Skip to content
2000
Volume 20, Issue 11
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Mesenchymal stem cells (MSCs) hold transformative potential in translational medicine due to their versatile differentiation abilities and regenerative properties. Notably, MSCs can transfer mitochondria to unrelated cells through intercellular mitochondrial transfer, offering a groundbreaking approach to halting the progression of mitochondrial diseases and restoring function to cells compromised by mitochondrial dysfunction. Although MSC mitochondrial transfer has demonstrated significant therapeutic promise across a range of diseases, its application in clinical settings remains largely unexplored. This review delves into the novel mechanisms by which MSCs execute mitochondrial transfer, highlighting its profound impact on cellular metabolism, immune modulation, and tissue regeneration. We provide an in-depth analysis of the therapeutic potential of MSC mitochondrial transfer, particularly in treating mitochondrial dysfunction-related diseases and advancing tissue repair strategies. Additionally, we propose innovative considerations for optimizing MSC mitochondrial transfer in clinical trials, emphasizing its potential to reshape the landscape of regenerative medicine and therapeutic interventions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X362739250416153254
2025-04-25
2026-02-05
Loading full text...

Full text loading...

/deliver/fulltext/cscr/20/11/CSCRT-20-11-03.html?itemId=/content/journals/cscr/10.2174/011574888X362739250416153254&mimeType=html&fmt=ahah

References

  1. MushaharyD. SpittlerA. KasperC. WeberV. CharwatV. Isolation, cultivation, and characterization of human mesenchymal stem cells.Cytometry A20189311931 29072818
    [Google Scholar]
  2. DingD.C. ShyuW.C. LinS.Z. Mesenchymal stem cells.Cell Transplant.201120151410.3727/096368910X 21396235
    [Google Scholar]
  3. DominiciM. Le BlancK. MuellerI. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement.Cytotherapy20068431531710.1080/14653240600855905 16923606
    [Google Scholar]
  4. GargettC.E. SchwabK.E. ZillwoodR.M. NguyenH.P.T. WuD. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium.Biol. Reprod.20098061136114510.1095/biolreprod.108.075226 19228591
    [Google Scholar]
  5. BeeravoluN. McKeeC. AlamriA. MikhaelS. BrownC. Perez-CruetM. Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta.J. Vis. Exp.20171225522410.3791/55224
    [Google Scholar]
  6. HidaN. NishiyamaN. MiyoshiS. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells.Stem Cells20082671695170410.1634/stemcells.2007‑0826 18420831
    [Google Scholar]
  7. MalgieriA. KantzariE. PatriziM.P. GambardellaS. Bone marrow and umbilical cord blood human mesenchymal stem cells: State of the art.Int. J. Clin. Exp. Med.201034248269 21072260
    [Google Scholar]
  8. LiJ. CurleyJ.L. FloydZ.E. WuX. HalvorsenY.D.C. GimbleJ.M. Isolation of human adipose-derived stem cells from lipoaspirates.Methods Mol. Biol.2018177315516510.1007/978‑1‑4939‑7799‑4_13 29687388
    [Google Scholar]
  9. WangS. QuX. ZhaoR.C. Clinical applications of mesenchymal stem cells.J. Hematol. Oncol.2012511910.1186/1756‑8722‑5‑19 22546280
    [Google Scholar]
  10. VelardeF. EzquerraS. DelbruyereX. CaicedoA. HidalgoY. KhouryM. Mesenchymal stem cell-mediated transfer of mitochondria: Mechanisms and functional impact.Cell. Mol. Life Sci.202279317710.1007/s00018‑022‑04207‑3 35247083
    [Google Scholar]
  11. MalekpourK. HazratiA. SoudiS. HashemiS.M. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery.J. Control. Release202335475576910.1016/j.jconrel.2023.01.059 36706838
    [Google Scholar]
  12. PaliwalS. ChaudhuriR. AgrawalA. MohantyS. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer.J. Biomed. Sci.20182513110.1186/s12929‑018‑0429‑1 29602309
    [Google Scholar]
  13. MohammadalipourA. DumbaliS.P. WenzelP.L. Mitochondrial transfer and regulators of mesenchymal stromal cell function and therapeutic efficacy.Front. Cell Dev. Biol.2020860329210.3389/fcell.2020.603292 33365311
    [Google Scholar]
  14. CenY. LouG. QiJ. ZhengM. LiuY. A new perspective on mesenchymal stem cell-based therapy for liver diseases: Restoring mitochondrial function.Cell Commun. Signal.202321121410.1186/s12964‑023‑01230‑0 37596671
    [Google Scholar]
  15. Clemente-SuárezV.J. Martín-RodríguezA. Yáñez-SepúlvedaR. Tornero-AguileraJ.F. Mitochondrial transfer as a novel therapeutic approach in disease diagnosis and treatment.Int. J. Mol. Sci.20232410884810.3390/ijms24108848 37240194
    [Google Scholar]
  16. ÖnfeltB. NedvetzkiS. BenningerR.K.P. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria.J. Immunol.2006177128476848310.4049/jimmunol.177.12.8476 17142745
    [Google Scholar]
  17. SpeesJ.L. LeeR.H. GregoryC.A. Mechanisms of mesenchymal stem/stromal cell function.Stem Cell Res. Ther.20167112510.1186/s13287‑016‑0363‑7 27581859
    [Google Scholar]
  18. LiuK. JiK. GuoL. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer.Microvasc. Res.201492101810.1016/j.mvr.2014.01.008 24486322
    [Google Scholar]
  19. HaseK. KimuraS. TakatsuH. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex.Nat. Cell Biol.200911121427143210.1038/ncb1990 19935652
    [Google Scholar]
  20. RavichandranK.S. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways.Immunity201135444545510.1016/j.immuni.2011.09.004 22035837
    [Google Scholar]
  21. LiuZ. SunY. QiZ. CaoL. DingS. Mitochondrial transfer/transplantation: An emerging therapeutic approach for multiple diseases.Cell Biosci.20221216610.1186/s13578‑022‑00805‑7 35590379
    [Google Scholar]
  22. YaoY. FanX.L. JiangD. Connexin 43-mediated mitochondrial Transfer of iPSC-MSCs alleviates asthma inflammation.Stem Cell Reports20181151120113510.1016/j.stemcr.2018.09.012 30344008
    [Google Scholar]
  23. TorralbaD. BaixauliF. Sánchez-MadridF. Mitochondria know no boundaries: Mechanisms and functions of intercellular mitochondrial transfer.Front. Cell Dev. Biol.2016410710.3389/fcell.2016.00107 27734015
    [Google Scholar]
  24. SpeesJ.L. OlsonS.D. WhitneyM.J. ProckopD.J. Mitochondrial transfer between cells can rescue aerobic respiration.Proc. Natl. Acad. Sci. USA200610351283128810.1073/pnas.0510511103 16432190
    [Google Scholar]
  25. MishraS. DeepG. Mitochondria-derived vesicles: Potential nano-batteries to recharge the cellular powerhouse.Extracell Vesicles Circ Nucl Acids20245227127510.20517/evcna.2023.71 39092319
    [Google Scholar]
  26. LinM.Y. ChengX.T. TammineniP. Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions.Neuron2017943595610.e610.1016/j.neuron.2017.04.004 28472658
    [Google Scholar]
  27. MatsudaN. SatoS. ShibaK. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy.J. Cell Biol.2010189221122110.1083/jcb.200910140 20404107
    [Google Scholar]
  28. PiccaA. GuerraF. CalvaniR. Mitochondrial-derived vesicles as candidate biomarkers in Parkinson’s disease: Rationale, design and methods of the exosomes in parkinson disease (expand) study.Int. J. Mol. Sci.20192010237310.3390/ijms20102373 31091653
    [Google Scholar]
  29. PiccaA. GuerraF. CalvaniR. Mitochondrial signatures in circulating extracellular vesicles of older adults with Parkinson’s disease: Results from the exosomes in Parkinson’s disease (expand) study.J. Clin. Med.20209250410.3390/jcm9020504 32059608
    [Google Scholar]
  30. RamirezA. OldW. SelwoodD.L. LiuX. Cannabidiol activates PINK1-Parkin-dependent mitophagy and mitochondrial-derived vesicles.Eur. J. Cell Biol.2022101115118510.1016/j.ejcb.2021.151185 34915361
    [Google Scholar]
  31. FerrucciL. GuerraF. BucciC. MarzettiE. PiccaA. Mitochondria break free: Mitochondria-derived vesicles in aging and associated conditions.Ageing Res. Rev.202410210254910.1016/j.arr.2024.102549 39427885
    [Google Scholar]
  32. PittJ.M. KroemerG. ZitvogelL. Extracellular vesicles: Masters of intercellular communication and potential clinical interventions.J. Clin. Invest.201612641139114310.1172/JCI87316 27035805
    [Google Scholar]
  33. ThéryC. OstrowskiM. SeguraE. Membrane vesicles as conveyors of immune responses.Nat. Rev. Immunol.20099858159310.1038/nri2567 19498381
    [Google Scholar]
  34. ThomasM.A. FaheyM.J. PuglieseB.R. IrwinR.M. AntonyakM.A. DelcoM.L. Human mesenchymal stromal cells release functional mitochondria in extracellular vesicles.Front. Bioeng. Biotechnol.20221087019310.3389/fbioe.2022.870193 36082164
    [Google Scholar]
  35. PhinneyD.G. Di GiuseppeM. NjahJ. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs.Nat. Commun.201561847210.1038/ncomms9472 26442449
    [Google Scholar]
  36. IslamM.N. DasS.R. EminM.T. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury.Nat. Med.201218575976510.1038/nm.2736 22504485
    [Google Scholar]
  37. SinclairK.A. YerkovichS.T. HopkinsP.M.A. ChambersD.C. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung.Stem Cell Res. Ther.2016719110.1186/s13287‑016‑0354‑8 27406134
    [Google Scholar]
  38. LiH. WangC. HeT. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction.Theranostics2019972017203510.7150/thno.29400 31037154
    [Google Scholar]
  39. LinH.Y. LiouC.W. ChenS.D. Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function.Mitochondrion201522314410.1016/j.mito.2015.02.006 25746175
    [Google Scholar]
  40. LiC. CheungM.K.H. HanS. Mesenchymal stem cells and their mitochondrial transfer: A double-edged sword.Biosci. Rep.2019395BSR2018241710.1042/BSR20182417 30979829
    [Google Scholar]
  41. MelcherM. DanhauserK. SeibtA. Modulation of oxidative phosphorylation and redox homeostasis in mitochondrial NDUFS4 deficiency via mesenchymal stem cells.Stem Cell Res. Ther.20178115010.1186/s13287‑017‑0601‑7 28646906
    [Google Scholar]
  42. FolmesC.D.L. DzejaP.P. NelsonT.J. TerzicA. Metabolic plasticity in stem cell homeostasis and differentiation.Cell Stem Cell201211559660610.1016/j.stem.2012.10.002 23122287
    [Google Scholar]
  43. SuX. JinY. ShenY. KimI. WeintraubN.L. TangY. RNAase III-type enzyme dicer regulates mitochondrial fatty acid oxidative metabolism in cardiac mesenchymal stem cells.Int. J. Mol. Sci.20192022555410.3390/ijms20225554 31703292
    [Google Scholar]
  44. NewellC. SabounyR. HittelD.S. Mesenchymal stem cells shift mitochondrial dynamics and enhance oxidative phosphorylation in recipient cells.Front. Physiol.20189157210.3389/fphys.2018.01572 30555336
    [Google Scholar]
  45. JorgensenC. KhouryM. Musculoskeletal progenitor/stromal cell-derived mitochondria modulate cell differentiation and therapeutical function.Front. Immunol.20211260678110.3389/fimmu.2021.606781 33763061
    [Google Scholar]
  46. CaiW. ZhangJ. YuY. NiY. WeiY. ChengY. Mitochondrial transfer regulates cell fate through metabolic remodeling in osteoporosis.Adv. Sci.2023104e220487110.1002/advs.202204871 36507570
    [Google Scholar]
  47. KonariN. NagaishiK. KikuchiS. FujimiyaM. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo.Sci. Rep.201991518410.1038/s41598‑019‑40163‑y 30914727
    [Google Scholar]
  48. MorrisonT.J. JacksonM.V. CunninghamE.K. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer.Am. J. Respir. Crit. Care Med.2017196101275128610.1164/rccm.201701‑0170OC 28598224
    [Google Scholar]
  49. Mahrouf-YorgovM. AugeulL. Da SilvaC.C. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties.Cell Death Differ.20172471224123810.1038/cdd.2017.51 28524859
    [Google Scholar]
  50. WangJ. LiuX. QiuY. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells.J. Hematol. Oncol.20181111110.1186/s13045‑018‑0554‑z 29357914
    [Google Scholar]
  51. TanY.L. EngS.P. HafezP. Abdul KarimN. LawJ.X. NgM.H. Mesenchymal stromal cell mitochondrial transfer as a cell rescue strategy in regenerative medicine: A review of evidence in preclinical models.Stem Cells Transl. Med.202211881482710.1093/stcltm/szac044 35851922
    [Google Scholar]
  52. NairS. Rocha-FerreiraE. FleissB. Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species.J. Neurochem.20211581597310.1111/jnc.15267 33314066
    [Google Scholar]
  53. LiuD. GaoY. LiuJ. Intercellular mitochondrial transfer as a means of tissue revitalization.Signal Transduct. Target. Ther.2021616510.1038/s41392‑020‑00440‑z 33589598
    [Google Scholar]
  54. SubramaniamM.D. IyerM. NairA.P. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases.Genes Dis.20229361063710.1016/j.gendis.2020.11.020 35782976
    [Google Scholar]
  55. VignaisM.L. LevouxJ. SicardP. Transfer of cardiac mitochondria improves the therapeutic efficacy of mesenchymal stem cells in a preclinical model of ischemic heart disease.Cells202312458210.3390/cells12040582 36831249
    [Google Scholar]
  56. HanD. ZhengX. WangX. JinT. CuiL. ChenZ. Mesenchymal stem/stromal cell-mediated mitochondrial transfer and the therapeutic potential in treatment of neurological diseases.Stem Cells Int.2020202011610.1155/2020/8838046 32724315
    [Google Scholar]
  57. JiangD. GaoF. ZhangY. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage.Cell Death Dis.2016711e246710.1038/cddis.2016.358 27831562
    [Google Scholar]
  58. KimS. KimY. YuS.H. Platelet-derived mitochondria transfer facilitates wound-closure by modulating ROS levels in dermal fibroblasts.Platelets2023341215199610.1080/09537104.2022.2151996 36529914
    [Google Scholar]
  59. PaliwalS. ChaudhuriR. AgrawalA. MohantyS. Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities.Stem Cell Res. Ther.20189129810.1186/s13287‑018‑1012‑0 30409230
    [Google Scholar]
  60. DongL.F. RohlenaJ. ZobalovaR. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health.J. Cell Biol.20232223e20221104410.1083/jcb.202211044 36795453
    [Google Scholar]
  61. GolanK. SinghA.K. KolletO. Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma.Blood2020136232607261910.1182/blood.2020005399 32929449
    [Google Scholar]
  62. LiL. PanR. LiR. Mitochondrial biogenesis and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity: Intact adipocytokine signaling is required.Diabetes201160115716710.2337/db10‑0331 20929977
    [Google Scholar]
  63. ZhengC.X. SuiB.D. QiuX.Y. HuC.H. JinY. Mitochondrial regulation of stem cells in bone homeostasis.Trends Mol. Med.20202618910410.1016/j.molmed.2019.04.008 31126872
    [Google Scholar]
  64. HsuY.C. WuY.T. YuT.H. WeiY.H. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer.Semin. Cell Dev. Biol.20165211913110.1016/j.semcdb.2016.02.011 26868759
    [Google Scholar]
  65. MorgantiC. BonoraM. MarchiS. Citrate mediates crosstalk between mitochondria and the nucleus to promote human mesenchymal stem cell in vitro osteogenesis.Cells202094103410.3390/cells9041034 32326298
    [Google Scholar]
  66. MaS. DingR. CaoJ. LiuZ. LiA. PeiD. Mitochondria transfer reverses the inhibitory effects of low stiffness on osteogenic differentiation of human mesenchymal stem cells.Eur. J. Cell Biol.2023102215129710.1016/j.ejcb.2023.151297 36791653
    [Google Scholar]
  67. GuoY. ChiX. WangY. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing.Stem Cell Res. Ther.202011124510.1186/s13287‑020‑01704‑9 32586355
    [Google Scholar]
  68. HeQ. ZhaoQ. LiQ. PanR. LiX. ChenY. Mtu1 defects are correlated with reduced osteogenic differentiation.Cell Death Dis.20211216110.1038/s41419‑020‑03345‑5 33431792
    [Google Scholar]
  69. ZhangY. MarsboomG. TothP.T. RehmanJ. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells.PLoS One2013810e7707710.1371/journal.pone.0077077 24204740
    [Google Scholar]
  70. RehmanJ. Empowering self-renewal and differentiation: The role of mitochondria in stem cells.J. Mol. Med.2010881098198610.1007/s00109‑010‑0678‑2 20809088
    [Google Scholar]
  71. PattappaG. HeywoodH.K. de BruijnJ.D. LeeD.A. The metabolism of human mesenchymal stem cells during proliferation and differentiation.J. Cell. Physiol.2011226102562257010.1002/jcp.22605 21792913
    [Google Scholar]
  72. YanW. LiL. GeL. ZhangF. FanZ. HuL. The cannabinoid receptor I (CB1) enhanced the osteogenic differentiation of BMSCs by rescue impaired mitochondrial metabolism function under inflammatory condition.Stem Cell Res. Ther.20221312210.1186/s13287‑022‑02702‑9 35063024
    [Google Scholar]
  73. ItoK. SudaT. Metabolic requirements for the maintenance of self-renewing stem cells.Nat. Rev. Mol. Cell Biol.201415424325610.1038/nrm3772 24651542
    [Google Scholar]
  74. KhasawnehR.R. Abu-El-RubE. SerhanA.O. SerhanB.O. Abu-El-RubH. Cross talk between 26S proteasome and mitochondria in human mesenchymal stem cells’ ability to survive under hypoxia stress.J. Physiol. Sci.20196961005101710.1007/s12576‑019‑00720‑6 31679117
    [Google Scholar]
  75. ZhangH. LiZ.L. YangF. Radial shockwave treatment promotes human mesenchymal stem cell self-renewal and enhances cartilage healing.Stem Cell Res. Ther.2018915410.1186/s13287‑018‑0805‑5 29523197
    [Google Scholar]
  76. WangK. ZhangT. DongQ. NiceE.C. HuangC. WeiY. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation.Cell Death Dis.201343e53710.1038/cddis.2013.50 23492768
    [Google Scholar]
  77. CollettiE.J. AireyJ.A. LiuW. Generation of tissue-specific cells from MSC does not require fusion or donor-to-host mitochondrial/membrane transfer.Stem Cell Res.20092212513810.1016/j.scr.2008.08.002 19383418
    [Google Scholar]
  78. YanW. DiaoS. FanZ. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells.Stem Cell Res. Ther.202112114010.1186/s13287‑021‑02194‑z 33597020
    [Google Scholar]
  79. LinQ. ChenJ. GuL. DanX. ZhangC. YangY. New insights into mitophagy and stem cells.Stem Cell Res. Ther.202112145210.1186/s13287‑021‑02520‑5 34380561
    [Google Scholar]
  80. ZhouH. LiD. ShiC. Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro.Sci. Rep.2015511289810.1038/srep12898 26250571
    [Google Scholar]
  81. DingX. SaxenaN.K. LinS. GuptaN. AnaniaF.A. Exendin‐4, a glucagon‐like protein‐1 (GLP‐1) receptor agonist, reverses hepatic steatosis in ob/ob mice.Hepatology200643117318110.1002/hep.21006 16374859
    [Google Scholar]
  82. LiangY. ZhouR. LiuX. Leukemia inhibitory factor facilitates self-renewal and differentiation and attenuates oxidative stress of BMSCs by activating PI3K/AKT signaling.Oxid. Med. Cell. Longev.2022202212810.1155/2022/5772509 36105481
    [Google Scholar]
  83. VallabhaneniK.C. HallerH. DumlerI. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes.Stem Cells Dev.201221173104311310.1089/scd.2011.0691 22676452
    [Google Scholar]
  84. LiangX. ZhangY. LinF. Direct administration of mesenchymal stem cell‐derived mitochondria improves cardiac function after infarction via ameliorating endothelial senescence.Bioeng. Transl. Med.202381e1036510.1002/btm2.10365 36684073
    [Google Scholar]
  85. FengY. ZhuR. ShenJ. Human bone marrow mesenchymal stem cells rescue endothelial cells experiencing chemotherapy stress by mitochondrial transfer via tunneling nanotubes.Stem Cells Dev.2019281067468210.1089/scd.2018.0248 30808254
    [Google Scholar]
  86. JiangD. ChenF.X. ZhouH. Bioenergetic crosstalk between mesenchymal stem cells and various ocular cells through the intercellular trafficking of mitochondria.Theranostics202010167260727210.7150/thno.46332 32641991
    [Google Scholar]
  87. GiovannelliL. BariE. JommiC. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access.Bioact. Mater.202329163510.1016/j.bioactmat.2023.06.013 37456581
    [Google Scholar]
  88. LindvallO. KokaiaZ. Stem cells in human neurodegenerative disorders — Time for clinical translation?J. Clin. Invest.20101201294010.1172/JCI40543 20051634
    [Google Scholar]
  89. ZhengQ. LiuH. GaoY. CaoG. WangY. LiZ. Ameliorating mitochondrial dysfunction for the therapy of Parkinson’s disease.Small20242029e231157110.1002/smll.202311571 38385823
    [Google Scholar]
  90. DurantiE. VillaC. Muscle involvement in amyotrophic lateral sclerosis: Understanding the pathogenesis and advancing therapeutics.Biomolecules20231311158210.3390/biom13111582 38002264
    [Google Scholar]
  91. RegmiS. LiuD.D. ShenM. Mesenchymal stromal cells for the treatment of Alzheimer’s disease: Strategies and limitations.Front. Mol. Neurosci.202215101122510.3389/fnmol.2022.1011225 36277497
    [Google Scholar]
  92. Shoshan-BarmatzV. Nahon-CrystalE. Shteinfer-KuzmineA. GuptaR. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease.Pharmacol. Res.20181318710110.1016/j.phrs.2018.03.010 29551631
    [Google Scholar]
  93. Canales-AguirreA.A. Reza-ZaldivarE.E. Hernández-SapiénsM.A. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease.Neural Regen. Res.20191491626163410.4103/1673‑5374.255978 31089063
    [Google Scholar]
  94. ShinJ.Y. ParkH.J. KimH.N. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models.Autophagy2014101324410.4161/auto.26508 24149893
    [Google Scholar]
  95. CheignonC. TomasM. Bonnefont-RousselotD. FallerP. HureauC. CollinF. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease.Redox Biol.20181445046410.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  96. NitzanK. BenhamronS. ValitskyM. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in alzheimer’s disease mice.J. Alzheimers Dis.201972258760410.3233/JAD‑190853 31640104
    [Google Scholar]
  97. ZhaoY. ChenX. WuY. WangY. LiY. XiangC. Transplantation of human menstrual blood-derived mesenchymal stem cells alleviates alzheimer’s disease-like pathology in APP/PS1 transgenic mice.Front. Mol. Neurosci.20181114010.3389/fnmol.2018.00140 29740283
    [Google Scholar]
  98. MaldonadoV.V. PatelN.H. SmithE.E. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy.J. Biol. Eng.20231714410.1186/s13036‑023‑00361‑9 37434264
    [Google Scholar]
  99. ZhangZ. ShengH. LiaoL. Mesenchymal stem cell-conditioned medium improves mitochondrial dysfunction and suppresses apoptosis in okadaic acid-treated SH-SY5Y cells by extracellular vesicle mitochondrial transfer.J. Alzheimers Dis.20207831161117610.3233/JAD‑200686 33104031
    [Google Scholar]
  100. Abou-HanyH.O. El-SherbinyM. ElshaerS. SaidE. MoustafaT. Neuro-modulatory impact of felodipine against experimentally-induced Parkinson’s disease: Possible contribution of PINK1-Parkin mitophagy pathway.Neuropharmacology202425010990910.1016/j.neuropharm.2024.109909 38494124
    [Google Scholar]
  101. GengZ. GuanS. WangS. Intercellular mitochondrial transfer in the brain, a new perspective for targeted treatment of central nervous system diseases.CNS Neurosci. Ther.202329113121313510.1111/cns.14344 37424172
    [Google Scholar]
  102. KordowerJ.H. FreemanT.B. SnowB.J. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease.N. Engl. J. Med.1995332171118112410.1056/NEJM199504273321702 7700284
    [Google Scholar]
  103. FreedC.R. GreeneP.E. BreezeR.E. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease.N. Engl. J. Med.20013441071071910.1056/NEJM200103083441002 11236774
    [Google Scholar]
  104. YazarV. KangS.U. HaS. DawsonV.L. DawsonT.M. Integrative genome-wide analysis of dopaminergic neuron-specific PARIS expression in Drosophila dissects recognition of multiple PPAR-γ associated gene regulation.Sci. Rep.20211112150010.1038/s41598‑021‑00858‑7 34728675
    [Google Scholar]
  105. YangP. ShengD. GuoQ. Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer’s disease.Biomaterials202023811984410.1016/j.biomaterials.2020.119844 32062148
    [Google Scholar]
  106. NarendraD. TanakaA. SuenD.F. YouleR.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy.J. Cell Biol.2008183579580310.1083/jcb.200809125 19029340
    [Google Scholar]
  107. ChenN. GuoZ. LuoZ. ZhengF. ShaoW. YuG. Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage.Environ. Pollut.202127210.1016/j.envpol.2020.116413 33422762
    [Google Scholar]
  108. VenkataramanaN.K. KumarS.K.V. BalarajuS. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease.Transl. Res.20101552627010.1016/j.trsl.2009.07.006 20129486
    [Google Scholar]
  109. CanesiM. GiordanoR. LazzariL. Finding a new therapeutic approach for no-option Parkinsonisms: Mesenchymal stromal cells for progressive supranuclear palsy.J. Transl. Med.201614112710.1186/s12967‑016‑0880‑2 27160012
    [Google Scholar]
  110. BarczewskaM. MaksymowiczS. Zdolińska-MalinowskaI. SiwekT. GrudniakM. Umbilical cord mesenchymal stem cells in amyotrophic lateral sclerosis: An original study.Stem Cell Rev. Rep.202016592293210.1007/s12015‑020‑10016‑7 32725316
    [Google Scholar]
  111. SykováE. RychmachP. DrahorádováI. Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: Results of phase I/IIa clinical trial.Cell Transplant.201726464765810.3727/096368916X693716 27938483
    [Google Scholar]
  112. SiwekT. Jezierska-WoźniakK. MaksymowiczS. Repeat administration of bone marrow-derived mesenchymal stem cells for treatment of amyotrophic lateral sclerosis.Med. Sci. Monit.202026e92748410.12659/MSM.927484 33301428
    [Google Scholar]
  113. SadoshimaJ. KitsisR.N. SciarrettaS. Editorial: Mitochondrial dysfunction and cardiovascular diseases.Front. Cardiovasc. Med.2021864598610.3389/fcvm.2021.645986 33585590
    [Google Scholar]
  114. SunM. JiangW. MuN. ZhangZ. YuL. MaH. Mitochondrial transplantation as a novel therapeutic strategy for cardiovascular diseases.J. Transl. Med.202321134710.1186/s12967‑023‑04203‑6 37231493
    [Google Scholar]
  115. MukkalaA.N. JerkicM. KhanZ. SzasziK. KapusA. RotsteinO. Therapeutic effects of mesenchymal stromal cells require mitochondrial transfer and quality control.Int. J. Mol. Sci.202324211578810.3390/ijms242115788 37958771
    [Google Scholar]
  116. MoriD. MiyagawaS. KawamuraT. Mitochondrial transfer induced by adipose-derived mesenchymal stem cell transplantation improves cardiac function in rat models of ischemic cardiomyopathy.Cell Transplant.2023320963689722114845710.1177/09636897221148457 36624995
    [Google Scholar]
  117. PlotnikovE.Y. KhryapenkovaT.G. GalkinaS.I. SukhikhG.T. ZorovD.B. Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture.Exp. Cell Res.2010316152447245510.1016/j.yexcr.2010.06.009 20599955
    [Google Scholar]
  118. O’BrienC.G. OzenM.O. IkedaG. Mitochondria-rich extracellular vesicles rescue patient-specific cardiomyocytes from doxorubicin injury.JACC Cardio Oncology20213342844010.1016/j.jaccao.2021.05.006 34604804
    [Google Scholar]
  119. BoothL.K. RedgraveR.E. FolaranmiO. GillJ.H. RichardsonG.D. Anthracycline-induced cardiotoxicity and senescence.Front. Aging20223105843510.3389/fragi.2022.1058435 36452034
    [Google Scholar]
  120. FornaroA. OlivottoI. RigacciL. Comparison of long‐term outcome in anthracycline‐related versus idiopathic dilated cardiomyopathy: A single centre experience.Eur. J. Heart Fail.201820589890610.1002/ejhf.1049 29148208
    [Google Scholar]
  121. TakemuraG. FujiwaraH. Doxorubicin-induced cardiomyopathy.Prog. Cardiovasc. Dis.200749533035210.1016/j.pcad.2006.10.002 17329180
    [Google Scholar]
  122. ZhangY. YuZ. JiangD. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy.Stem Cell Reports20167474976310.1016/j.stemcr.2016.08.009 27641650
    [Google Scholar]
  123. SmadjaD.M. Extracellular microvesicles vs. Mitochondria: Competing for the top spot in cardiovascular regenerative medicine.Stem Cell Rev. Rep.20242071813181810.1007/s12015‑024‑10758‑8 38976143
    [Google Scholar]
  124. SuZ. GuoY. HuangX. Phytochemicals: Targeting mitophagy to treat metabolic disorders.Front. Cell Dev. Biol.2021968682010.3389/fcell.2021.686820 34414181
    [Google Scholar]
  125. ChenY. YangF. ChuY. YunZ. YanY. JinJ. Mitochondrial transplantation: Opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease.J. Transl. Med.202220148310.1186/s12967‑022‑03693‑0 36273156
    [Google Scholar]
  126. BiY. GuoX. ZhangM. Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice.Stem Cell Res. Ther.202112160210.1186/s13287‑021‑02663‑5 34895322
    [Google Scholar]
  127. ChenP. YaoL. YuanM. Mitochondrial dysfunction: A promising therapeutic target for liver diseases.Genes Dis.202411310111510.1016/j.gendis.2023.101115 38299199
    [Google Scholar]
  128. NguyenL.T. HoangD.M. NguyenK.T. Type 2 diabetes mellitus duration and obesity alter the efficacy of autologously transplanted bone marrow-derived mesenchymal stem/stromal cells.Stem Cells Transl. Med.20211091266127810.1002/sctm.20‑0506 34080789
    [Google Scholar]
  129. NuzziR. BuonoL. ScalabrinS. De IuliisM. BussolatiB. Effect of stem cell-derived extracellular vesicles on damaged human corneal endothelial cells.Stem Cells Int.2021202111210.1155/2021/6644463 33531909
    [Google Scholar]
  130. JiangD. XuW. PengF. Tunneling nanotubes-based intercellular mitochondrial trafficking as a novel therapeutic target in dry eye.Exp. Eye Res.202323210949710.1016/j.exer.2023.109497 37169281
    [Google Scholar]
  131. LiuK. ZhouZ. PanM. ZhangL. Stem cell‐derived mitochondria transplantation: A promising therapy for mitochondrial encephalomyopathy.CNS Neurosci. Ther.202127773374210.1111/cns.13618 33538116
    [Google Scholar]
  132. LoussouarnC. PersY.M. BonyC. JorgensenC. NoëlD. Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs.Front. Immunol.20211262397310.3389/fimmu.2021.623973 33796099
    [Google Scholar]
  133. MichaeloudesC. LiX. MakJ.C.W. BhavsarP.K. Study of mesenchymal stem cell-mediated mitochondrial transfer in in vitro models of oxidant-mediated airway epithelial and smooth muscle cell injury.Methods Mol. Biol.202122699310510.1007/978‑1‑0716‑1225‑5_7 33687674
    [Google Scholar]
  134. LiX. ZhangY. LiangY. iPSC ‐derived mesenchymal stem cells exert SCF ‐dependent recovery of cigarette smoke‐induced apoptosis/proliferation imbalance in airway cells.J. Cell. Mol. Med.201721226527710.1111/jcmm.12962 27641240
    [Google Scholar]
  135. RodriguezA.M. NakhleJ. GriessingerE. VignaisM.L. Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury.Cell Cycle201817671272110.1080/15384101.2018.1445906 29582715
    [Google Scholar]
  136. ZhangF. ZhengX. ZhaoF. LiL. RenY. LiL. TFAM-Mediated mitochondrial transfer of MSCs improved the permeability barrier in sepsis-associated acute lung injury.Apoptosis2023287-81048105910.1007/s10495‑023‑01847‑z 37060506
    [Google Scholar]
  137. IkedaG. SantosoM.R. TadaY. Mitochondria-rich extracellular vesicles from autologous stem cell–derived cardiomyocytes restore energetics of ischemic myocardium.J. Am. Coll. Cardiol.20217781073108810.1016/j.jacc.2020.12.060 33632482
    [Google Scholar]
  138. LiL-L. KofiA.J. LiX-X. ChangJ. BianY-H. ChuX. A promising strategy for repairing tissue damage: Mitochondria transfer from mesenchymal stem cells.Biomed Eng Commun20232418
    [Google Scholar]
  139. HuZ. WangD. GongJ. MSCs deliver hypoxia‐treated mitochondria reprogramming acinar metabolism to alleviate severe acute pancreatitis injury.Adv. Sci.20231025220769110.1002/advs.202207691 37409821
    [Google Scholar]
  140. JacksonM.V. MorrisonT.J. DohertyD.F. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS.Stem Cells20163482210222310.1002/stem.2372 27059413
    [Google Scholar]
  141. YuanY. YuanL. LiL. Mitochondrial transfer from mesenchymal stem cells to macrophages restricts inflammation and alleviates kidney injury in diabetic nephropathy mice via PGC-1α activation.Stem Cells202139791392810.1002/stem.3375 33739541
    [Google Scholar]
  142. TiD. HaoH. TongC. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b.J. Transl. Med.201513130810.1186/s12967‑015‑0642‑6 26386558
    [Google Scholar]
  143. LiuW. LiL. RongY. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126.Acta Biomater.202010319621210.1016/j.actbio.2019.12.020 31857259
    [Google Scholar]
  144. KeklikM. DeveciB. CelikS. Safety and efficacy of mesenchymal stromal cell therapy for multi-drug-resistant acute and late-acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation.Ann. Hematol.202310261537154710.1007/s00277‑023‑05216‑3 37067556
    [Google Scholar]
  145. HuangT. ZhangT. GaoJ. Targeted mitochondrial delivery: A therapeutic new era for disease treatment.J. Control. Release20223438910610.1016/j.jconrel.2022.01.025 35077740
    [Google Scholar]
  146. LiC.J. ChenP.K. SunL.Y. PangC.Y. Enhancement of mitochondrial transfer by antioxidants in human mesenchymal stem cells.Oxid. Med. Cell. Longev.201720171851080510.1155/2017/8510805 28596814
    [Google Scholar]
  147. BurchS.A. Luna LopezC. Effects of cell density and microenvironment on stem cell mitochondria transfer among human adipose-derived stem cells and HEK293 tumorigenic cells.Int. J. Mol. Sci.2022234200310.3390/ijms23042003 35216117
    [Google Scholar]
  148. KitaniT. KamiD. KawasakiT. NakataM. MatobaS. GojoS. Direct human mitochondrial transfer: A novel concept based on the endosymbiotic theory.Transplant. Proc.20144641233123610.1016/j.transproceed.2013.11.133 24815168
    [Google Scholar]
  149. ZhangT. MiaoC. Mitochondrial transplantation as a promising therapy for mitochondrial diseases.Acta Pharm. Sin. B20231331028103510.1016/j.apsb.2022.10.008 36970208
    [Google Scholar]
  150. Gómez-TatayL. Hernández-AndreuJ. AznarJ. Mitochondrial modification techniques and ethical issues.J. Clin. Med.2017632510.3390/jcm6030025 28245555
    [Google Scholar]
  151. CourtA.C. Le-GattA. Luz-CrawfordP. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response.EMBO Rep.2020212e4805210.15252/embr.201948052 31984629
    [Google Scholar]
  152. BoudreauL.H. DuchezA.C. CloutierN. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation.Blood2014124142173218310.1182/blood‑2014‑05‑573543 25082876
    [Google Scholar]
  153. MasuzawaA. BlackK.M. PacakC.A. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury.Am. J. Physiol. Heart Circ. Physiol.20133047H966H98210.1152/ajpheart.00883.2012 23355340
    [Google Scholar]
  154. PollaraJ. EdwardsR.W. LinL. BenderskyV.A. BrennanT.V. Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction.JCI Insight2018315e12162210.1172/jci.insight.121622 30089724
    [Google Scholar]
  155. LinL. XuH. BishawiM. Circulating mitochondria in organ donors promote allograft rejection.Am. J. Transplant.20191971917192910.1111/ajt.15309 30761731
    [Google Scholar]
  156. ĽuptákM HroudováJ Important role of mitochondria and the effect of mood stabilizers on mitochondrial function.Physiol Res201968S3S15(Suppl. 1)10.33549/physiolres.934324 31755286
    [Google Scholar]
  157. AcquistapaceA. BruT. LesaultP.F. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer.Stem Cells201129581282410.1002/stem.632 21433223
    [Google Scholar]
  158. RoyS. KimD. SankaramoorthyA. Mitochondrial structural changes in the pathogenesis of diabetic retinopathy.J. Clin. Med.201989136310.3390/jcm8091363 31480638
    [Google Scholar]
  159. SercelA.J. PatanananA.N. ManT. Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery.eLife202110e6310210.7554/eLife.63102 33438576
    [Google Scholar]
  160. DawsonE.R. PatanananA.N. SercelA.J. TeitellM.A. Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells.Sci. Rep.20201011432810.1038/s41598‑020‑71199‑0 32868785
    [Google Scholar]
  161. MerimiM. El-MajzoubR. LagneauxL. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: Current knowledge and future understandings.Front. Cell Dev. Biol.2021966153210.3389/fcell.2021.661532 34490235
    [Google Scholar]
  162. MansouriA. GattolliatC.H. AsselahT. Mitochondrial dysfunction and signaling in chronic liver diseases.Gastroenterology2018155362964710.1053/j.gastro.2018.06.083 30012333
    [Google Scholar]
  163. LiuC.S. ChangJ.C. KuoS.J. Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond.Int. J. Biochem. Cell Biol.20145314114610.1016/j.biocel.2014.05.009 24842105
    [Google Scholar]
  164. HanH. HuJ. YanQ. Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model.Mol. Med. Rep.20161321517152410.3892/mmr.2015.4726 26718099
    [Google Scholar]
  165. AhmadT. MukherjeeS. PattnaikB. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy.EMBO J.201433910.1002/embj.201386030 24431222
    [Google Scholar]
  166. Frankenberg GarciaJ. RogersA.V. MakJ.C.W. Mitochondrial transfer regulates bioenergetics in healthy and chronic obstructive pulmonary disease airway smooth muscle.Am. J. Respir. Cell Mol. Biol.202267447148110.1165/rcmb.2022‑0041OC 35763375
    [Google Scholar]
  167. MarleinC.R. ZaitsevaL. PiddockR.E. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts.Blood2017130141649166010.1182/blood‑2017‑03‑772939 28733324
    [Google Scholar]
  168. LiX. MichaeloudesC. ZhangY. Mesenchymal stem cells alleviate oxidative stress–induced mitochondrial dysfunction in the airways.J. Allergy Clin. Immunol.2018141516341645.e510.1016/j.jaci.2017.08.017 28911970
    [Google Scholar]
  169. ShiX. ZhaoM. FuC. FuA. Intravenous administration of mitochondria for treating experimental Parkinson’s disease.Mitochondrion2017349110010.1016/j.mito.2017.02.005 28242362
    [Google Scholar]
  170. NguyenH. LeeJ.Y. SanbergP.R. NapoliE. BorlonganC.V. Eye opener in stroke.Stroke20195082197220610.1161/STROKEAHA.119.025249 31242827
    [Google Scholar]
  171. JiangD. XiongG. FengH. Donation of mitochondria by iPSC-derived mesenchymal stem cells protects retinal ganglion cells against mitochondrial complex I defect-induced degeneration.Theranostics2019982395241010.7150/thno.29422 31149051
    [Google Scholar]
  172. ShanmughapriyaS. LangfordD. NatarajaseenivasanK. Inter and Intracellular mitochondrial trafficking in health and disease.Ageing Res. Rev.20206210112810.1016/j.arr.2020.101128 32712108
    [Google Scholar]
  173. GäbeleinC.G. FengQ. SarajlicE. Mitochondria transplantation between living cells.PLoS Biol.2022203e300157610.1371/journal.pbio.3001576 35320264
    [Google Scholar]
  174. LinW. HuangL. LiY. Mesenchymal stem cells and cancer: Clinical challenges and opportunities.BioMed Res. Int.2019201911210.1155/2019/2820853 31205939
    [Google Scholar]
  175. SuzukiR. OgiyaD. OgawaY. KawadaH. AndoK. Targeting CAM-DR and mitochondrial transfer for the treatment of multiple myeloma.Curr. Oncol.202229118529853910.3390/curroncol29110672 36354732
    [Google Scholar]
  176. Vander HeidenM.G. CantleyL.C. ThompsonC.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.Science200932459301029103310.1126/science.1160809 19460998
    [Google Scholar]
  177. ValentiD. VaccaR.A. MoroL. AtlanteA. Mitochondria can cross cell boundaries: An overview of the biological relevance, pathophysiological implications and therapeutic perspectives of intercellular mitochondrial transfer.Int. J. Mol. Sci.20212215831210.3390/ijms22158312 34361078
    [Google Scholar]
  178. KoyanagiM. BrandesR.P. HaendelerJ. ZeiherA.M. DimmelerS. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: A novel mechanism for cell fate changes?Circ. Res.200596101039104110.1161/01.RES.0000168650.23479.0c 15879310
    [Google Scholar]
  179. Luz-CrawfordP. HernandezJ. DjouadF. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer.Stem Cell Res. Ther.201910123210.1186/s13287‑019‑1307‑9 31370879
    [Google Scholar]
  180. LevouxJ. ProlaA. LafusteP. Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming.Cell Metab.2021332283299.e910.1016/j.cmet.2020.12.006 33400911
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X362739250416153254
Loading
/content/journals/cscr/10.2174/011574888X362739250416153254
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test