579
    [Google Scholar]
  60. ShinginaA. MukhtarN. Wakim-FlemingJ. Acute liver failure guidelines.Am. J. Gastroenterol.202311871128115310.14309/ajg.0000000000002340 37377263
    [Google Scholar]
  61. LivingstonS.I. Durkalski-MauldinV. Accounting for liver transplant in acute liver failure research.Gastro Hep Adv.20221453854510.1016/j.gastha.2022.02.026 39132072
    [Google Scholar]
  62. WendonJ. CordobaJ. DhawanA. EASL clinical practical guidelines on the management of acute (fulminant) liver failure.J. Hepatol.20176651047108110.1016/j.jhep.2016.12.003 28417882
    [Google Scholar]
  63. StravitzR.T. LeeW.M. Acute liver failure.Lancet20193941020186988110.1016/S0140‑6736(19)31894‑X 31498101
    [Google Scholar]
  64. KimJ.D. Acute liver failure: Current updates and management.Korean J. Gastroenterol.2023811172810.4166/kjg.2022.148 36695063
    [Google Scholar]
  65. OlivoR. GuarreraJ.V. PyrsopoulosN.T. Liver transplantation for acute liver failure.Clin. Liver Dis.201822240941710.1016/j.cld.2018.01.014 29605075
    [Google Scholar]
  66. MendizabalM. SilvaM.O. Liver transplantation in acute liver failure: A challenging scenario.World J. Gastroenterol.20162241523153110.3748/wjg.v22.i4.1523 26819519
    [Google Scholar]
  67. SunZ. YuanX. WuJ. Hepatocyte transplantation: The progress and the challenges.Hepatol. Commun.2023710e026610.1097/HC9.0000000000000266 37695736
    [Google Scholar]
  68. NultyJ. AnandH. DhawanA. Human hepatocyte transplantation: Three decades of clinical experience and future perspective.Stem Cells Transl. Med.202413320421810.1093/stcltm/szad084 38103170
    [Google Scholar]
  69. LarsenF.S. SchmidtL.E. BernsmeierC. High-volume plasma exchange in patients with acute liver failure: An open randomised controlled trial.J. Hepatol.2016641697810.1016/j.jhep.2015.08.018 26325537
    [Google Scholar]
  70. ZhangX. DengQ. ZhangS. HuA. GongQ. ZhangX. Peripheral blood stem cell transplantation improves liver functional reserve.Med. Sci. Monit.2015211381138610.12659/MSM.892990 25970080
    [Google Scholar]
  71. HoC.M. ChenY.H. ChienC.S. Hepatocyte and mesenchymal stem cell co-transplantation in rats with acute liver failure.Korean J. Transplant.202034210010810.4285/kjt.2020.34.2.100 35769351
    [Google Scholar]
  72. JoshiM.B. PatilP. HeZ. HolgerssonJ. OlaussonM. Sumitran-HolgerssonS. Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes.Cytotherapy201214665766910.3109/14653249.2012.663526 22424216
    [Google Scholar]
  73. XuW. HeH. PanS. Combination treatments of plasma exchange and umbilical cord-derived mesenchymal stem cell transplantation for patients with hepatitis B virus-related acute-on-chronic liver failure: A clinical trial in China.Stem Cells Int.2019201911010.1155/2019/4130757 30863450
    [Google Scholar]
  74. WangY. LiM. YangT. Human umbilical cord mesenchymal stem cell transplantation for the treatment of acute-on-chronic liver failure: Protocol for a multicentre random double-blind placebo-controlled trial.BMJ Open2024146e08423710.1136/bmjopen‑2024‑084237 38925694
    [Google Scholar]
  75. ThygesenK. AlpertJ.S. WhiteH.D. Universal definition of myocardial infarction.Circulation2007116222634265310.1161/CIRCULATIONAHA.107.187397 17951284
    [Google Scholar]
  76. JenčaD. MelenovskýV. StehlikJ. Heart failure after myocardial infarction: Incidence and predictors.ESC Heart Fail.20218122223710.1002/ehf2.13144 33319509
    [Google Scholar]
  77. Del BuonoM.G. MoroniF. MontoneR.A. AzzaliniL. SannaT. AbbateA. Ischemic cardiomyopathy and heart failure after acute myocardial infarction.Curr. Cardiol. Rep.202224101505151510.1007/s11886‑022‑01766‑6 35972638
    [Google Scholar]
  78. ChenZ. ZengC. WangW.E. Progress of stem cell transplantation for treating myocardial infarction.Curr. Stem Cell Res. Ther.2017128624636 28969536
    [Google Scholar]
  79. CahillT.J. ChoudhuryR.P. RileyP.R. Heart regeneration and repair after myocardial infarction: Translational opportunities for novel therapeutics.Nat. Rev. Drug Discov.2017161069971710.1038/nrd.2017.106 28729726
    [Google Scholar]
  80. SelvakumarD. ReyesL. ChongJ.J.H. Cardiac cell therapy with pluripotent stem cell-derived cardiomyocytes: What has been done and what remains to do?Curr. Cardiol. Rep.202224544546110.1007/s11886‑022‑01666‑9 35275365
    [Google Scholar]
  81. KamihataH. MatsubaraH. NishiueT. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines.Circulation200110491046105210.1161/hc3501.093817 11524400
    [Google Scholar]
  82. MisaoY. TakemuraG. AraiM. Bone marrow-derived myocyte-like cells and regulation of repair-related cytokines after bone marrow cell transplantation.Cardiovasc. Res.200669247649010.1016/j.cardiores.2005.11.001 16368087
    [Google Scholar]
  83. BurchfieldJ.S. IwasakiM. KoyanagiM. Interleukin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction.Circ. Res.2008103220321110.1161/CIRCRESAHA.108.178475 18566343
    [Google Scholar]
  84. BarbashI.M. ChouraquiP. BaronJ. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: Feasibility, cell migration, and body distribution.Circulation2003108786386810.1161/01.CIR.0000084828.50310.6A 12900340
    [Google Scholar]
  85. IopL. ChiavegatoA. CallegariA. Different cardiovascular potential of adult- and fetal-type mesenchymal stem cells in a rat model of heart cryoinjury.Cell Transplant.200817667969410.3727/096368908786092739 18819256
    [Google Scholar]
  86. ParkS.J. KimR.Y. ParkB.W. Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction.Nat. Commun.2019101312310.1038/s41467‑019‑11091‑2 31311935
    [Google Scholar]
  87. KimH. ParkS.J. ParkJ.H. Enhancement strategy for effective vascular regeneration following myocardial infarction through a dual stem cell approach.Exp. Mol. Med.20225481165117810.1038/s12276‑022‑00827‑8 35974098
    [Google Scholar]
  88. WangH. DouL. Single-cell RNA sequencing reveals hub genes of myocardial infarction-associated endothelial cells.BMC Cardiovasc. Disord.20242417010.1186/s12872‑024‑03727‑z 38267885
    [Google Scholar]
  89. TrimmE. Red-HorseK. Vascular endothelial cell development and diversity.Nat. Rev. Cardiol.202320319721010.1038/s41569‑022‑00770‑1 36198871
    [Google Scholar]
  90. KiveläR. HemanthakumarK.A. VaparantaK. Endothelial cells regulate physiological cardiomyocyte growth via VEGFR2-mediated paracrine signaling.Circulation2019139222570258410.1161/CIRCULATIONAHA.118.036099 30922063
    [Google Scholar]
  91. SchuhA. LiehnE.A. SasseA. Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model.Basic Res. Cardiol.20081031697710.1007/s00395‑007‑0685‑9 17999028
    [Google Scholar]
  92. HongS.J. KihlkenJ. ChoiS.C. MarchK.L. LimD.S. Intramyocardial transplantation of human adipose-derived stromal cell and endothelial progenitor cell mixture was not superior to individual cell type transplantation in improving left ventricular function in rats with myocardial infarction.Int. J. Cardiol.2013164220521110.1016/j.ijcard.2011.06.128 21794931
    [Google Scholar]
  93. DudleyA.C. GriffioenA.W. Pathological angiogenesis: Mechanisms and therapeutic strategies.Angiogenesis202326331334710.1007/s10456‑023‑09876‑7 37060495
    [Google Scholar]
  94. ChenX. YuW. ZhangJ. Therapeutic angiogenesis and tissue revascularization in ischemic vascular disease.J. Biol. Eng.20231711310.1186/s13036‑023‑00330‑2 36797776
    [Google Scholar]
  95. TepperO.M. CaplaJ.M. GalianoR.D. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow–derived cells.Blood200510531068107710.1182/blood‑2004‑03‑1051 15388583
    [Google Scholar]
  96. GaebelR. MaN. LiuJ. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration.Biomaterials201132359218923010.1016/j.biomaterials.2011.08.071 21911255
    [Google Scholar]
  97. LangerR. VacantiJ.P. Tissue engineering.Science19932605110920926
    [Google Scholar]
  98. BerthiaumeF. MaguireT.J. YarmushM.L. Tissue engineering and regenerative medicine: history, progress, and challenges.Annu. Rev. Chem. Biomol. Eng.20112140343010.1146/annurev‑chembioeng‑061010‑114257 22432625
    [Google Scholar]
  99. KwonS.G. KwonY.W. LeeT.W. ParkG.T. KimJ.H. Recent advances in stem cell therapeutics and tissue engineering strategies.Biomater. Res.20182213610.1186/s40824‑018‑0148‑4 30598836
    [Google Scholar]
  100. DzoboK. ThomfordN.E. SenthebaneD.A. Advances in regenerative medicine and tissue engineering: Innovation and transformation of medicine.Stem Cells Int.2018201812410.1155/2018/2495848 30154861
    [Google Scholar]
  101. ZhangK. WanP. WangL. Efficient expansion and CRISPR-Cas9-mediated gene correction of patient-derived hepatocytes for treatment of inherited liver diseases.Cell Stem Cell202431811871202.e810.1016/j.stem.2024.04.022 38772378
    [Google Scholar]
  102. RoccaC.J. RainaldiJ.N. SharmaJ. CRISPR-Cas9 gene editing of hematopoietic stem cells from patients with friedreich’s ataxia.Mol. Ther. Methods Clin. Dev.2020171026103610.1016/j.omtm.2020.04.018 32462051
    [Google Scholar]
  103. BloomerH. SmithR.H. HakamiW. LarochelleA. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration.Mol. Ther.20212941611162410.1016/j.ymthe.2020.12.010 33309880
    [Google Scholar]
  104. DorsetS.R. BakR.O. The p53 challenge of hematopoietic stem cell gene editing.Mol. Ther. Methods Clin. Dev.202330838910.1016/j.omtm.2023.06.003 37435043
    [Google Scholar]
  105. Omer-JavedA. PedrazzaniG. AlbanoL. Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells.Cell20221851322482264.e2110.1016/j.cell.2022.04.039 35617958
    [Google Scholar]
  106. EveretteK.A. NewbyG.A. LevineR.M. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice.Nat. Biomed. Eng.20237561662810.1038/s41551‑023‑01026‑0 37069266
    [Google Scholar]
  107. PavaniG. FabianoA. LaurentM. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells.Blood Adv.2021551137115310.1182/bloodadvances.2020001996 33635334
    [Google Scholar]
  108. CrippaS. ContiA. VavassoriV. Mesenchymal stromal cells improve the transplantation outcome of CRISPR-Cas9 gene-edited human HSPCs.Mol. Ther.202331123024810.1016/j.ymthe.2022.08.011 35982622
    [Google Scholar]
  109. AugestadI.L. NymanA.K.G. CostaA.I. Effects of neural stem cell and olfactory ensheathing cell co-transplants on tissue remodelling after transient focal cerebral ischemia in the adult rat.Neurochem. Res.20174261599160910.1007/s11064‑016‑2098‑3 28120153
    [Google Scholar]
  110. LappinT. ChengT. An urgent need for standardization of stem cells and stem cell-derived products toward clinical applications.Stem Cells Transl. Med.2021102S1S310.1002/sctm.21‑0269
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X359983250408105711
Loading
/content/journals/cscr/10.2174/011574888X359983250408105711
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test