Skip to content
2000
image of Organoids for Obesity-related Diseases: Disease Models and Drug Screening

Abstract

Background

Organoids are three-dimensional structures that faithfully mimic the intricate internal environment of the human body. Compared to conventional models, they demonstrated superior performance. Recently, they have emerged as valuable platforms for modeling obesity-related diseases and advancing therapeutic strategies.

Objective

This review not only aimed to simply discuss the limitations of 2D cellular and animal models for obesity-related diseases but also highlighted the importance of developing organoids to better understand the relationship between obesity, lipid metabolism, glucose homeostasis, and chronic inflammation. It also identifies the challenges and potential directions for organoid applications in these diseases.

Methods

We searched for keywords related to organoids, obesity, lipid metabolism, glucose homeostasis, chronic inflammation, disease models, and drug screening in scientific research databases.

Results

Organoids have emerged as promising tools for investigating the pathophysiology of diseases and developing therapeutic interventions. They have effectively bridged the gap in research on obesity-related diseases between conventional experimental models and the human body. They could offer more efficient and physiologically relevant experimental models while also improving the treatment efficacy for individuals with obesity-related conditions.

Conclusion

Organoids are beneficial for investigating obesity-related diseases. However, it is imperative to implement standardised culture procedures to improve reproducibility and broaden their application. Combining medicine and science to create these processes and minimise variation can increase the reliability and consistency of organoid cultures and provide new opportunities for addressing obesity-related diseases.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X357011250406044043
2025-04-22
2025-09-15
Loading full text...

Full text loading...

References

  1. Organization W.H. Obesity and overweight http://www. who. int/news-room/fact-sheets/detail/obesity-and-overweight 2018
    [Google Scholar]
  2. Safaei M. Sundararajan E.A. Driss M. Boulila W. Shapi’i A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med. 2021 136 104754 104754 10.1016/j.compbiomed.2021.104754 34426171
    [Google Scholar]
  3. Singh S. Dulai P.S. Zarrinpar A. Ramamoorthy S. Sandborn W.J. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 2017 14 2 110 121 10.1038/nrgastro.2016.181 27899815
    [Google Scholar]
  4. Polyzos S.A. Kountouras J. Mantzoros C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism 2019 92 82 97 10.1016/j.metabol.2018.11.014 30502373
    [Google Scholar]
  5. Herrema H. Guan D. Choi J.W. Feng X. Salazar Hernandez M.A. Faruk F. Auen T. Boudett E. Tao R. Chun H. Ozcan U. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab. 2022 34 7 1004 1022.e8 10.1016/j.cmet.2022.06.007 35793654
    [Google Scholar]
  6. Govaere O. Petersen S.K. Martinez-Lopez N. Wouters J. Van Haele M. Mancina R.M. Jamialahmadi O. Bilkei-Gorzo O. Lassen P.B. Darlay R. Peltier J. Palmer J.M. Younes R. Tiniakos D. Aithal G.P. Allison M. Vacca M. Göransson M. Berlinguer-Palmini R. Clark J.E. Drinnan M.J. Yki-Järvinen H. Dufour J.F. Ekstedt M. Francque S. Petta S. Bugianesi E. Schattenberg J.M. Day C.P. Cordell H.J. Topal B. Clément K. Romeo S. Ratziu V. Roskams T. Daly A.K. Anstee Q.M. Trost M. Härtlova A. Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease. J. Hepatol. 2022 76 5 1001 1012 10.1016/j.jhep.2021.12.012 34942286
    [Google Scholar]
  7. Pamuk F. Kantarci A. Inflammation as a link between periodontal disease and obesity. Periodontol. 2000 2022 90 1 186 196 10.1111/prd.12457 35916870
    [Google Scholar]
  8. O’Connell L. Winter D.C. Aherne C.M. The Role of Organoids as a Novel Platform for Modeling of Inflammatory Bowel Disease. Front Pediatr. 2021 9 624045 10.3389/fped.2021.624045 33681101
    [Google Scholar]
  9. McCarthy M. Brown T. Alarcon A. Williams C. Wu X. Abbott R.D. Gimble J. Frazier T. Fat-On-A-Chip Models for Research and Discovery in Obesity and Its Metabolic Comorbidities. Tissue Eng. Part B Rev. 2020 26 6 586 595 10.1089/ten.teb.2019.0261 32216545
    [Google Scholar]
  10. Zhao Y. Qu H. Wang Y. Xiao W. Zhang Y. Shi D. Small rodent models of atherosclerosis. Biomed. Pharmacother. 2020 129 110426 110426 10.1016/j.biopha.2020.110426 32574973
    [Google Scholar]
  11. Hoang P. Ma Z. Biomaterial-guided stem cell organoid engineering for modeling development and diseases. Acta Biomater. 2021 132 23 36 10.1016/j.actbio.2021.01.026 33486104
    [Google Scholar]
  12. Kondo J. Inoue M. Application of Cancer Organoid Model for Drug Screening and Personalized Therapy. Cells 2019 8 5 470 10.3390/cells8050470 31108870
    [Google Scholar]
  13. Kapałczyńska M. Kolenda T. Przybyła W. Zajączkowska M. Teresiak A. Filas V. Ibbs M. Bliźniak R. Łuczewski Ł. Lamperska K. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch. Med. Sci. 2016 14 4 910 919 10.5114/aoms.2016.63743 30002710
    [Google Scholar]
  14. Von Der Mark K. Gauss V. Von Der Mark H. Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 1977 267 5611 531 532 10.1038/267531a0 559947
    [Google Scholar]
  15. Kumar S. Duan Q. Wu R. Harris E.N. Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv. Drug Deliv. Rev. 2021 176 113869 10.1016/j.addr.2021.113869 34280515
    [Google Scholar]
  16. Imamura T. Vollenweider P. Egawa K. Clodi M. Ishibashi K. Nakashima N. Ugi S. Adams J.W. Brown J.H. Olefsky J.M. G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3T3-L1 adipocytes. Mol. Cell. Biol. 1999 19 10 6765 6774 10.1128/MCB.19.10.6765 10490615
    [Google Scholar]
  17. Kimura T. Pydi S.P. Wang L. Haspula D. Cui Y. Lu H. König G.M. Kostenis E. Steinberg G.R. Gavrilova O. Wess J. Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice. Nat. Commun. 2022 13 1 1652 10.1038/s41467‑022‑29231‑6 35351896
    [Google Scholar]
  18. Kietzmann T. Liver Zonation in Health and Disease: Hypoxia and Hypoxia-Inducible Transcription Factors as Concert Masters. Int. J. Mol. Sci. 2019 20 9 2347 https://doi.org/https://doi.org/10.3390/ijms20092347 10.3390/ijms20092347 31083568
    [Google Scholar]
  19. García-Revilla J. Herrera A.J. de Pablos R.M. Venero J.L. Inflammatory Animal Models of Parkinson’s Disease. J. Parkinsons Dis. 2022 12 s1 S165 S182 10.3233/JPD‑213138 35662128
    [Google Scholar]
  20. Atanes P. Ruz-Maldonado I. Hawkes R. Liu B. Zhao M. Huang G.C. Al-Amily I.M. Salehi A. Amisten S. Persaud S.J. Defining G protein- coupled receptor peptide ligand expressomes and signalomes in human and mouse islets. Cell. Mol. Life Sci. 2018 75 16 3039 3050 https://doi.org/https://doi.org/10.1007/s00018-018-2778-z 10.1007/s00018‑018‑2778‑z 29455414
    [Google Scholar]
  21. Jiang Y. Peng J. Song J. He J. Jiang M. Wang J. Ma L. Wang Y. Lin M. Wu H. Zhang Z. Gao D. Zhao Y. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2. Nat. Metab. 2021 3 11 1569 1584 10.1038/s42255‑021‑00488‑3 34750570
    [Google Scholar]
  22. Schaid M.D. Green C.L. Peter D.C. Gallagher S.J. Guthery E. Carbajal K.A. Harrington J.M. Kelly G.M. Reuter A. Wehner M.L. Brill A.L. Neuman J.C. Lamming D.W. Kimple M.E. Agonist-independent Gαz activity negatively regulates beta-cell compensation in a diet-induced obesity model of type 2 diabetes. J. Biol. Chem. 2021 296 100056 10.1074/jbc.RA120.015585 33172888
    [Google Scholar]
  23. Guan F. Tabrizian T. Novaj A. Nakanishi M. Rosenberg D.W. Huffman D.M. Dietary Walnuts Protect Against Obesity-Driven Intestinal Stem Cell Decline and Tumorigenesis. Front. Nutr. 2018 5 37 10.3389/fnut.2018.00037 29904634
    [Google Scholar]
  24. Hanif W. Alex L. Su Y. Shinde A.V. Russo I. Li N. Frangogiannis N.G. Left atrial remodeling, hypertrophy, and fibrosis in mouse models of heart failure. Cardiovasc. Pathol. 2017 30 27 37 https://doi.org/https://doi.org/10.1016/j.carpath.2017.06.003 10.1016/j.carpath.2017.06.003 28759817
    [Google Scholar]
  25. Asgharpour A. Cazanave S.C. Pacana T. Seneshaw M. Vincent R. Banini B.A. Kumar D.P. Daita K. Min H.K. Mirshahi F. Bedossa P. Sun X. Hoshida Y. Koduru S.V. Contaifer D. Jr Warncke U.O. Wijesinghe D.S. Sanyal A.J. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 2016 65 3 579 588 10.1016/j.jhep.2016.05.005 27261415
    [Google Scholar]
  26. Halder S Parte S Kshirsagar P Muniyan S Nair HB Batra SK Seshacharyulu P The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim Biophys Acta Rev Cancer 2022 1877 4 188737 10.1016/j.bbcan.2022.188737 35680099
    [Google Scholar]
  27. Liu G. David B.T. Trawczynski M. Fessler R.G. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev. Rep. 2020 16 1 3 32 10.1007/s12015‑019‑09935‑x 31760627
    [Google Scholar]
  28. Ramli M.N.B. Lim Y.S. Koe C.T. Demircioglu D. Tng W. Gonzales K.A.U. Tan C.P. Szczerbinska I. Liang H. Soe E.L. Lu Z. Ariyachet C. Yu K.M. Koh S.H. Yaw L.P. Jumat N.H.B. Lim J.S.Y. Wright G. Shabbir A. Dan Y.Y. Ng H.H. Chan Y.S. Human Pluripotent Stem Cell-Derived Organoids as Models of Liver Disease. Gastroenterology 2020 159 4 1471 1486.e12 10.1053/j.gastro.2020.06.010 32553762
    [Google Scholar]
  29. Vallone V.F. Telugu N.S. Fischer I. Miller D. Schommer S. Diecke S. Stachelscheid H. Methods for Automated Single Cell Isolation and Sub‐Cloning of Human Pluripotent Stem Cells. Curr. Protoc. Stem Cell Biol. 2020 55 1 e123 10.1002/cpsc.123 32956572
    [Google Scholar]
  30. Ozawa H. Matsumoto T. Nakagawa M. Culturing human pluripotent stem cells for regenerative medicine. Expert Opin. Biol. Ther. 2023 23 6 479 489 10.1080/14712598.2023.2225701 37345510
    [Google Scholar]
  31. Gurusamy N. Alsayari A. Rajasingh S. Rajasingh J. Adult Stem Cells for Regenerative Therapy. Prog. Mol. Biol. Transl. Sci. 2018 160 1 22 10.1016/bs.pmbts.2018.07.009 30470288
    [Google Scholar]
  32. Münzker J. Haase N. Till A. Sucher R. Haange S.B. Nemetschke L. Gnad T. Jäger E. Chen J. Riede S.J. Chakaroun R. Massier L. Kovacs P. Ost M. Rolle-Kampczyk U. Jehmlich N. Weiner J. Heiker J.T. Klöting N. Seeger G. Morawski M. Keitel V. Pfeifer A. von Bergen M. Heeren J. Krügel U. Fenske W.K. Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity. Microbiome 2022 10 1 96 10.1186/s40168‑022‑01264‑5 35739571
    [Google Scholar]
  33. Dotti I. Mayorgas A. Salas A. Generation of human colon organoids from healthy and inflammatory bowel disease mucosa. PLoS One 2022 17 10 e0276195 10.1371/journal.pone.0276195 36301950
    [Google Scholar]
  34. Schutgens F. Clevers H. Human Organoids: Tools for Understanding Biology and Treating Diseases. Annu. Rev. Pathol. 2020 15 1 211 234 10.1146/annurev‑pathmechdis‑012419‑032611 31550983
    [Google Scholar]
  35. Jovic D. Yu Y. Wang D. Wang K. Li H. Xu F. Liu C. Liu J. Luo Y. A Brief Overview of Global Trends in MSC-Based Cell Therapy. Stem Cell Rev. Rep. 2022 18 5 1525 1545 10.1007/s12015‑022‑10369‑1 35344199
    [Google Scholar]
  36. Yuan X. Li L. Liu H. Luo J. Zhao Y. Pan C. Zhang X. Chen Y. Gou M. Strategies for improving adipose-derived stem cells for tissue regeneration. Burns Trauma 2022 10 tkac028 10.1093/burnst/tkac028 35992369
    [Google Scholar]
  37. Li C.H. Zhao J. Zhang H.Y. Wang B. Banking of perinatal mesenchymal stem/stromal cells for stem cell-based personalized medicine over lifetime: Matters arising. World J. Stem Cells 2023 15 4 105 119 https://doi.org/https://doi.org/10.4252/wjsc.v15.i4.105 10.4252/wjsc.v15.i4.105 37181005
    [Google Scholar]
  38. Zhu X. Zhang B. He Y. Bao J. Liver Organoids: Formation Strategies and Biomedical Applications. Tissue Eng. Regen. Med. 2021 18 4 573 585 10.1007/s13770‑021‑00357‑w 34132985
    [Google Scholar]
  39. Catoira M.C. Fusaro L. Di Francesco D. Ramella M. Boccafoschi F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019 30 10 115 10.1007/s10856‑019‑6318‑7 31599365
    [Google Scholar]
  40. Ma J. Huang C. Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. Tissue Eng. Part B Rev. 2020 26 6 498 518 10.1089/ten.teb.2020.0021 32272868
    [Google Scholar]
  41. Kaur S. Kaur I. Rawal P. Tripathi D.M. Vasudevan A. Non-matrigel scaffolds for organoid cultures. Cancer Lett. 2021 504 58 66 10.1016/j.canlet.2021.01.025 33582211
    [Google Scholar]
  42. Liu H. Wang H. Chen D. Gu C. Huang J. Mi K. Endoplasmic reticulum stress inhibits 3D Matrigel‐induced vasculogenic mimicry of breast cancer cells via TGF‐β1/Smad2/3 and β‐catenin signaling. FEBS Open Bio 2021 11 9 2607 2618 10.1002/2211‑5463.13259 34320274
    [Google Scholar]
  43. Vasile C. Pamfil D. Stoleru E. Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020 25 7 1539 10.3390/molecules25071539 32230990
    [Google Scholar]
  44. Ryu N.E. Lee S.H. Park H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells 2019 8 12 1620 10.3390/cells8121620 31842346
    [Google Scholar]
  45. Wei J. Xia T. Chen W. Ran P. Chen M. Li X. Glucose and lipid metabolism screening models of hepatocyte spheroids after culture with injectable fiber fragments. J. Tissue Eng. Regen. Med. 2020 14 6 774 788 10.1002/term.3042 32285997
    [Google Scholar]
  46. Lee S. Serpooshan V. Tong X. Venkatraman S. Lee M. Lee J. Chirikian O. Wu J.C. Wu S.M. Yang F. Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials 2017 131 111 120 10.1016/j.biomaterials.2017.03.039 28384492
    [Google Scholar]
  47. Raghavendra S.S. Gathani K.M. Scaffolds in regenerative endodontics: A review. Dent. Res. J. (Isfahan) 2016 13 5 379 386 10.4103/1735‑3327.192266 27857762
    [Google Scholar]
  48. Kozlowski M.T. Zook H.N. Chigumba D.N. Johnstone C.P. Caldera L.F. Shih H.P. Tirrell D.A. Ku H.T. A matrigel-free method for culture of pancreatic endocrine-like cells in defined protein-based hydrogels. Front. Bioeng. Biotechnol. 2023 11 1144209 10.3389/fbioe.2023.1144209 36970620
    [Google Scholar]
  49. Pieters V.M. Rjaibi S.T. Singh K. Li N.T. Khan S.T. Nunes S.S. Dal Cin A. Gilbert P.M. McGuigan A.P. A three-dimensional human adipocyte model of fatty acid-induced obesity. Biofabrication 2022 14 4 045009 10.1088/1758‑5090/ac84b1 35896099
    [Google Scholar]
  50. Dissanayaka W.L. Zhang C. Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration. J. Endod. 2020 46 9 S81 S89 10.1016/j.joen.2020.06.022 32950199
    [Google Scholar]
  51. Wang D. Guo Y. Zhu J. Liu F. Xue Y. Huang Y. Zhu B. Wu D. Pan H. Gong T. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater. 2022 10.1016/j.actbio.2022.06.036 35803504
    [Google Scholar]
  52. Ningsih S.S. Avissa R. Stujanna E.N. Listyaningsih E. Yashiro T. n SUKARYA W.S. Evaluation of morphology and viability of spheroid derived from Insulin-GLase cell line: A model system to understand Type 2 Diabetes Mellitus. J. Exp. Clin. Med. 2021 38 3 211 215 10.52142/omujecm.38.3.1
    [Google Scholar]
  53. Drochon A. Lesieur R. Durand M. Fluid dynamics characterisation of a rotating bioreactor for tissue engineering. Med. Eng. Phys. 2022 105 103831 10.1016/j.medengphy.2022.103831 35781390
    [Google Scholar]
  54. Frandsen H.S. Vej-Nielsen J.M. Smith L.E. Sun L. Mikkelsen K.L. Thulesen A.P. Hagensen C.E. Yang F. Rogowska-Wrzesinska A. Mapping Proteome and Lipidome Changes in Early-Onset Non-Alcoholic Fatty Liver Disease Using Hepatic 3D Spheroids. Cells 2022 11 20 3216 10.3390/cells11203216 36291085
    [Google Scholar]
  55. Schuster B. Junkin M. Kashaf S.S. Romero-Calvo I. Kirby K. Matthews J. Weber C.R. Rzhetsky A. White K.P. Tay S. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat. Commun. 2020 11 1 5271 10.1038/s41467‑020‑19058‑4 33077832
    [Google Scholar]
  56. Wang Y. Wang H. Deng P. Tao T. Liu H. Wu S. Chen W. Qin J. Modeling Human Nonalcoholic Fatty Liver Disease (NAFLD) with an Organoids-on-a-Chip System. ACS Biomater. Sci. Eng. 2020 6 10 5734 5743 10.1021/acsbiomaterials.0c00682 33320545
    [Google Scholar]
  57. Zbinden A. Urbanczyk M. Layland S.L. Becker L. Marzi J. Bosch M. Loskill P. Duffy G.P. Schenke-Layland K. Collagen and Endothelial Cell Coculture Improves β-Cell Functionality and Rescues Pancreatic Extracellular Matrix. Tissue Eng. Part A 2021 27 13-14 977 991 10.1089/ten.tea.2020.0250 33023407
    [Google Scholar]
  58. Jose S.S. De Zuani M. Tidu F. Hortová Kohoutková M. Pazzagli L. Forte G. Spaccapelo R. Zelante T. Frič J. Comparison of two human organoid models of lung and intestinal inflammation reveals Toll‐like receptor signalling activation and monocyte recruitment. Clin. Transl. Immunology 2020 9 5 e1131 10.1002/cti2.1131 32377340
    [Google Scholar]
  59. Ihara S. Hirata Y. Koike K. Abrogation of TGF‐beta Signaling in Dendritic Cells Leads to E‐cadherin‐mediated Adhesion between Dendritic Cells and Epithelium which Contributes to the Pathogenesis of Inflammatory Bowel Disease. FASEB J. 2018 32 S1 lb128 lb128 10.1096/fasebj.2018.32.1_supplement.lb128
    [Google Scholar]
  60. Biton M. Haber A.L. Rogel N. Burgin G. Beyaz S. Schnell A. Ashenberg O. Su C.W. Smillie C. Shekhar K. Chen Z. Wu C. Ordovas-Montanes J. Alvarez D. Herbst R.H. Zhang M. Tirosh I. Dionne D. Nguyen L.T. Xifaras M.E. Shalek A.K. von Andrian U.H. Graham D.B. Rozenblatt-Rosen O. Shi H.N. Kuchroo V. Yilmaz O.H. Regev A. Xavier R.J. T Helper Cell Cytokines Modulate Intestinal Stem Cell Renewal and Differentiation. Cell 2018 175 5 1307 1320.e22 10.1016/j.cell.2018.10.008 30392957
    [Google Scholar]
  61. Beaurivage C. Kanapeckaite A. Loomans C. Erdmann K.S. Stallen J. Janssen R.A.J. Development of a human primary gut-on-a-chip to model inflammatory processes. Sci. Rep. 2020 10 1 21475 10.1038/s41598‑020‑78359‑2 33293676
    [Google Scholar]
  62. Kakni P. Truckenmüller R. Habibović P. van Griensven M. Giselbrecht S. A Microwell-Based Intestinal Organoid-Macrophage Co-Culture System to Study Intestinal Inflammation. Int. J. Mol. Sci. 2022 23 23 15364 10.3390/ijms232315364 36499691
    [Google Scholar]
  63. Kakni P. Hueber R. Knoops K. López-Iglesias C. Truckenmüller R. Habibovic P. Giselbrecht S. Intestinal Organoid Culture in Polymer Film‐Based Microwell Arrays. Adv. Biosyst. 2020 4 10 2000126 10.1002/adbi.202000126 32734713
    [Google Scholar]
  64. Zhu B. Wang D. Pan H. Gong T. Ren Q. Wang Z. Guo Y. Three-in-one customized bioink for islet organoid: GelMA/ECM/PRP orchestrate pro-angiogenic and immunoregulatory function. Colloids Surf. B Biointerfaces 2023 221 113017 10.1016/j.colsurfb.2022.113017 36403416
    [Google Scholar]
  65. Xia Y. Chen H. Li J. Hu H. Qian Q. He R.X. Ding Z. Guo S.S. Acoustic Droplet-Assisted Superhydrophilic–Superhydrophobic Microarray Platform for High-Throughput Screening of Patient-Derived Tumor Spheroids. ACS Appl. Mater. Interfaces 2021 13 20 23489 23501 10.1021/acsami.1c06655 33983701
    [Google Scholar]
  66. Kumar S. Jach D. Macfarlane W. Crnogorac-Jurcevic T. A 3-Dimensional Coculture Model to Visualize and Monitor Interaction Between Pancreatic Cancer and Islet β Cells. Pancreas 2021 50 7 982 989 10.1097/MPA.0000000000001865 34629448
    [Google Scholar]
  67. Ro J. Kim J. Park J. Choi Y. Cho Y.K. ODSEI Chip: An Open 3D Microfluidic Platform for Studying Tumor Spheroid‐Endothelial Interactions. Adv. Sci. 2025 e2410659 2410659 10.1002/advs.202410659 39805002
    [Google Scholar]
  68. Libring S. Enríquez Á. Lee H. Solorio L. In vitro Magnetic Techniques for Investigating Cancer Progression. Cancers 2021 13 17 4440 https://doi.org/https://doi.org/10.3390/cancers13174440 10.3390/cancers13174440 34503250
    [Google Scholar]
  69. Xing C. Kemas A. Mickols E. Klein K. Artursson P. Lauschke V.M. The choice of ultra‐low attachment plates impacts primary human and primary canine hepatocyte spheroid formation, phenotypes, and function. Biotechnol. J. 2024 19 2 2300587 10.1002/biot.202300587 38403411
    [Google Scholar]
  70. Ströbel S. Kostadinova R. Fiaschetti-Egli K. Rupp J. Bieri M. Pawlowska A. Busler D. Hofstetter T. Sanchez K. Grepper S. Thoma E. A 3D primary human cell-based in vitro model of non-alcoholic steatohepatitis for efficacy testing of clinical drug candidates. Sci. Rep. 2021 11 1 22765 10.1038/s41598‑021‑01951‑7 34815444
    [Google Scholar]
  71. van Os E.A. Cools L. Eysackers N. Szafranska K. Smout A. Verhulst S. Reynaert H. McCourt P. Mannaerts I. van Grunsven L.A. Modelling fatty liver disease with mouse liver-derived multicellular spheroids. Biomaterials 2022 290 121817 10.1016/j.biomaterials.2022.121817 36208587
    [Google Scholar]
  72. Zhao W. Yao Y. Zhang T. Lu H. Zhang X. Zhao L. Chen X. Zhu J. Sui G. Zhao W. Primary exploration of host–microorganism interaction and enteritis treatment with an embedded membrane microfluidic chip of the human intestinal–vascular microsystem. Front. Bioeng. Biotechnol. 2022 10 1035647 10.3389/fbioe.2022.1035647 36561041
    [Google Scholar]
  73. Urbanczyk M. Zbinden A. Layland S.L. Duffy G. Schenke-Layland K. Controlled Heterotypic Pseudo-Islet Assembly of Human β-Cells and Human Umbilical Vein Endothelial Cells Using Magnetic Levitation. Tissue Eng. Part A 2020 26 7-8 387 399 10.1089/ten.tea.2019.0158 31680653
    [Google Scholar]
  74. Vakili-Ghartavol R. Momtazi-Borojeni A.A. Vakili-Ghartavol Z. Aiyelabegan H.T. Jaafari M.R. Rezayat S.M. Arbabi Bidgoli S. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif. Cells Nanomed. Biotechnol. 2020 48 1 443 451 10.1080/21691401.2019.1709855 32024389
    [Google Scholar]
  75. Taylor J. Sellin J. Kuerschner L. Krähl L. Majlesain Y. Förster I. Thiele C. Weighardt H. Weber E. Generation of immune cell containing adipose organoids for in vitro analysis of immune metabolism. Sci. Rep. 2020 10 1 21104 10.1038/s41598‑020‑78015‑9 33273595
    [Google Scholar]
  76. Muller S. Ader I. Creff J. Leménager H. Achard P. Casteilla L. Sensebé L. Carrière A. Deschaseaux F. Human adipose stromal-vascular fraction self-organizes to form vascularized adipose tissue in 3D cultures. Sci. Rep. 2019 9 1 7250 10.1038/s41598‑019‑43624‑6 31076601
    [Google Scholar]
  77. Soto-Gutierrez A. Gough A. Vernetti L.A. Taylor D.L. Monga S.P. Pre-clinical and clinical investigations of metabolic zonation in liver diseases: The potential of microphysiology systems. Exp. Biol. Med. (Maywood) 2017 242 16 1605 1616 https://doi.org/https://doi.org/10.1177/1535370217707731 10.1177/1535370217707731 28467181
    [Google Scholar]
  78. Brunner K.T. Henneberg C.J. Wilechansky R.M. Long M.T. Nonalcoholic Fatty Liver Disease and Obesity Treatment. Curr. Obes. Rep. 2019 8 3 220 228 10.1007/s13679‑019‑00345‑1 30945129
    [Google Scholar]
  79. Gwag T. Ma E. Zhou C. Wang S. Anti‐CD47 antibody treatment attenuates liver inflammation and fibrosis in experimental non‐alcoholic steatohepatitis models. Liver Int. 2022 42 4 829 841 10.1111/liv.15182 35129307
    [Google Scholar]
  80. Liu Y. Xie C. Zhai Z. Deng Z. De Jonge H.R. Wu X. Ruan Z. Uridine attenuates obesity, ameliorates hepatic lipid accumulation and modifies the gut microbiota composition in mice fed with a high-fat diet. Food Funct. 2021 12 4 1829 1840 10.1039/D0FO02533J 33527946
    [Google Scholar]
  81. Deng Y. Wang Z.V. Gordillo R. An Y. Zhang C. Liang Q. Yoshino J. Cautivo K.M. De Brabander J. Elmquist J.K. Horton J.D. Hill J.A. Klein S. Scherer P.E. An adipo-biliary-uridine axis that regulates energy homeostasis. Science 2017 355 6330 eaaf5375 10.1126/science.aaf5375 28302796
    [Google Scholar]
  82. Vega-Badillo J. Gutiérrez-Vidal R. Hernández-Pérez H.A. Villamil-Ramírez H. León-Mimila P. Sánchez-Muñoz F. Morán-Ramos S. Larrieta-Carrasco E. Fernández-Silva I. Méndez-Sánchez N. Tovar A.R. Campos-Pérez F. Villarreal-Molina T. Hernández-Pando R. Aguilar-Salinas C.A. Canizales-Quinteros S. Hepatic miR‐33a/miR‐144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects. Liver Int. 2016 36 9 1383 1391 10.1111/liv.13109 26945479
    [Google Scholar]
  83. Azzimato V Chen P Barreby E Morgantini C Levi L Vankova A Jager J Sulen A Diotallevi M Shen JX Hepatic miR-144 drives fumarase activity preventing NRF2 activation during obesity. Gastroenterology 2021 161 6 1982 1997 10.1053/j.gastro.2021.08.030 34425095
    [Google Scholar]
  84. Jiao J. Sanchez J.I. Saldarriaga O.A. Solis L.M. Tweardy D.J. Maru D.M. Stevenson H.L. Beretta L. Spatial molecular and cellular determinants of STAT3 activation in liver fibrosis progression in non-alcoholic fatty liver disease. JHEP Reports 2023 5 2 100628 10.1016/j.jhepr.2022.100628 36687470
    [Google Scholar]
  85. Shi H. Wang X. Li F. Gerlach B.D. Yurdagul A. Jr Moore M.P. Zeldin S. Zhang H. Cai B. Zheng Z. Valenti L. Tabas I. CD47-SIRPα axis blockade in NASH promotes necroptotic hepatocyte clearance by liver macrophages and decreases hepatic fibrosis. Sci. Transl. Med. 2022 14 672 eabp8309 10.1126/scitranslmed.abp8309 36417485
    [Google Scholar]
  86. Teng Y. Zhao Z. Tasnim F. Huang X. Yu H. A scalable and sensitive steatosis chip with long-term perfusion of in situ differentiated HepaRG organoids. Biomaterials 2021 275 120904 10.1016/j.biomaterials.2021.120904 34119888
    [Google Scholar]
  87. Hendriks D. Brouwers J.F. Hamer K. Geurts M.H. Luciana L. Massalini S. López-Iglesias C. Peters P.J. Rodríguez-Colman M.J. Chuva de Sousa Lopes S. Artegiani B. Clevers H. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nat. Biotechnol. 2023 41 11 1567 1581 10.1038/s41587‑023‑01680‑4 36823355
    [Google Scholar]
  88. Cherubini A. Ostadreza M. Jamialahmadi O. Pelusi S. Rrapaj E. Casirati E. Passignani G. Norouziesfahani M. Sinopoli E. Baselli G. Meda C. Dongiovanni P. Dondossola D. Youngson N. Tourna A. Chokshi S. Bugianesi E. Ronzoni L. Bianco C. Cerami L. Torcianti V. Periti G. Margarita S. Carpani R. Malvestiti F. Marini I. Tomasi M. Lombardi A. Rondena J. Maggioni M. D’Ambrosio R. Vaira V. Fracanzani A.L. Rosso C. Pennisi G. Petta S. Liguori A. Miele L. Tavaglione F. Vespasiani-Gentilucci U. Dallio M. Federico A. Soardo G. Pihlajamäki J. Männistö V. Della Torre S. Prati D. Romeo S. Valenti L. Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women. Nat. Med. 2023 29 10 2643 2655 10.1038/s41591‑023‑02553‑8 37749332
    [Google Scholar]
  89. Horwich T.B. Fonarow G.C. Clark A.L. Obesity and the obesity paradox in heart failure. Prog. Cardiovasc. Dis. 2018 61 2 151 156 10.1016/j.pcad.2018.05.005 29852198
    [Google Scholar]
  90. Vyas V. Lambiase P. Obesity and atrial fibrillation: Epidemiology, pathophysiology and novel therapeutic opportunities. Arrhythm. Electrophysiol. Rev. 2019 8 1 28 36 10.15420/aer.2018.76.2 30918664
    [Google Scholar]
  91. Tutor A.W. Lavie C.J. Kachur S. Milani R.V. Ventura H.O. Updates on obesity and the obesity paradox in cardiovascular diseases. Prog. Cardiovasc. Dis. 2023 78 2 10 10.1016/j.pcad.2022.11.013 36481212
    [Google Scholar]
  92. Bonaca M.P. Hamburg N.M. Creager M.A. Contemporary medical management of peripheral artery disease. Circ. Res. 2021 128 12 1868 1884 10.1161/CIRCRESAHA.121.318258 34110910
    [Google Scholar]
  93. Negroiu C.E. Tudorascu I. Moise C.G. Vinturis E. Bezna C.M. Danoiu R. Gaman M.E. Danoiu S. Obesity and myocardial infarction-the place of obesity among cardiovascular risk factors-retrospective study. Curr. Health Sci. J. 2023 49 3 388 396 38314213
    [Google Scholar]
  94. Shiti A. Arbil G. Shaheen N. Huber I. Setter N. Gepstein L. Utilizing human induced pluripotent stem cells to study atrial arrhythmias in the short QT syndrome. J. Mol. Cell. Cardiol. 2023 183 42 53 10.1016/j.yjmcc.2023.08.003 37579942
    [Google Scholar]
  95. Svystonyuk D.A. Mewhort H.E.M. Hassanabad A.F. Heydari B. Mikami Y. Turnbull J.D. Teng G. Belke D.D. Wagner K.T. Tarraf S.A. DiMartino E.S. White J.A. Flewitt J.A. Cheung M. Guzzardi D.G. Kang S. Fedak P.W.M. Acellular bioscaffolds redirect cardiac fibroblasts and promote functional tissue repair in rodents and humans with myocardial injury. Sci. Rep. 2020 10 1 9459 10.1038/s41598‑020‑66327‑9 32528051
    [Google Scholar]
  96. Riedel S. Pheiffer C. Johnson R. Louw J. Muller C.J.F. Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development. Front. Endocrinol. 2022 12 833544 10.3389/fendo.2021.833544 35145486
    [Google Scholar]
  97. Gribble F.M. Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 2019 15 4 226 237 10.1038/s41574‑019‑0168‑8 30760847
    [Google Scholar]
  98. Goldspink D.A. Lu V.B. Miedzybrodzka E.L. Smith C.A. Foreman R.E. Billing L.J. Kay R.G. Reimann F. Gribble F.M. Labeling and characterization of human GLP-1-secreting L-cells in primary ileal organoid culture. Cell Rep. 2020 31 13 107833 10.1016/j.celrep.2020.107833 32610134
    [Google Scholar]
  99. Kwon I.G. Kang C.W. Park J.P. Oh J.H. Wang E.K. Kim T.Y. Sung J.S. Park N. Lee Y.J. Sung H.J. Lee E.J. Hyung W.J. Shin S.J. Noh S.H. Yun M. Kang W.J. Cho A. Ku C.R. Serum glucose excretion after Roux-en-Y gastric bypass: A potential target for diabetes treatment. Gut 2021 70 10 1847 1856 10.1136/gutjnl‑2020‑321402 33208408
    [Google Scholar]
  100. Yang M. Darwish T. Larraufie P. Rimmington D. Cimino I. Goldspink D.A. Jenkins B. Koulman A. Brighton C.A. Ma M. Lam B.Y.H. Coll A.P. O’Rahilly S. Reimann F. Gribble F.M. Inhibition of mitochondrial function by metformin increases glucose uptake, glycolysis and GDF-15 release from intestinal cells. Sci. Rep. 2021 11 1 2529 10.1038/s41598‑021‑81349‑7 33510216
    [Google Scholar]
  101. Brooks L. Viardot A. Tsakmaki A. Stolarczyk E. Howard J.K. Cani P.D. Everard A. Sleeth M.L. Psichas A. Anastasovskaj J. Bell J.D. Bell-Anderson K. Mackay C.R. Ghatei M.A. Bloom S.R. Frost G. Bewick G.A. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol. Metab. 2017 6 1 48 60 10.1016/j.molmet.2016.10.011 28123937
    [Google Scholar]
  102. Pino J.L. Mujica V. Arredondo M. Effect of dietary supplementation with oat β-glucan for 3 months in subjects with type 2 diabetes: A randomized, double-blind, controlled clinical trial. J. Funct. Foods 2021 77 104311 10.1016/j.jff.2020.104311
    [Google Scholar]
  103. Petersen N. Reimann F. van Es J.H. van den Berg B.M. Kroone C. Pais R. Jansen E. Clevers H. Gribble F.M. de Koning E.J.P. Targeting development of incretin-producing cells increases insulin secretion. J. Clin. Invest. 2015 125 1 379 385 10.1172/JCI75838 25500886
    [Google Scholar]
  104. Larsen J.R. Vedtofte L. Jakobsen M.S.L. Jespersen H.R. Jakobsen M.I. Svensson C.K. Koyuncu K. Schjerning O. Oturai P.S. Kjaer A. Nielsen J. Holst J.J. Ekstrøm C.T. Correll C.U. Vilsbøll T. Fink-Jensen A. Effect of liraglutide treatment on prediabetes and overweight or obesity in Clozapine- or olanzapine-treated patients with Schizophrenia spectrum disorder. JAMA Psychiatry 2017 74 7 719 728 10.1001/jamapsychiatry.2017.1220 28601891
    [Google Scholar]
  105. Yan S. Conley J.M. Reilly A.M. Stull N.D. Abhyankar S.D. Ericsson A.C. Kono T. Molosh A.I. Kubal C.A. Evans-Molina C. Ren H. Intestinal Gpr17 deficiency improves glucose metabolism by promoting GLP-1 secretion. Cell Rep. 2022 38 1 110179 10.1016/j.celrep.2021.110179 34986353
    [Google Scholar]
  106. Aizenshtadt A. Wang C. Abadpour S. Menezes P.D. Wilhelmsen I. Dalmao-Fernandez A. Stokowiec J. Golovin A. Johnsen M. Combriat T.M.D. Røberg-Larsen H. Gadegaard N. Scholz H. Busek M. Krauss S.J.K. Pump‐less, recirculating organ‐on‐chip (rooc) platform to model the metabolic crosstalk between islets and liver. Adv. Healthc. Mater. 2024 13 13 2303785 10.1002/adhm.202303785 38221504
    [Google Scholar]
  107. Ahmed B. Sultana R. Greene M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021 137 111315 10.1016/j.biopha.2021.111315 33561645
    [Google Scholar]
  108. Hoefner C. Muhr C. Horder H. Wiesner M. Wittmann K. Lukaszyk D. Radeloff K. Winnefeld M. Becker M. Blunk T. Bauer-Kreisel P. Human adipose-derived mesenchymal stromal/stem cell spheroids possess high adipogenic capacity and acquire an adipose tissue-like extracellular matrix pattern. Tissue Eng. Part A 2020 26 15-16 915 926 10.1089/ten.tea.2019.0206 32070231
    [Google Scholar]
  109. Shen J.X. Couchet M. Dufau J. de Castro Barbosa T. Ulbrich M.H. Helmstädter M. Kemas A.M. Zandi Shafagh R. Marques M.A. Hansen J.B. Mejhert N. Langin D. Rydén M. Lauschke V.M. 3D adipose tissue culture links the organotypic microenvironment to improved adipogenesis. Adv. Sci. 2021 8 16 2100106 10.1002/advs.202100106 34165908
    [Google Scholar]
  110. Corvera S. Cellular heterogeneity in adipose tissues. Annu. Rev. Physiol. 2021 83 1 257 278 10.1146/annurev‑physiol‑031620‑095446 33566675
    [Google Scholar]
  111. Quan Y. Li J. Cai J. Liao Y. Zhang Y. Lu F. Transplantation of beige adipose organoids fabricated using adipose acellular matrix hydrogel improves metabolic dysfunction in high‐fat diet‐induced obesity and type 2 diabetes mice. J. Cell. Physiol. 2024 239 4 e31191 10.1002/jcp.31191 38219044
    [Google Scholar]
  112. Filardi T. Catanzaro G. Grieco G.E. Splendiani E. Trocchianesi S. Santangelo C. Brunelli R. Guarino E. Sebastiani G. Dotta F. Morano S. Ferretti E. Identification and validation of miR-222-3p and miR-409-3p as plasma biomarkers in gestational diabetes mellitus sharing validated target genes involved in metabolic homeostasis. Int. J. Mol. Sci. 2022 23 8 4276 10.3390/ijms23084276 35457094
    [Google Scholar]
  113. Becker-Greene D. Li H. Perez-Cremades D. Wu W. Bestepe F. Ozdemir D. Niosi C.E. Aydogan C. Orgill D.P. Feinberg M.W. Icli B. MiR-409-3p targets a MAP4K3-ZEB1-PLGF signaling axis and controls brown adipose tissue angiogenesis and insulin resistance. Cell. Mol. Life Sci. 2021 78 23 7663 7679 10.1007/s00018‑021‑03960‑1 34698882
    [Google Scholar]
  114. Guan Q. Wang Z. Cao J. Dong Y. Chen Y. Mechanisms of melatonin in obesity: A review. Int. J. Mol. Sci. 2021 23 1 218 10.3390/ijms23010218 35008644
    [Google Scholar]
  115. Lac M. Tavernier G. Moro C. Does housing temperature influence glucose regulation and muscle-fat crosstalk in mice? Biochimie 2023 210 35 39 10.1016/j.biochi.2023.01.019 36758717
    [Google Scholar]
  116. Koenen M. Hill M.A. Cohen P. Sowers J.R. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 2021 128 7 951 968 10.1161/CIRCRESAHA.121.318093 33793327
    [Google Scholar]
  117. Chen N. Abudupataer M. Feng S. Zhu S. Ma W. Li J. Lai H. Zhu K. Wang C. Engineering a human pluripotent stem cell-based in vitro microphysiological system for studying the metformin response in aortic smooth muscle cells. Front. Bioeng. Biotechnol. 2021 9 627877 10.3389/fbioe.2021.627877 33816448
    [Google Scholar]
  118. Uribe-Querol E. Rosales C. Neutrophils actively contribute to obesity-associated inflammation and pathological complications. Cells 2022 11 12 1883 10.3390/cells11121883 35741012
    [Google Scholar]
  119. Bilski J. Mazur-Bialy A. Wojcik D. Surmiak M. Magierowski M. Sliwowski Z. Pajdo R. Kwiecien S. Danielak A. Ptak-Belowska A. Brzozowski T. Role of obesity, mesenteric adipose tissue, and adipokines in inflammatory bowel diseases. Biomolecules 2019 9 12 780 10.3390/biom9120780 31779136
    [Google Scholar]
  120. Beg A.A. Sha W.C. Bronson R.T. Baltimore D. Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev. 1995 9 22 2736 2746 10.1101/gad.9.22.2736 7590249
    [Google Scholar]
  121. Mikuda N. Schmidt-Ullrich R. Kärgel E. Golusda L. Wolf J. Höpken U.E. Scheidereit C. Kühl A.A. Kolesnichenko M. Deficiency in IκBα in the intestinal epithelium leads to spontaneous inflammation and mediates apoptosis in the gut. J. Pathol. 2020 251 2 160 174 10.1002/path.5437 32222043
    [Google Scholar]
  122. Yoo J.H. Donowitz M. Intestinal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases. World J. Gastroenterol. 2019 25 30 4125 4147 10.3748/wjg.v25.i30.4125 31435168
    [Google Scholar]
  123. Takahashi Y. Sato S. Kurashima Y. Lai C.Y. Otsu M. Hayashi M. Yamaguchi T. Kiyono H. Reciprocal inflammatory signaling between intestinal epithelial cells and adipocytes in the absence of immune cells. EBioMedicine 2017 23 34 45 10.1016/j.ebiom.2017.07.027 28789943
    [Google Scholar]
  124. Alvarenga L. Salarolli R. Cardozo L.F.M.F. Santos R.S. de Brito J.S. Kemp J.A. Reis D. de Paiva B.R. Stenvinkel P. Lindholm B. Fouque D. Mafra D. Impact of curcumin supplementation on expression of inflammatory transcription factors in hemodialysis patients: A pilot randomized, double-blind, controlled study. Clin. Nutr. 2020 39 12 3594 3600 10.1016/j.clnu.2020.03.007 32204978
    [Google Scholar]
  125. Eslick S. Thompson C. Berthon B. Wood L. Short-chain fatty acids as anti-inflammatory agents in overweight and obesity: A systematic review and meta-analysis. Nutr. Rev. 2022 80 4 838 856 10.1093/nutrit/nuab059 34472619
    [Google Scholar]
  126. Bridges K. Diaz F. Wang Z. Ahmed I. Sullivan D. Umar S. Buckles D. Greiner K. Hester C. Relating stool microbial metabolite levels, inflammatory markers and dietary behaviors to screening colonoscopy findings in a racially/ethnically diverse patient population. Genes 2018 9 3 119 10.3390/genes9030119 29495356
    [Google Scholar]
  127. Facchin S. Vitulo N. Calgaro M. Buda A. Romualdi C. Pohl D. Perini B. Lorenzon G. Marinelli C. D’Incà R. Sturniolo G.C. Savarino E.V. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease. Neurogastroenterol. Motil. 2020 32 10 e13914 10.1111/nmo.13914 32476236
    [Google Scholar]
  128. Fei Y. Wang Y. Pang Y. Wang W. Zhu D. Xie M. Lan S. Wang Z. Xylooligosaccharide modulates gut microbiota and alleviates colonic inflammation caused by high fat diet induced obesity. Front. Physiol. 2020 10 1601 10.3389/fphys.2019.01601 32038285
    [Google Scholar]
  129. Antonioli L. Caputi V. Fornai M. Pellegrini C. Gentile D. Giron M.C. Orso G. Bernardini N. Segnani C. Ippolito C. Csóka B. Haskó G. Németh Z.H. Scarpignato C. Blandizzi C. Colucci R. Interplay between colonic inflammation and tachykininergic pathways in the onset of colonic dysmotility in a mouse model of diet-induced obesity. Int. J. Obes. 2019 43 2 331 343 10.1038/s41366‑018‑0166‑2 30082748
    [Google Scholar]
  130. Modabbernia A. Velthorst E. Reichenberg A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism 2017 8 1 13 10.1186/s13229‑017‑0121‑4 28331572
    [Google Scholar]
  131. Zhang W. Ma L. Yang M. Shao Q. Xu J. Lu Z. Zhao Z. Chen R. Chai Y. Chen J.F. Cerebral organoid and mouse models reveal a RAB39b–PI3K–mTOR pathway-dependent dysregulation of cortical development leading to macrocephaly/autism phenotypes. Genes Dev. 2020 34 7-8 580 597 10.1101/gad.332494.119 32115408
    [Google Scholar]
  132. Ilieva M. Aldana B.I. Vinten K.T. Hohmann S. Woofenden T.W. Lukjanska R. Waagepetersen H.S. Michel T.M. Proteomic phenotype of cerebral organoids derived from autism spectrum disorder patients reveal disrupted energy metabolism, cellular components, and biological processes. Mol. Psychiatry 2022 27 9 3749 3759 10.1038/s41380‑022‑01627‑2 35618886
    [Google Scholar]
  133. Fan P. Wang Y. Lu K. Hong Y. Xu M. Han X. Liu Y. Modeling maternal cholesterol exposure reveals a reduction of neural progenitor proliferation using human cerebral organoids. Life Medicine 2023 2 2 lnac034 10.1093/lifemedi/lnac034 39872117
    [Google Scholar]
  134. Mulders R.J. de Git K.C.G. Schéle E. Dickson S.L. Sanz Y. Adan R.A.H. Microbiota in obesity: Interactions with enteroendocrine, immune and central nervous systems. Obes. Rev. 2018 19 4 435 451 10.1111/obr.12661 29363272
    [Google Scholar]
  135. Shi J. Teng Y. Li D. He J. Midgley A.C. Guo X. Wang X. Yang X. Wang S. Feng Y. Lv Q. Hou S. Biomimetic tri-layered small-diameter vascular grafts with decellularized extracellular matrix promoting vascular regeneration and inhibiting thrombosis with the salidroside. Mater. Today Bio 2023 21 100709 10.1016/j.mtbio.2023.100709 37455822
    [Google Scholar]
  136. Ghorbaninejad M. Asadzadeh-Aghdaei H. Baharvand H. Meyfour A. Intestinal organoids: A versatile platform for modeling gastrointestinal diseases and monitoring epigenetic alterations. Life Sci. 2023 319 121506 10.1016/j.lfs.2023.121506 36858311
    [Google Scholar]
  137. Zhang C. Liang D. Ercan-Sencicek A.G. Bulut A.S. Cortes J. Cheng I.Q. Henegariu O. Nishimura S. Wang X. Peksen A.B. Takeo Y. Caglar C. Lam T.T. Koroglu M.N. Narayanan A. Lopez-Giraldez F. Miyagishima D.F. Mishra-Gorur K. Barak T. Yasuno K. Erson-Omay E.Z. Yalcinkaya C. Wang G. Mane S. Kaymakcalan H. Guzel A. Caglayan A.O. Tuysuz B. Sestan N. Gunel M. Louvi A. Bilguvar K. Dysregulation of mTOR signalling is a converging mechanism in lissencephaly. Nature 2025 638 8049 172 181 10.1038/s41586‑024‑08341‑9 39743596
    [Google Scholar]
  138. Miao Y. Ha A. de Lau W. Yuki K. Santos A.J.M. You C. Geurts M.H. Puschhof J. Pleguezuelos-Manzano C. Peng W.C. Senlice R. Piani C. Buikema J.W. Gbenedio O.M. Vallon M. Yuan J. de Haan S. Hemrika W. Rösch K. Dang L.T. Baker D. Ott M. Depeille P. Wu S.M. Drost J. Nusse R. Roose J.P. Piehler J. Boj S.F. Janda C.Y. Clevers H. Kuo C.J. Garcia K.C. Next-generation surrogate wnts support organoid growth and deconvolute frizzled pleiotropy in vivo. Cell Stem Cell 2020 27 5 840 851.e6 10.1016/j.stem.2020.07.020 32818433
    [Google Scholar]
  139. Nugraha B. Buono M.F. von Boehmer L. Hoerstrup S.P. Emmert M.Y. Human cardiac organoids for disease modeling. Clin. Pharmacol. Ther. 2019 105 1 79 85 10.1002/cpt.1286 30415499
    [Google Scholar]
  140. Wu X. Ueland P.M. Roper J. Koh G.Y. Liang X. Crott J.W. Ilmaz Ö.H. Bronson R. Ason J.B. Combined supplementation with vitamin B-6 and curcumin is superior to either agent alone in suppressing obesity-promoted colorectal tumorigenesis in mice. J. Nutr. 2021 151 12 3678 3688 10.1093/jn/nxab320 34590119
    [Google Scholar]
  141. Filippello A. Di Mauro S. Scamporrino A. Torrisi S.A. Leggio G.M. Di Pino A. Scicali R. Di Marco M. Malaguarnera R. Purrello F. Piro S. Molecular effects of chronic exposure to palmitate in intestinal organoids: A new model to study obesity and diabetes. Int. J. Mol. Sci. 2022 23 14 7751 10.3390/ijms23147751 35887100
    [Google Scholar]
  142. Wölnerhanssen B.K. Moran A.W. Burdyga G. Meyer-Gerspach A.C. Peterli R. Manz M. Thumshirn M. Daly K. Beglinger C. Shirazi-Beechey S.P. Deregulation of transcription factors controlling intestinal epithelial cell differentiation; A predisposing factor for reduced enteroendocrine cell number in morbidly obese individuals. Sci. Rep. 2017 7 1 8174 10.1038/s41598‑017‑08487‑9 28811552
    [Google Scholar]
  143. Magliaro C. Rinaldo A. Ahluwalia A. Allometric Scaling of physiologically-relevant organoids. Sci. Rep. 2019 9 1 11890 10.1038/s41598‑019‑48347‑2 31417119
    [Google Scholar]
  144. Bagley J.A. Reumann D. Bian S. Lévi-Strauss J. Knoblich J.A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 2017 14 7 743 751 10.1038/nmeth.4304 28504681
    [Google Scholar]
  145. Dutta D. Heo I. Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 2017 23 5 393 410 10.1016/j.molmed.2017.02.007 28341301
    [Google Scholar]
  146. Lim S. Taskinen M.R. Borén J. Crosstalk between nonalcoholic fatty liver disease and cardiometabolic syndrome. Obes. Rev. 2019 20 4 599 611 10.1111/obr.12820 30589487
    [Google Scholar]
  147. Wang X. Shen Y. Shang M. Liu X. Munn L.L. Endothelial mechanobiology in atherosclerosis. Cardiovasc. Res. 2023 119 8 1656 1675 10.1093/cvr/cvad076 37163659
    [Google Scholar]
  148. Lie M.R.K.L. van der Giessen J. Fuhler G.M. de Lima A. Peppelenbosch M.P. van der Ent C. van der Woude C.J. Low dose Naltrexone for induction of remission in inflammatory bowel disease patients. J. Transl. Med. 2018 16 1 55 10.1186/s12967‑018‑1427‑5 29523156
    [Google Scholar]
  149. Liu J. MacNaughtan J. Kerbert A.J.C. Portlock T. Martínez Gonzalez J. Jin Y. Clasen F. Habtesion A. Ji H. Jin Q. Phillips A. De Chiara F. Ingavle G. Jimenez C. Zaccherini G. Husi K. Rodriguez Gandia M.A. Cordero P. Soeda J. McConaghy L. Oben J. Church K. Li J.V. Wu H. Jalan A. Gines P. Solà E. Eaton S. Morgan C. Kowalski M. Green D. Gander A. Edwards L.A. Cox I.J. Cortez-Pinto H. Avery T. Wiest R. Durand F. Caraceni P. Elosua R. Vila J. Pavesi M. Arroyo V. Davies N. Mookerjee R.P. Vargas V. Sandeman S. Mehta G. Shoaie S. Marchesi J. Albillos A. Andreola F. Jalan R. Clinical, experimental and pathophysiological effects of Yaq-001: A non-absorbable, gut-restricted adsorbent in models and patients with cirrhosis. Gut 2024 73 7 1183 1198 10.1136/gutjnl‑2023‑330699 38621924
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X357011250406044043
Loading
/content/journals/cscr/10.2174/011574888X357011250406044043
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test