Skip to content
2000
Volume 20, Issue 11
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Organoids are three-dimensional structures that faithfully mimic the intricate internal environment of the human body. Compared to conventional models, they demonstrated superior performance. Recently, they have emerged as valuable platforms for modeling obesity-related diseases and advancing therapeutic strategies.

Objectives

This review not only aimed to simply discuss the limitations of 2D cellular and animal models for obesity-related diseases but also highlighted the importance of developing organoids to better understand the relationship between obesity, lipid metabolism, glucose homeostasis, and chronic inflammation. It also identifies the challenges and potential directions for organoid applications in these diseases.

Methods

We searched for keywords related to organoids, obesity, lipid metabolism, glucose homeostasis, chronic inflammation, disease models, and drug screening in scientific research databases.

Results

Organoids have emerged as promising tools for investigating the pathophysiology of diseases and developing therapeutic interventions. They have effectively bridged the gap in research on obesity-related diseases between conventional experimental models and the human body. They could offer more efficient and physiologically relevant experimental models while also improving the treatment efficacy for individuals with obesity-related conditions.

Conclusion

Organoids are beneficial for investigating obesity-related diseases. However, it is imperative to implement standardised culture procedures to improve reproducibility and broaden their application. Combining medicine and science to create these processes and minimise variation can increase the reliability and consistency of organoid cultures and provide new opportunities for addressing obesity-related diseases.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X357011250406044043
2025-05-22
2026-02-05
Loading full text...

Full text loading...

References

  1. OrganizationW.H. Obesity and overweight http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight 2018.
  2. SafaeiM. SundararajanE.A. DrissM. BoulilaW. Shapi’iA. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity.Comput. Biol. Med.202113610475410475410.1016/j.compbiomed.2021.10475434426171
    [Google Scholar]
  3. SinghS. DulaiP.S. ZarrinparA. RamamoorthyS. SandbornW.J. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes.Nat. Rev. Gastroenterol. Hepatol.201714211012110.1038/nrgastro.2016.18127899815
    [Google Scholar]
  4. PolyzosS.A. KountourasJ. MantzorosC.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics.Metabolism201992829710.1016/j.metabol.2018.11.01430502373
    [Google Scholar]
  5. HerremaH. GuanD. ChoiJ.W. FengX. Salazar HernandezM.A. FarukF. AuenT. BoudettE. TaoR. ChunH. OzcanU. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity.Cell Metab.202234710041022.e810.1016/j.cmet.2022.06.00735793654
    [Google Scholar]
  6. GovaereO. PetersenS.K. Martinez-LopezN. WoutersJ. Van HaeleM. MancinaR.M. JamialahmadiO. Bilkei-GorzoO. LassenP.B. DarlayR. PeltierJ. PalmerJ.M. YounesR. TiniakosD. AithalG.P. AllisonM. VaccaM. GöranssonM. Berlinguer-PalminiR. ClarkJ.E. DrinnanM.J. Yki-JärvinenH. DufourJ.F. EkstedtM. FrancqueS. PettaS. BugianesiE. SchattenbergJ.M. DayC.P. CordellH.J. TopalB. ClémentK. RomeoS. RatziuV. RoskamsT. DalyA.K. AnsteeQ.M. TrostM. HärtlovaA. Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease.J. Hepatol.20227651001101210.1016/j.jhep.2021.12.01234942286
    [Google Scholar]
  7. PamukF. KantarciA. Inflammation as a link between periodontal disease and obesity.Periodontol. 2000202290118619610.1111/prd.1245735916870
    [Google Scholar]
  8. O’ConnellL. WinterD.C. AherneC.M. The Role of Organoids as a Novel Platform for Modeling of Inflammatory Bowel Disease.Front Pediatr.2021962404510.3389/fped.2021.62404533681101
    [Google Scholar]
  9. McCarthyM. BrownT. AlarconA. WilliamsC. WuX. AbbottR.D. GimbleJ. FrazierT. Fat-On-A-Chip Models for Research and Discovery in Obesity and Its Metabolic Comorbidities.Tissue Eng. Part B Rev.202026658659510.1089/ten.teb.2019.026132216545
    [Google Scholar]
  10. ZhaoY. QuH. WangY. XiaoW. ZhangY. ShiD. Small rodent models of atherosclerosis.Biomed. Pharmacother.202012911042611042610.1016/j.biopha.2020.11042632574973
    [Google Scholar]
  11. HoangP. MaZ. Biomaterial-guided stem cell organoid engineering for modeling development and diseases.Acta Biomater.2021132233610.1016/j.actbio.2021.01.02633486104
    [Google Scholar]
  12. KondoJ. InoueM. Application of Cancer Organoid Model for Drug Screening and Personalized Therapy.Cells20198547010.3390/cells805047031108870
    [Google Scholar]
  13. KapałczyńskaM. KolendaT. PrzybyłaW. ZajączkowskaM. TeresiakA. FilasV. IbbsM. BliźniakR. ŁuczewskiŁ. LamperskaK. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures.Arch. Med. Sci.201614491091910.5114/aoms.2016.6374330002710
    [Google Scholar]
  14. Von Der MarkK. GaussV. Von Der MarkH. MüllerP. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture.Nature1977267561153153210.1038/267531a0559947
    [Google Scholar]
  15. KumarS. DuanQ. WuR. HarrisE.N. SuQ. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis.Adv. Drug Deliv. Rev.202117611386910.1016/j.addr.2021.11386934280515
    [Google Scholar]
  16. ImamuraT. VollenweiderP. EgawaK. ClodiM. IshibashiK. NakashimaN. UgiS. AdamsJ.W. BrownJ.H. OlefskyJ.M. G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3T3-L1 adipocytes.Mol. Cell. Biol.199919106765677410.1128/MCB.19.10.676510490615
    [Google Scholar]
  17. KimuraT. PydiS.P. WangL. HaspulaD. CuiY. LuH. KönigG.M. KostenisE. SteinbergG.R. GavrilovaO. WessJ. Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice.Nat. Commun.2022131165210.1038/s41467‑022‑29231‑635351896
    [Google Scholar]
  18. KietzmannT. Liver Zonation in Health and Disease: Hypoxia and Hypoxia-Inducible Transcription Factors as Concert Masters.Int. J. Mol. Sci.20192092347https://doi.org/https://doi.org/10.3390/ijms2009234710.3390/ijms2009234731083568
    [Google Scholar]
  19. García-RevillaJ. HerreraA.J. de PablosR.M. VeneroJ.L. Inflammatory Animal Models of Parkinson’s Disease.J. Parkinsons Dis.202212s1S165S18210.3233/JPD‑21313835662128
    [Google Scholar]
  20. AtanesP. Ruz-MaldonadoI. HawkesR. LiuB. ZhaoM. HuangG.C. Al-AmilyI.M. SalehiA. AmistenS. PersaudS.J. Defining G protein-coupled receptor peptide ligand expressomes and signalomes in human and mouse islets.Cell. Mol. Life Sci.201875163039305010.1007/s00018‑018‑2778‑z29455414
    [Google Scholar]
  21. JiangY. PengJ. SongJ. HeJ. JiangM. WangJ. MaL. WangY. LinM. WuH. ZhangZ. GaoD. ZhaoY. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2.Nat. Metab.20213111569158410.1038/s42255‑021‑00488‑334750570
    [Google Scholar]
  22. SchaidM.D. GreenC.L. PeterD.C. GallagherS.J. GutheryE. CarbajalK.A. HarringtonJ.M. KellyG.M. ReuterA. WehnerM.L. BrillA.L. NeumanJ.C. LammingD.W. KimpleM.E. Agonist-independent Gαz activity negatively regulates beta-cell compensation in a diet-induced obesity model of type 2 diabetes.J. Biol. Chem.202129610005610.1074/jbc.RA120.01558533172888
    [Google Scholar]
  23. GuanF. TabrizianT. NovajA. NakanishiM. RosenbergD.W. HuffmanD.M. Dietary Walnuts Protect Against Obesity-Driven Intestinal Stem Cell Decline and Tumorigenesis.Front. Nutr.201853710.3389/fnut.2018.0003729904634
    [Google Scholar]
  24. HanifW. AlexL. SuY. ShindeA.V. RussoI. LiN. FrangogiannisN.G. Left atrial remodeling, hypertrophy, and fibrosis in mouse models of heart failure.Cardiovasc. Pathol.201730273710.1016/j.carpath.2017.06.00328759817
    [Google Scholar]
  25. AsgharpourA. CazanaveS.C. PacanaT. SeneshawM. VincentR. BaniniB.A. KumarD.P. DaitaK. MinH.K. MirshahiF. BedossaP. SunX. HoshidaY. KoduruS.V. ContaiferD.Jr WarnckeU.O. WijesingheD.S. SanyalA.J. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer.J. Hepatol.201665357958810.1016/j.jhep.2016.05.00527261415
    [Google Scholar]
  26. HalderS ParteS KshirsagarP MuniyanS NairHB BatraSK SeshacharyuluP The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights.Biochim Biophys Acta Rev Cancer20221877418873710.1016/j.bbcan.2022.18873735680099
    [Google Scholar]
  27. LiuG. DavidB.T. TrawczynskiM. FesslerR.G. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications.Stem Cell Rev. Rep.202016133210.1007/s12015‑019‑09935‑x31760627
    [Google Scholar]
  28. RamliM.N.B. LimY.S. KoeC.T. DemirciogluD. TngW. GonzalesK.A.U. TanC.P. SzczerbinskaI. LiangH. SoeE.L. LuZ. AriyachetC. YuK.M. KohS.H. YawL.P. JumatN.H.B. LimJ.S.Y. WrightG. ShabbirA. DanY.Y. NgH.H. ChanY.S. Human Pluripotent Stem Cell-Derived Organoids as Models of Liver Disease.Gastroenterology2020159414711486.e1210.1053/j.gastro.2020.06.01032553762
    [Google Scholar]
  29. ValloneV.F. TeluguN.S. FischerI. MillerD. SchommerS. DieckeS. StachelscheidH. Methods for Automated Single Cell Isolation and Sub-Cloning of Human Pluripotent Stem Cells.Curr. Protoc. Stem Cell Biol.2020551e12310.1002/cpsc.12332956572
    [Google Scholar]
  30. OzawaH. MatsumotoT. NakagawaM. Culturing human pluripotent stem cells for regenerative medicine.Expert Opin. Biol. Ther.202323647948910.1080/14712598.2023.222570137345510
    [Google Scholar]
  31. GurusamyN. AlsayariA. RajasinghS. RajasinghJ. Adult Stem Cells for Regenerative Therapy.Prog. Mol. Biol. Transl. Sci.201816012210.1016/bs.pmbts.2018.07.00930470288
    [Google Scholar]
  32. MünzkerJ. HaaseN. TillA. SucherR. HaangeS.B. NemetschkeL. GnadT. JägerE. ChenJ. RiedeS.J. ChakarounR. MassierL. KovacsP. OstM. Rolle-KampczykU. JehmlichN. WeinerJ. HeikerJ.T. KlötingN. SeegerG. MorawskiM. KeitelV. PfeiferA. von BergenM. HeerenJ. KrügelU. FenskeW.K. Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity.Microbiome20221019610.1186/s40168‑022‑01264‑535739571
    [Google Scholar]
  33. DottiI. MayorgasA. SalasA. Generation of human colon organoids from healthy and inflammatory bowel disease mucosa.PLoS One20221710e027619510.1371/journal.pone.027619536301950
    [Google Scholar]
  34. SchutgensF. CleversH. Human Organoids: Tools for Understanding Biology and Treating Diseases.Annu. Rev. Pathol.202015121123410.1146/annurev‑pathmechdis‑012419‑03261131550983
    [Google Scholar]
  35. JovicD. YuY. WangD. WangK. LiH. XuF. LiuC. LiuJ. LuoY. A Brief Overview of Global Trends in MSC-Based Cell Therapy.Stem Cell Rev. Rep.20221851525154510.1007/s12015‑022‑10369‑135344199
    [Google Scholar]
  36. YuanX. LiL. LiuH. LuoJ. ZhaoY. PanC. ZhangX. ChenY. GouM. Strategies for improving adipose-derived stem cells for tissue regeneration.Burns Trauma202210tkac02810.1093/burnst/tkac02835992369
    [Google Scholar]
  37. LiC.H. ZhaoJ. ZhangH.Y. WangB. Banking of perinatal mesenchymal stem/stromal cells for stem cell-based personalized medicine over lifetime: Matters arising.World J. Stem Cells202315410511910.4252/wjsc.v15.i4.10537181005
    [Google Scholar]
  38. ZhuX. ZhangB. HeY. BaoJ. Liver Organoids: Formation Strategies and Biomedical Applications.Tissue Eng. Regen. Med.202118457358510.1007/s13770‑021‑00357‑w34132985
    [Google Scholar]
  39. CatoiraM.C. FusaroL. Di FrancescoD. RamellaM. BoccafoschiF. Overview of natural hydrogels for regenerative medicine applications.J. Mater. Sci. Mater. Med.2019301011510.1007/s10856‑019‑6318‑731599365
    [Google Scholar]
  40. MaJ. HuangC. Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate.Tissue Eng. Part B Rev.202026649851810.1089/ten.teb.2020.002132272868
    [Google Scholar]
  41. KaurS. KaurI. RawalP. TripathiD.M. VasudevanA. Non-matrigel scaffolds for organoid cultures.Cancer Lett.2021504586610.1016/j.canlet.2021.01.02533582211
    [Google Scholar]
  42. LiuH. WangH. ChenD. GuC. HuangJ. MiK. Endoplasmic reticulum stress inhibits 3D Matrigel-induced vasculogenic mimicry of breast cancer cells via TGF-β1/Smad2/3 and β-catenin signaling.FEBS Open Bio20211192607261810.1002/2211‑5463.1325934320274
    [Google Scholar]
  43. VasileC. PamfilD. StoleruE. BaicanM. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers.Molecules2020257153910.3390/molecules2507153932230990
    [Google Scholar]
  44. RyuN.E. LeeS.H. ParkH. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells.Cells2019812162010.3390/cells812162031842346
    [Google Scholar]
  45. WeiJ. XiaT. ChenW. RanP. ChenM. LiX. Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments.J. Tissue Eng. Regen. Med.202014677478810.1002/term.304232285997
    [Google Scholar]
  46. LeeS. SerpooshanV. TongX. VenkatramanS. LeeM. LeeJ. ChirikianO. WuJ.C. WuS.M. YangF. Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness.Biomaterials201713111112010.1016/j.biomaterials.2017.03.03928384492
    [Google Scholar]
  47. RaghavendraS.S. GathaniK.M. Scaffolds in regenerative endodontics: A review.Dent. Res. J. (Isfahan)201613537938610.4103/1735‑3327.19226627857762
    [Google Scholar]
  48. KozlowskiM.T. ZookH.N. ChigumbaD.N. JohnstoneC.P. CalderaL.F. ShihH.P. TirrellD.A. KuH.T. A matrigel-free method for culture of pancreatic endocrine-like cells in defined protein-based hydrogels.Front. Bioeng. Biotechnol.202311114420910.3389/fbioe.2023.114420936970620
    [Google Scholar]
  49. PietersV.M. RjaibiS.T. SinghK. LiN.T. KhanS.T. NunesS.S. Dal CinA. GilbertP.M. McGuiganA.P. A three-dimensional human adipocyte model of fatty acid-induced obesity.Biofabrication202214404500910.1088/1758‑5090/ac84b135896099
    [Google Scholar]
  50. DissanayakaW.L. ZhangC. Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration.J. Endod.2020469S81S8910.1016/j.joen.2020.06.02232950199
    [Google Scholar]
  51. WangD. GuoY. ZhuJ. LiuF. XueY. HuangY. ZhuB. WuD. PanH. GongT. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids.Acta Biomater.202210.1016/j.actbio.2022.06.03635803504
    [Google Scholar]
  52. NingsihS.S. AvissaR. StujannaE.N. ListyaningsihE. YashiroT. n SUKARYAW.S. Evaluation of morphology and viability of spheroid derived from Insulin-GLase cell line: A model system to understand Type 2 Diabetes Mellitus.J. Exp. Clin. Med.202138321121510.52142/omujecm.38.3.1
    [Google Scholar]
  53. DrochonA. LesieurR. DurandM. Fluid dynamics characterisation of a rotating bioreactor for tissue engineering.Med. Eng. Phys.202210510383110.1016/j.medengphy.2022.10383135781390
    [Google Scholar]
  54. FrandsenH.S. Vej-NielsenJ.M. SmithL.E. SunL. MikkelsenK.L. ThulesenA.P. HagensenC.E. YangF. Rogowska-WrzesinskaA. Mapping Proteome and Lipidome Changes in Early-Onset Non-Alcoholic Fatty Liver Disease Using Hepatic 3D Spheroids.Cells20221120321610.3390/cells1120321636291085
    [Google Scholar]
  55. SchusterB. JunkinM. KashafS.S. Romero-CalvoI. KirbyK. MatthewsJ. WeberC.R. RzhetskyA. WhiteK.P. TayS. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids.Nat. Commun.2020111527110.1038/s41467‑020‑19058‑433077832
    [Google Scholar]
  56. WangY. WangH. DengP. TaoT. LiuH. WuS. ChenW. QinJ. Modeling Human Nonalcoholic Fatty Liver Disease (NAFLD) with an Organoids-on-a-Chip System.ACS Biomater. Sci. Eng.20206105734574310.1021/acsbiomaterials.0c0068233320545
    [Google Scholar]
  57. ZbindenA. UrbanczykM. LaylandS.L. BeckerL. MarziJ. BoschM. LoskillP. DuffyG.P. Schenke-LaylandK. Collagen and Endothelial Cell Coculture Improves β-Cell Functionality and Rescues Pancreatic Extracellular Matrix.Tissue Eng. Part A20212713-1497799110.1089/ten.tea.2020.025033023407
    [Google Scholar]
  58. JoseS.S. De ZuaniM. TiduF. Hortová KohoutkováM. PazzagliL. ForteG. SpaccapeloR. ZelanteT. FričJ. Comparison of two human organoid models of lung and intestinal inflammation reveals Toll- like receptor signalling activation and monocyte recruitment.Clin. Transl. Immunology202095e113110.1002/cti2.113132377340
    [Google Scholar]
  59. IharaS. HirataY. KoikeK. Abrogation of TGF-beta Signaling in Dendritic Cells Leads to E-cadherin-mediated Adhesion between Dendritic Cells and Epithelium which Contributes to the Pathogenesis of Inflammatory Bowel Disease.FASEB J.201832S1lb128lb12810.1096/fasebj.2018.32.1_supplement.lb128
    [Google Scholar]
  60. BitonM. HaberA.L. RogelN. BurginG. BeyazS. SchnellA. AshenbergO. SuC.W. SmillieC. ShekharK. ChenZ. WuC. Ordovas-MontanesJ. AlvarezD. HerbstR.H. ZhangM. TiroshI. DionneD. NguyenL.T. XifarasM.E. ShalekA.K. von AndrianU.H. GrahamD.B. Rozenblatt-RosenO. ShiH.N. KuchrooV. YilmazO.H. RegevA. XavierR.J. T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation.Cell2018175513071320.e2210.1016/j.cell.2018.10.00830392957
    [Google Scholar]
  61. BeaurivageC. KanapeckaiteA. LoomansC. ErdmannK.S. StallenJ. JanssenR.A.J. Development of a human primary gut-on-a-chip to model inflammatory processes.Sci. Rep.20201012147510.1038/s41598‑020‑78359‑233293676
    [Google Scholar]
  62. KakniP. TruckenmüllerR. HabibovićP. van GriensvenM. GiselbrechtS. A Microwell-Based Intestinal Organoid-Macrophage Co-Culture System to Study Intestinal Inflammation.Int. J. Mol. Sci.202223231536410.3390/ijms23231536436499691
    [Google Scholar]
  63. KakniP. HueberR. KnoopsK. López-IglesiasC. TruckenmüllerR. HabibovicP. GiselbrechtS. Intestinal Organoid Culture in Polymer Film-Based Microwell Arrays.Adv. Biosyst.2020410200012610.1002/adbi.20200012632734713
    [Google Scholar]
  64. ZhuB. WangD. PanH. GongT. RenQ. WangZ. GuoY. Three-in-one customized bioink for islet organoid: GelMA/ECM/PRP orchestrate pro-angiogenic and immunoregulatory function.Colloids Surf. B Biointerfaces202322111301710.1016/j.colsurfb.2022.11301736403416
    [Google Scholar]
  65. XiaY. ChenH. LiJ. HuH. QianQ. HeR.X. DingZ. GuoS.S. Acoustic Droplet-Assisted Superhydrophilic–Superhydrophobic Microarray Platform for High-Throughput Screening of Patient-Derived Tumor Spheroids.ACS Appl. Mater. Interfaces20211320234892350110.1021/acsami.1c0665533983701
    [Google Scholar]
  66. KumarS. JachD. MacfarlaneW. Crnogorac-JurcevicT. A 3-Dimensional Coculture Model to Visualize and Monitor Interaction Between Pancreatic Cancer and Islet β Cells.Pancreas202150798298910.1097/MPA.000000000000186534629448
    [Google Scholar]
  67. RoJ. KimJ. ParkJ. ChoiY. ChoY.K. ODSEI Chip: An Open 3D Microfluidic Platform for Studying Tumor Spheroid-Endothelial Interactions.Adv. Sci.2025e2410659241065910.1002/advs.20241065939805002
    [Google Scholar]
  68. LibringS. EnríquezÁ. LeeH. SolorioL. In vitro Magnetic Techniques for Investigating Cancer Progression.Cancers20211317444010.3390/cancers1317444034503250
    [Google Scholar]
  69. XingC. KemasA. MickolsE. KleinK. ArturssonP. LauschkeV.M. The choice of ultra-low attachment plates impacts primary human and primary canine hepatocyte spheroid formation, phenotypes, and function.Biotechnol. J.2024192230058710.1002/biot.20230058738403411
    [Google Scholar]
  70. StröbelS. KostadinovaR. Fiaschetti-EgliK. RuppJ. BieriM. PawlowskaA. BuslerD. HofstetterT. SanchezK. GrepperS. ThomaE. A 3D primary human cell-based in vitro model of non-alcoholic steatohepatitis for efficacy testing of clinical drug candidates.Sci. Rep.20211112276510.1038/s41598‑021‑01951‑734815444
    [Google Scholar]
  71. van OsE.A. CoolsL. EysackersN. SzafranskaK. SmoutA. VerhulstS. ReynaertH. McCourtP. MannaertsI. van GrunsvenL.A. Modelling fatty liver disease with mouse liver-derived multicellular spheroids.Biomaterials202229012181710.1016/j.biomaterials.2022.12181736208587
    [Google Scholar]
  72. ZhaoW. YaoY. ZhangT. LuH. ZhangX. ZhaoL. ChenX. ZhuJ. SuiG. ZhaoW. Primary exploration of host–microorganism interaction and enteritis treatment with an embedded membrane microfluidic chip of the human intestinal–vascular microsystem.Front. Bioeng. Biotechnol.202210103564710.3389/fbioe.2022.103564736561041
    [Google Scholar]
  73. UrbanczykM. ZbindenA. LaylandS.L. DuffyG. Schenke-LaylandK. Controlled Heterotypic Pseudo-Islet Assembly of Human β-Cells and Human Umbilical Vein Endothelial Cells Using Magnetic Levitation.Tissue Eng. Part A2020267-838739910.1089/ten.tea.2019.015831680653
    [Google Scholar]
  74. Vakili-GhartavolR. Momtazi-BorojeniA.A. Vakili-GhartavolZ. AiyelabeganH.T. JaafariM.R. RezayatS.M. Arbabi BidgoliS. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues.Artif. Cells Nanomed. Biotechnol.202048144345110.1080/21691401.2019.170985532024389
    [Google Scholar]
  75. TaylorJ. SellinJ. KuerschnerL. KrählL. MajlesainY. FörsterI. ThieleC. WeighardtH. WeberE. Generation of immune cell containing adipose organoids for in vitro analysis of immune metabolism.Sci. Rep.20201012110410.1038/s41598‑020‑78015‑933273595
    [Google Scholar]
  76. MullerS. AderI. CreffJ. LeménagerH. AchardP. CasteillaL. SensebéL. CarrièreA. DeschaseauxF. Human adipose stromal-vascular fraction self-organizes to form vascularized adipose tissue in 3D cultures.Sci. Rep.201991725010.1038/s41598‑019‑43624‑631076601
    [Google Scholar]
  77. Soto-GutierrezA. GoughA. VernettiL.A. TaylorD.L. MongaS.P. Pre-clinical and clinical investigations of metabolic zonation in liver diseases: The potential of microphysiology systems.Exp. Biol. Med. (Maywood)2017242161605161610.1177/153537021770773128467181
    [Google Scholar]
  78. BrunnerK.T. HennebergC.J. WilechanskyR.M. LongM.T. Nonalcoholic Fatty Liver Disease and Obesity Treatment.Curr. Obes. Rep.20198322022810.1007/s13679‑019‑00345‑130945129
    [Google Scholar]
  79. GwagT. MaE. ZhouC. WangS. Anti-CD47 antibody treatment attenuates liver inflammation and fibrosis in experimental non-alcoholic steatohepatitis models.Liver Int.202242482984110.1111/liv.1518235129307
    [Google Scholar]
  80. LiuY. XieC. ZhaiZ. DengZ. De JongeH.R. WuX. RuanZ. Uridine attenuates obesity, ameliorates hepatic lipid accumulation and modifies the gut microbiota composition in mice fed with a high-fat diet.Food Funct.20211241829184010.1039/D0FO02533J33527946
    [Google Scholar]
  81. DengY. WangZ.V. GordilloR. AnY. ZhangC. LiangQ. YoshinoJ. CautivoK.M. De BrabanderJ. ElmquistJ.K. HortonJ.D. HillJ.A. KleinS. SchererP.E. An adipo-biliary-uridine axis that regulates energy homeostasis.Science20173556330eaaf537510.1126/science.aaf537528302796
    [Google Scholar]
  82. Vega-BadilloJ. Gutiérrez-VidalR. Hernández-PérezH.A. Villamil-RamírezH. León-MimilaP. Sánchez-MuñozF. Morán-RamosS. Larrieta-CarrascoE. Fernández-SilvaI. Méndez-SánchezN. TovarA.R. Campos-PérezF. Villarreal-MolinaT. Hernández-PandoR. Aguilar-SalinasC.A. Canizales-QuinterosS. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects.Liver Int.20163691383139110.1111/liv.1310926945479
    [Google Scholar]
  83. AzzimatoV ChenP BarrebyE MorgantiniC LeviL VankovaA JagerJ SulenA DiotalleviM ShenJX Hepatic miR-144 drives fumarase activity preventing NRF2 activation during obesity.Gastroenterology202116161982199710.1053/j.gastro.2021.08.03034425095
    [Google Scholar]
  84. JiaoJ. SanchezJ.I. SaldarriagaO.A. SolisL.M. TweardyD.J. MaruD.M. StevensonH.L. BerettaL. Spatial molecular and cellular determinants of STAT3 activation in liver fibrosis progression in non-alcoholic fatty liver disease.JHEP Reports20235210062810.1016/j.jhepr.2022.10062836687470
    [Google Scholar]
  85. ShiH. WangX. LiF. GerlachB.D. YurdagulA.Jr MooreM.P. ZeldinS. ZhangH. CaiB. ZhengZ. ValentiL. TabasI. CD47-SIRPα axis blockade in NASH promotes necroptotic hepatocyte clearance by liver macrophages and decreases hepatic fibrosis.Sci. Transl. Med.202214672eabp830910.1126/scitranslmed.abp830936417485
    [Google Scholar]
  86. TengY. ZhaoZ. TasnimF. HuangX. YuH. A scalable and sensitive steatosis chip with long-term perfusion of in situ differentiated HepaRG organoids.Biomaterials202127512090410.1016/j.biomaterials.2021.12090434119888
    [Google Scholar]
  87. HendriksD. BrouwersJ.F. HamerK. GeurtsM.H. LucianaL. MassaliniS. López-IglesiasC. PetersP.J. Rodríguez-ColmanM.J. Chuva de Sousa LopesS. ArtegianiB. CleversH. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis.Nat. Biotechnol.202341111567158110.1038/s41587‑023‑01680‑436823355
    [Google Scholar]
  88. CherubiniA. OstadrezaM. JamialahmadiO. PelusiS. RrapajE. CasiratiE. PassignaniG. NorouziesfahaniM. SinopoliE. BaselliG. MedaC. DongiovanniP. DondossolaD. YoungsonN. TournaA. ChokshiS. BugianesiE. RonzoniL. BiancoC. CeramiL. TorciantiV. PeritiG. MargaritaS. CarpaniR. MalvestitiF. MariniI. TomasiM. LombardiA. RondenaJ. MaggioniM. D’AmbrosioR. VairaV. FracanzaniA.L. RossoC. PennisiG. PettaS. LiguoriA. MieleL. TavaglioneF. Vespasiani-GentilucciU. DallioM. FedericoA. SoardoG. PihlajamäkiJ. MännistöV. Della TorreS. PratiD. RomeoS. ValentiL. Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women.Nat. Med.202329102643265510.1038/s41591‑023‑02553‑837749332
    [Google Scholar]
  89. HorwichT.B. FonarowG.C. ClarkA.L. Obesity and the obesity paradox in heart failure.Prog. Cardiovasc. Dis.201861215115610.1016/j.pcad.2018.05.00529852198
    [Google Scholar]
  90. VyasV. LambiaseP. Obesity and atrial fibrillation: Epidemiology, pathophysiology and novel therapeutic opportunities.Arrhythm. Electrophysiol. Rev.201981283610.15420/aer.2018.76.230918664
    [Google Scholar]
  91. TutorA.W. LavieC.J. KachurS. MilaniR.V. VenturaH.O. Updates on obesity and the obesity paradox in cardiovascular diseases.Prog. Cardiovasc. Dis.20237821010.1016/j.pcad.2022.11.01336481212
    [Google Scholar]
  92. BonacaM.P. HamburgN.M. CreagerM.A. Contemporary medical management of peripheral artery disease.Circ. Res.2021128121868188410.1161/CIRCRESAHA.121.31825834110910
    [Google Scholar]
  93. NegroiuC.E. TudorascuI. MoiseC.G. VinturisE. BeznaC.M. DanoiuR. GamanM.E. DanoiuS. Obesity and myocardial infarction-the place of obesity among cardiovascular risk factors-retrospective study.Curr. Health Sci. J.202349338839638314213
    [Google Scholar]
  94. ShitiA. ArbilG. ShaheenN. HuberI. SetterN. GepsteinL. Utilizing human induced pluripotent stem cells to study atrial arrhythmias in the short QT syndrome.J. Mol. Cell. Cardiol.2023183425310.1016/j.yjmcc.2023.08.00337579942
    [Google Scholar]
  95. SvystonyukD.A. MewhortH.E.M. HassanabadA.F. HeydariB. MikamiY. TurnbullJ.D. TengG. BelkeD.D. WagnerK.T. TarrafS.A. DiMartinoE.S. WhiteJ.A. FlewittJ.A. CheungM. GuzzardiD.G. KangS. FedakP.W.M. Acellular bioscaffolds redirect cardiac fibroblasts and promote functional tissue repair in rodents and humans with myocardial injury.Sci. Rep.2020101945910.1038/s41598‑020‑66327‑932528051
    [Google Scholar]
  96. RiedelS. PheifferC. JohnsonR. LouwJ. MullerC.J.F. Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development.Front. Endocrinol.20221283354410.3389/fendo.2021.83354435145486
    [Google Scholar]
  97. GribbleF.M. ReimannF. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism.Nat. Rev. Endocrinol.201915422623710.1038/s41574‑019‑0168‑830760847
    [Google Scholar]
  98. GoldspinkD.A. LuV.B. MiedzybrodzkaE.L. SmithC.A. ForemanR.E. BillingL.J. KayR.G. ReimannF. GribbleF.M. Labeling and characterization of human GLP-1-secreting L-cells in primary ileal organoid culture.Cell Rep.2020311310783310.1016/j.celrep.2020.10783332610134
    [Google Scholar]
  99. KwonI.G. KangC.W. ParkJ.P. OhJ.H. WangE.K. KimT.Y. SungJ.S. ParkN. LeeY.J. SungH.J. LeeE.J. HyungW.J. ShinS.J. NohS.H. YunM. KangW.J. ChoA. KuC.R. Serum glucose excretion after Roux-en-Y gastric bypass: A potential target for diabetes treatment.Gut202170101847185610.1136/gutjnl‑2020‑32140233208408
    [Google Scholar]
  100. YangM. DarwishT. LarraufieP. RimmingtonD. CiminoI. GoldspinkD.A. JenkinsB. KoulmanA. BrightonC.A. MaM. LamB.Y.H. CollA.P. O’RahillyS. ReimannF. GribbleF.M. Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells.Sci. Rep.2021111252910.1038/s41598‑021‑81349‑733510216
    [Google Scholar]
  101. BrooksL. ViardotA. TsakmakiA. StolarczykE. HowardJ.K. CaniP.D. EverardA. SleethM.L. PsichasA. AnastasovskajJ. BellJ.D. Bell-AndersonK. MackayC.R. GhateiM.A. BloomS.R. FrostG. BewickG.A. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety.Mol. Metab.201761486010.1016/j.molmet.2016.10.01128123937
    [Google Scholar]
  102. PinoJ.L. MujicaV. ArredondoM. Effect of dietary supplementation with oat β-glucan for 3 months in subjects with type 2 diabetes: A randomized, double-blind, controlled clinical trial.J. Funct. Foods20217710431110.1016/j.jff.2020.104311
    [Google Scholar]
  103. PetersenN. ReimannF. van EsJ.H. van den BergB.M. KrooneC. PaisR. JansenE. CleversH. GribbleF.M. de KoningE.J.P. Targeting development of incretin-producing cells increases insulin secretion.J. Clin. Invest.2015125137938510.1172/JCI7583825500886
    [Google Scholar]
  104. LarsenJ.R. VedtofteL. JakobsenM.S.L. JespersenH.R. JakobsenM.I. SvenssonC.K. KoyuncuK. SchjerningO. OturaiP.S. KjaerA. NielsenJ. HolstJ.J. EkstrømC.T. CorrellC.U. VilsbøllT. Fink-JensenA. Effect of liraglutide treatment on prediabetes and overweight or obesity in Clozapine- or olanzapine-treated patients with Schizophrenia spectrum disorder.JAMA Psychiatry201774771972810.1001/jamapsychiatry.2017.122028601891
    [Google Scholar]
  105. YanS. ConleyJ.M. ReillyA.M. StullN.D. AbhyankarS.D. EricssonA.C. KonoT. MoloshA.I. KubalC.A. Evans-MolinaC. RenH. Intestinal Gpr17 deficiency improves glucose metabolism by promoting GLP-1 secretion.Cell Rep.202238111017910.1016/j.celrep.2021.11017934986353
    [Google Scholar]
  106. AizenshtadtA. WangC. AbadpourS. MenezesP.D. WilhelmsenI. Dalmao-FernandezA. StokowiecJ. GolovinA. JohnsenM. CombriatT.M.D. Røberg-LarsenH. GadegaardN. ScholzH. BusekM. KraussS.J.K. Pump-less, recirculating organ-on-chip (rooc) platform to model the metabolic crosstalk between islets and liver.Adv. Healthc. Mater.20241313230378510.1002/adhm.20230378538221504
    [Google Scholar]
  107. AhmedB. SultanaR. GreeneM.W. Adipose tissue and insulin resistance in obese.Biomed. Pharmacother.202113711131510.1016/j.biopha.2021.11131533561645
    [Google Scholar]
  108. HoefnerC. MuhrC. HorderH. WiesnerM. WittmannK. LukaszykD. RadeloffK. WinnefeldM. BeckerM. BlunkT. Bauer-KreiselP. Human adipose-derived mesenchymal stromal/stem cell spheroids possess high adipogenic capacity and acquire an adipose tissue-like extracellular matrix pattern.Tissue Eng. Part A20202615-1691592610.1089/ten.tea.2019.020632070231
    [Google Scholar]
  109. ShenJ.X. CouchetM. DufauJ. de Castro BarbosaT. UlbrichM.H. HelmstädterM. KemasA.M. Zandi ShafaghR. MarquesM.A. HansenJ.B. MejhertN. LanginD. RydénM. LauschkeV.M. 3D adipose tissue culture links the organotypic microenvironment to improved adipogenesis.Adv. Sci.2021816210010610.1002/advs.20210010634165908
    [Google Scholar]
  110. CorveraS. Cellular heterogeneity in adipose tissues.Annu. Rev. Physiol.202183125727810.1146/annurev‑physiol‑031620‑09544633566675
    [Google Scholar]
  111. QuanY. LiJ. CaiJ. LiaoY. ZhangY. LuF. Transplantation of beige adipose organoids fabricated using adipose acellular matrix hydrogel improves metabolic dysfunction in high-fat diet-induced obesity and type 2 diabetes mice.J. Cell. Physiol.20242394e3119110.1002/jcp.3119138219044
    [Google Scholar]
  112. FilardiT. CatanzaroG. GriecoG.E. SplendianiE. TrocchianesiS. SantangeloC. BrunelliR. GuarinoE. SebastianiG. DottaF. MoranoS. FerrettiE. Identification and validation of miR-222-3p and miR-409-3p as plasma biomarkers in gestational diabetes mellitus sharing validated target genes involved in metabolic homeostasis.Int. J. Mol. Sci.2022238427610.3390/ijms2308427635457094
    [Google Scholar]
  113. Becker-GreeneD. LiH. Perez-CremadesD. WuW. BestepeF. OzdemirD. NiosiC.E. AydoganC. OrgillD.P. FeinbergM.W. IcliB. MiR-409-3p targets a MAP4K3-ZEB1-PLGF signaling axis and controls brown adipose tissue angiogenesis and insulin resistance.Cell. Mol. Life Sci.202178237663767910.1007/s00018‑021‑03960‑134698882
    [Google Scholar]
  114. GuanQ. WangZ. CaoJ. DongY. ChenY. Mechanisms of melatonin in obesity: A review.Int. J. Mol. Sci.202123121810.3390/ijms2301021835008644
    [Google Scholar]
  115. LacM. TavernierG. MoroC. Does housing temperature influence glucose regulation and muscle-fat crosstalk in mice?Biochimie2023210353910.1016/j.biochi.2023.01.01936758717
    [Google Scholar]
  116. KoenenM. HillM.A. CohenP. SowersJ.R. Obesity, adipose tissue and vascular dysfunction.Circ. Res.2021128795196810.1161/CIRCRESAHA.121.31809333793327
    [Google Scholar]
  117. ChenN. AbudupataerM. FengS. ZhuS. MaW. LiJ. LaiH. ZhuK. WangC. Engineering a human pluripotent stem cell-based in vitro microphysiological system for studying the metformin response in aortic smooth muscle cells.Front. Bioeng. Biotechnol.2021962787710.3389/fbioe.2021.62787733816448
    [Google Scholar]
  118. Uribe-QuerolE. RosalesC. Neutrophils actively contribute to obesity-associated inflammation and pathological complications.Cells20221112188310.3390/cells1112188335741012
    [Google Scholar]
  119. BilskiJ. Mazur-BialyA. WojcikD. SurmiakM. MagierowskiM. SliwowskiZ. PajdoR. KwiecienS. DanielakA. Ptak-BelowskaA. BrzozowskiT. Role of obesity, mesenteric adipose tissue, and adipokines in inflammatory bowel diseases.Biomolecules201991278010.3390/biom912078031779136
    [Google Scholar]
  120. BegA.A. ShaW.C. BronsonR.T. BaltimoreD. Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice.Genes Dev.19959222736274610.1101/gad.9.22.27367590249
    [Google Scholar]
  121. MikudaN. Schmidt-UllrichR. KärgelE. GolusdaL. WolfJ. HöpkenU.E. ScheidereitC. KühlA.A. KolesnichenkoM. Deficiency in IκBα in the intestinal epithelium leads to spontaneous inflammation and mediates apoptosis in the gut.J. Pathol.2020251216017410.1002/path.543732222043
    [Google Scholar]
  122. YooJ.H. DonowitzM. Intestinal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases.World J. Gastroenterol.201925304125414710.3748/wjg.v25.i30.412531435168
    [Google Scholar]
  123. TakahashiY. SatoS. KurashimaY. LaiC.Y. OtsuM. HayashiM. YamaguchiT. KiyonoH. Reciprocal inflammatory signaling between intestinal epithelial cells and adipocytes in the absence of immune cells.EBioMedicine201723344510.1016/j.ebiom.2017.07.02728789943
    [Google Scholar]
  124. AlvarengaL. SalarolliR. CardozoL.F.M.F. SantosR.S. de BritoJ.S. KempJ.A. ReisD. de PaivaB.R. StenvinkelP. LindholmB. FouqueD. MafraD. Impact of curcumin supplementation on expression of inflammatory transcription factors in hemodialysis patients: A pilot randomized, double-blind, controlled study.Clin. Nutr.202039123594360010.1016/j.clnu.2020.03.00732204978
    [Google Scholar]
  125. EslickS. ThompsonC. BerthonB. WoodL. Short-chain fatty acids as anti-inflammatory agents in overweight and obesity: A systematic review and meta-analysis.Nutr. Rev.202280483885610.1093/nutrit/nuab05934472619
    [Google Scholar]
  126. BridgesK. DiazF. WangZ. AhmedI. SullivanD. UmarS. BucklesD. GreinerK. HesterC. Relating stool microbial metabolite levels, inflammatory markers and dietary behaviors to screening colonoscopy findings in a racially/ethnically diverse patient population.Genes20189311910.3390/genes903011929495356
    [Google Scholar]
  127. FacchinS. VituloN. CalgaroM. BudaA. RomualdiC. PohlD. PeriniB. LorenzonG. MarinelliC. D’IncàR. SturnioloG.C. SavarinoE.V. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease.Neurogastroenterol. Motil.20203210e1391410.1111/nmo.1391432476236
    [Google Scholar]
  128. FeiY. WangY. PangY. WangW. ZhuD. XieM. LanS. WangZ. Xylooligosaccharide modulates gut microbiota and alleviates colonic inflammation caused by high fat diet induced obesity.Front. Physiol.202010160110.3389/fphys.2019.0160132038285
    [Google Scholar]
  129. AntonioliL. CaputiV. FornaiM. PellegriniC. GentileD. GironM.C. OrsoG. BernardiniN. SegnaniC. IppolitoC. CsókaB. HaskóG. NémethZ.H. ScarpignatoC. BlandizziC. ColucciR. Interplay between colonic inflammation and tachykininergic pathways in the onset of colonic dysmotility in a mouse model of diet-induced obesity.Int. J. Obes.201943233134310.1038/s41366‑018‑0166‑230082748
    [Google Scholar]
  130. ModabberniaA. VelthorstE. ReichenbergA. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses.Mol. Autism2017811310.1186/s13229‑017‑0121‑428331572
    [Google Scholar]
  131. ZhangW. MaL. YangM. ShaoQ. XuJ. LuZ. ZhaoZ. ChenR. ChaiY. ChenJ.F. Cerebral organoid and mouse models reveal a RAB39b–PI3K–mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes.Genes Dev.2020347-858059710.1101/gad.332494.11932115408
    [Google Scholar]
  132. IlievaM. AldanaB.I. VintenK.T. HohmannS. WoofendenT.W. LukjanskaR. WaagepetersenH.S. MichelT.M. Proteomic phenotype of cerebral organoids derived from autism spectrum disorder patients reveal disrupted energy metabolism, cellular components, and biological processes.Mol. Psychiatry20222793749375910.1038/s41380‑022‑01627‑235618886
    [Google Scholar]
  133. FanP. WangY. LuK. HongY. XuM. HanX. LiuY. Modeling maternal cholesterol exposure reveals a reduction of neural progenitor proliferation using human cerebral organoids.Life Medicine202322lnac03410.1093/lifemedi/lnac03439872117
    [Google Scholar]
  134. MuldersR.J. de GitK.C.G. SchéleE. DicksonS.L. SanzY. AdanR.A.H. Microbiota in obesity: Interactions with enteroendocrine, immune and central nervous systems.Obes. Rev.201819443545110.1111/obr.1266129363272
    [Google Scholar]
  135. ShiJ. TengY. LiD. HeJ. MidgleyA.C. GuoX. WangX. YangX. WangS. FengY. LvQ. HouS. Biomimetic tri-layered small-diameter vascular grafts with decellularized extracellular matrix promoting vascular regeneration and inhibiting thrombosis with the salidroside.Mater. Today Bio20232110070910.1016/j.mtbio.2023.10070937455822
    [Google Scholar]
  136. GhorbaninejadM. Asadzadeh-AghdaeiH. BaharvandH. MeyfourA. Intestinal organoids: A versatile platform for modeling gastrointestinal diseases and monitoring epigenetic alterations.Life Sci.202331912150610.1016/j.lfs.2023.12150636858311
    [Google Scholar]
  137. ZhangC. LiangD. Ercan-SencicekA.G. BulutA.S. CortesJ. ChengI.Q. HenegariuO. NishimuraS. WangX. PeksenA.B. TakeoY. CaglarC. LamT.T. KorogluM.N. NarayananA. Lopez-GiraldezF. MiyagishimaD.F. Mishra-GorurK. BarakT. YasunoK. Erson-OmayE.Z. YalcinkayaC. WangG. ManeS. KaymakcalanH. GuzelA. CaglayanA.O. TuysuzB. SestanN. GunelM. LouviA. BilguvarK. Dysregulation of mTOR signalling is a converging mechanism in lissencephaly.Nature2025638804917218110.1038/s41586‑024‑08341‑939743596
    [Google Scholar]
  138. MiaoY. HaA. de LauW. YukiK. SantosA.J.M. YouC. GeurtsM.H. PuschhofJ. Pleguezuelos-ManzanoC. PengW.C. SenliceR. PianiC. BuikemaJ.W. GbenedioO.M. VallonM. YuanJ. de HaanS. HemrikaW. RöschK. DangL.T. BakerD. OttM. DepeilleP. WuS.M. DrostJ. NusseR. RooseJ.P. PiehlerJ. BojS.F. JandaC.Y. CleversH. KuoC.J. GarciaK.C. Next-generation surrogate wnts support organoid growth and deconvolute frizzled pleiotropy in vivo.Cell Stem Cell2020275840851.e610.1016/j.stem.2020.07.02032818433
    [Google Scholar]
  139. NugrahaB. BuonoM.F. von BoehmerL. HoerstrupS.P. EmmertM.Y. Human cardiac organoids for disease modeling.Clin. Pharmacol. Ther.20191051798510.1002/cpt.128630415499
    [Google Scholar]
  140. WuX. UelandP.M. RoperJ. KohG.Y. LiangX. CrottJ.W. IlmazÖ.H. BronsonR. AsonJ.B. Combined supplementation with vitamin B-6 and curcumin is superior to either agent alone in suppressing obesity-promoted colorectal tumorigenesis in mice.J. Nutr.2021151123678368810.1093/jn/nxab32034590119
    [Google Scholar]
  141. FilippelloA. Di MauroS. ScamporrinoA. TorrisiS.A. LeggioG.M. Di PinoA. ScicaliR. Di MarcoM. MalaguarneraR. PurrelloF. PiroS. Molecular effects of chronic exposure to palmitate in intestinal organoids: A new model to study obesity and diabetes.Int. J. Mol. Sci.20222314775110.3390/ijms2314775135887100
    [Google Scholar]
  142. WölnerhanssenB.K. MoranA.W. BurdygaG. Meyer-GerspachA.C. PeterliR. ManzM. ThumshirnM. DalyK. BeglingerC. Shirazi-BeecheyS.P. Deregulation of transcription factors controlling intestinal epithelial cell differentiation; A predisposing factor for reduced enteroendocrine cell number in morbidly obese individuals.Sci. Rep.201771817410.1038/s41598‑017‑08487‑928811552
    [Google Scholar]
  143. MagliaroC. RinaldoA. AhluwaliaA. Allometric Scaling of physiologically-relevant organoids.Sci. Rep.2019911189010.1038/s41598‑019‑48347‑231417119
    [Google Scholar]
  144. BagleyJ.A. ReumannD. BianS. Lévi-StraussJ. KnoblichJ.A. Fused cerebral organoids model interactions between brain regions.Nat. Methods201714774375110.1038/nmeth.430428504681
    [Google Scholar]
  145. DuttaD. HeoI. CleversH. Disease modeling in stem cell-derived 3D organoid systems.Trends Mol. Med.201723539341010.1016/j.molmed.2017.02.00728341301
    [Google Scholar]
  146. LimS. TaskinenM.R. BorénJ. Crosstalk between nonalcoholic fatty liver disease and cardiometabolic syndrome.Obes. Rev.201920459961110.1111/obr.1282030589487
    [Google Scholar]
  147. WangX. ShenY. ShangM. LiuX. MunnL.L. Endothelial mechanobiology in atherosclerosis.Cardiovasc. Res.202311981656167510.1093/cvr/cvad07637163659
    [Google Scholar]
  148. LieM.R.K.L. van der GiessenJ. FuhlerG.M. de LimaA. PeppelenboschM.P. van der EntC. van der WoudeC.J. Low dose Naltrexone for induction of remission in inflammatory bowel disease patients.J. Transl. Med.20181615510.1186/s12967‑018‑1427‑529523156
    [Google Scholar]
  149. LiuJ. MacNaughtanJ. KerbertA.J.C. PortlockT. Martínez GonzalezJ. JinY. ClasenF. HabtesionA. JiH. JinQ. PhillipsA. De ChiaraF. IngavleG. JimenezC. ZaccheriniG. HusiK. Rodriguez GandiaM.A. CorderoP. SoedaJ. McConaghyL. ObenJ. ChurchK. LiJ.V. WuH. JalanA. GinesP. SolàE. EatonS. MorganC. KowalskiM. GreenD. GanderA. EdwardsL.A. CoxI.J. Cortez-PintoH. AveryT. WiestR. DurandF. CaraceniP. ElosuaR. VilaJ. PavesiM. ArroyoV. DaviesN. MookerjeeR.P. VargasV. SandemanS. MehtaG. ShoaieS. MarchesiJ. AlbillosA. AndreolaF. JalanR. Clinical, experimental and pathophysiological effects of Yaq-001: A non-absorbable, gut-restricted adsorbent in models and patients with cirrhosis.Gut20247371183119810.1136/gutjnl‑2023‑33069938621924
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X357011250406044043
Loading
/content/journals/cscr/10.2174/011574888X357011250406044043
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test