Skip to content
2000
image of Mitochondria Transfer in Mesenchymal Stem Cells: Unraveling the Mechanism and Therapeutic Potential

Abstract

Mesenchymal stem cells (MSCs) hold transformative potential in translational medicine due to their versatile differentiation abilities and regenerative properties. Notably, MSCs can transfer mitochondria to unrelated cells through intercellular mitochondrial transfer, offering a groundbreaking approach to halting the progression of mitochondrial diseases and restoring function to cells compromised by mitochondrial dysfunction. Although MSC mitochondrial transfer has demonstrated significant therapeutic promise across a range of diseases, its application in clinical settings remains largely unexplored. This review delves into the novel mechanisms by which MSCs execute mitochondrial transfer, highlighting its profound impact on cellular metabolism, immune modulation, and tissue regeneration. We provide an in-depth analysis of the therapeutic potential of MSC mitochondrial transfer, particularly in treating mitochondrial dysfunction-related diseases and advancing tissue repair strategies. Additionally, we propose innovative considerations for optimizing MSC mitochondrial transfer in clinical trials, emphasizing its potential to reshape the landscape of regenerative medicine and therapeutic interventions.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X362739250416153254
2025-04-25
2025-09-15
Loading full text...

Full text loading...

/deliver/fulltext/cscr/10.2174/011574888X362739250416153254/BMS-CSCRT-2024-137.html?itemId=/content/journals/cscr/10.2174/011574888X362739250416153254&mimeType=html&fmt=ahah

References

  1. Mushahary D. Spittler A. Kasper C. Weber V. Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 2018 93 1 19 31 29072818
    [Google Scholar]
  2. Ding D.C. Shyu W.C. Lin S.Z. Mesenchymal stem cells. Cell Transplant. 2011 20 1 5 14 10.3727/096368910X 21396235
    [Google Scholar]
  3. Dominici M. Le Blanc K. Mueller I. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 2006 8 4 315 317 10.1080/14653240600855905 16923606
    [Google Scholar]
  4. Gargett C.E. Schwab K.E. Zillwood R.M. Nguyen H.P.T. Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol. Reprod. 2009 80 6 1136 1145 10.1095/biolreprod.108.075226 19228591
    [Google Scholar]
  5. Beeravolu N. McKee C. Alamri A. Mikhael S. Brown C. Perez-Cruet M. Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta. J. Vis. Exp. 2017 122 55224 10.3791/55224
    [Google Scholar]
  6. Hida N. Nishiyama N. Miyoshi S. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells 2008 26 7 1695 1704 10.1634/stemcells.2007‑0826 18420831
    [Google Scholar]
  7. Malgieri A. Kantzari E. Patrizi M.P. Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: State of the art. Int. J. Clin. Exp. Med. 2010 3 4 248 269 21072260
    [Google Scholar]
  8. Li J. Curley J.L. Floyd Z.E. Wu X. Halvorsen Y.D.C. Gimble J.M. Isolation of human adipose-derived stem cells from lipoaspirates. Methods Mol. Biol. 2018 1773 155 165 10.1007/978‑1‑4939‑7799‑4_13 29687388
    [Google Scholar]
  9. Wang S. Qu X. Zhao R.C. Clinical applications of mesenchymal stem cells. J. Hematol. Oncol. 2012 5 1 19 10.1186/1756‑8722‑5‑19 22546280
    [Google Scholar]
  10. Velarde F. Ezquerra S. Delbruyere X. Caicedo A. Hidalgo Y. Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: Mechanisms and functional impact. Cell. Mol. Life Sci. 2022 79 3 177 10.1007/s00018‑022‑04207‑3 35247083
    [Google Scholar]
  11. Malekpour K. Hazrati A. Soudi S. Hashemi S.M. Mechanisms behind therapeutic potentials of mesenchymal stem cell mitochondria transfer/delivery. J. Control. Release 2023 354 755 769 10.1016/j.jconrel.2023.01.059 36706838
    [Google Scholar]
  12. Paliwal S. Chaudhuri R. Agrawal A. Mohanty S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J. Biomed. Sci. 2018 25 1 31 10.1186/s12929‑018‑0429‑1 29602309
    [Google Scholar]
  13. Mohammadalipour A. Dumbali S.P. Wenzel P.L. Mitochondrial transfer and regulators of mesenchymal stromal cell function and therapeutic efficacy. Front. Cell Dev. Biol. 2020 8 603292 10.3389/fcell.2020.603292 33365311
    [Google Scholar]
  14. Cen Y. Lou G. Qi J. Zheng M. Liu Y. A new perspective on mesenchymal stem cell-based therapy for liver diseases: Restoring mitochondrial function. Cell Commun. Signal. 2023 21 1 214 10.1186/s12964‑023‑01230‑0 37596671
    [Google Scholar]
  15. Clemente-Suárez V.J. Martín-Rodríguez A. Yáñez-Sepúlveda R. Tornero-Aguilera J.F. Mitochondrial transfer as a novel therapeutic approach in disease diagnosis and treatment. Int. J. Mol. Sci. 2023 24 10 8848 10.3390/ijms24108848 37240194
    [Google Scholar]
  16. Önfelt B. Nedvetzki S. Benninger R.K.P. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 2006 177 12 8476 8483 10.4049/jimmunol.177.12.8476 17142745
    [Google Scholar]
  17. Spees J.L. Lee R.H. Gregory C.A. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res. Ther. 2016 7 1 125 10.1186/s13287‑016‑0363‑7 27581859
    [Google Scholar]
  18. Liu K. Ji K. Guo L. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res. 2014 92 10 18 10.1016/j.mvr.2014.01.008 24486322
    [Google Scholar]
  19. Hase K. Kimura S. Takatsu H. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell Biol. 2009 11 12 1427 1432 10.1038/ncb1990 19935652
    [Google Scholar]
  20. Ravichandran K.S. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 2011 35 4 445 455 10.1016/j.immuni.2011.09.004 22035837
    [Google Scholar]
  21. Liu Z. Sun Y. Qi Z. Cao L. Ding S. Mitochondrial transfer/transplantation: An emerging therapeutic approach for multiple diseases. Cell Biosci. 2022 12 1 66 10.1186/s13578‑022‑00805‑7 35590379
    [Google Scholar]
  22. Yao Y. Fan X.L. Jiang D. Connexin 43-mediated mitochondrial Transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Reports 2018 11 5 1120 1135 10.1016/j.stemcr.2018.09.012 30344008
    [Google Scholar]
  23. Torralba D. Baixauli F. Sánchez-Madrid F. Mitochondria know no boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 2016 4 107 10.3389/fcell.2016.00107 27734015
    [Google Scholar]
  24. Spees J.L. Olson S.D. Whitney M.J. Prockop D.J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. USA 2006 103 5 1283 1288 10.1073/pnas.0510511103 16432190
    [Google Scholar]
  25. Mishra S. Deep G. Mitochondria-derived vesicles: Potential nano-batteries to recharge the cellular powerhouse. Extracell Vesicles Circ Nucl Acids 2024 5 2 271 275 10.20517/evcna.2023.71 39092319
    [Google Scholar]
  26. Lin M.Y. Cheng X.T. Tammineni P. Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron 2017 94 3 595 610.e6 10.1016/j.neuron.2017.04.004 28472658
    [Google Scholar]
  27. Matsuda N. Sato S. Shiba K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 2010 189 2 211 221 10.1083/jcb.200910140 20404107
    [Google Scholar]
  28. Picca A. Guerra F. Calvani R. Mitochondrial-derived vesicles as candidate biomarkers in Parkinson’s disease: Rationale, design and methods of the exosomes in parkinson disease (expand) study. Int. J. Mol. Sci. 2019 20 10 2373 10.3390/ijms20102373 31091653
    [Google Scholar]
  29. Picca A. Guerra F. Calvani R. Mitochondrial signatures in circulating extracellular vesicles of older adults with Parkinson’s disease: Results from the exosomes in Parkinson’s disease (expand) study. J. Clin. Med. 2020 9 2 504 10.3390/jcm9020504 32059608
    [Google Scholar]
  30. Ramirez A. Old W. Selwood D.L. Liu X. Cannabidiol activates PINK1-Parkin-dependent mitophagy and mitochondrial-derived vesicles. Eur. J. Cell Biol. 2022 101 1 151185 10.1016/j.ejcb.2021.151185 34915361
    [Google Scholar]
  31. Ferrucci L. Guerra F. Bucci C. Marzetti E. Picca A. Mitochondria break free: Mitochondria-derived vesicles in aging and associated conditions. Ageing Res. Rev. 2024 102 102549 10.1016/j.arr.2024.102549 39427885
    [Google Scholar]
  32. Pitt J.M. Kroemer G. Zitvogel L. Extracellular vesicles: Masters of intercellular communication and potential clinical interventions. J. Clin. Invest. 2016 126 4 1139 1143 10.1172/JCI87316 27035805
    [Google Scholar]
  33. Théry C. Ostrowski M. Segura E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 2009 9 8 581 593 10.1038/nri2567 19498381
    [Google Scholar]
  34. Thomas M.A. Fahey M.J. Pugliese B.R. Irwin R.M. Antonyak M.A. Delco M.L. Human mesenchymal stromal cells release functional mitochondria in extracellular vesicles. Front. Bioeng. Biotechnol. 2022 10 870193 10.3389/fbioe.2022.870193 36082164
    [Google Scholar]
  35. Phinney D.G. Di Giuseppe M. Njah J. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun. 2015 6 1 8472 10.1038/ncomms9472 26442449
    [Google Scholar]
  36. Islam M.N. Das S.R. Emin M.T. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 2012 18 5 759 765 10.1038/nm.2736 22504485
    [Google Scholar]
  37. Sinclair K.A. Yerkovich S.T. Hopkins P.M.A. Chambers D.C. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res. Ther. 2016 7 1 91 10.1186/s13287‑016‑0354‑8 27406134
    [Google Scholar]
  38. Li H. Wang C. He T. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics 2019 9 7 2017 2035 10.7150/thno.29400 31037154
    [Google Scholar]
  39. Lin H.Y. Liou C.W. Chen S.D. Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion 2015 22 31 44 10.1016/j.mito.2015.02.006 25746175
    [Google Scholar]
  40. Li C. Cheung M.K.H. Han S. Mesenchymal stem cells and their mitochondrial transfer: A double-edged sword. Biosci. Rep. 2019 39 5 BSR20182417 10.1042/BSR20182417 30979829
    [Google Scholar]
  41. Melcher M. Danhauser K. Seibt A. Modulation of oxidative phosphorylation and redox homeostasis in mitochondrial NDUFS4 deficiency via mesenchymal stem cells. Stem Cell Res. Ther. 2017 8 1 150 10.1186/s13287‑017‑0601‑7 28646906
    [Google Scholar]
  42. Folmes C.D.L. Dzeja P.P. Nelson T.J. Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012 11 5 596 606 10.1016/j.stem.2012.10.002 23122287
    [Google Scholar]
  43. Su X. Jin Y. Shen Y. Kim I. Weintraub N.L. Tang Y. RNAase III-type enzyme dicer regulates mitochondrial fatty acid oxidative metabolism in cardiac mesenchymal stem cells. Int. J. Mol. Sci. 2019 20 22 5554 10.3390/ijms20225554 31703292
    [Google Scholar]
  44. Newell C. Sabouny R. Hittel D.S. Mesenchymal stem cells shift mitochondrial dynamics and enhance oxidative phosphorylation in recipient cells. Front. Physiol. 2018 9 1572 10.3389/fphys.2018.01572 30555336
    [Google Scholar]
  45. Jorgensen C. Khoury M. Musculoskeletal progenitor/stromal cell-derived mitochondria modulate cell differentiation and therapeutical function. Front. Immunol. 2021 12 606781 10.3389/fimmu.2021.606781 33763061
    [Google Scholar]
  46. Cai W. Zhang J. Yu Y. Ni Y. Wei Y. Cheng Y. Mitochondrial transfer regulates cell fate through metabolic remodeling in osteoporosis. Adv. Sci. 2023 10 4 e2204871 10.1002/advs.202204871 36507570
    [Google Scholar]
  47. Konari N. Nagaishi K. Kikuchi S. Fujimiya M. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci. Rep. 2019 9 1 5184 10.1038/s41598‑019‑40163‑y 30914727
    [Google Scholar]
  48. Morrison T.J. Jackson M.V. Cunningham E.K. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am. J. Respir. Crit. Care Med. 2017 196 10 1275 1286 10.1164/rccm.201701‑0170OC 28598224
    [Google Scholar]
  49. Mahrouf-Yorgov M. Augeul L. Da Silva C.C. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 2017 24 7 1224 1238 10.1038/cdd.2017.51 28524859
    [Google Scholar]
  50. Wang J. Liu X. Qiu Y. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J. Hematol. Oncol. 2018 11 1 11 10.1186/s13045‑018‑0554‑z 29357914
    [Google Scholar]
  51. Tan Y.L. Eng S.P. Hafez P. Abdul Karim N. Law J.X. Ng M.H. Mesenchymal stromal cell mitochondrial transfer as a cell rescue strategy in regenerative medicine: A review of evidence in preclinical models. Stem Cells Transl. Med. 2022 11 8 814 827 10.1093/stcltm/szac044 35851922
    [Google Scholar]
  52. Nair S. Rocha-Ferreira E. Fleiss B. Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. J. Neurochem. 2021 158 1 59 73 10.1111/jnc.15267 33314066
    [Google Scholar]
  53. Liu D. Gao Y. Liu J. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct. Target. Ther. 2021 6 1 65 10.1038/s41392‑020‑00440‑z 33589598
    [Google Scholar]
  54. Subramaniam M.D. Iyer M. Nair A.P. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis. 2022 9 3 610 637 10.1016/j.gendis.2020.11.020 35782976
    [Google Scholar]
  55. Vignais M.L. Levoux J. Sicard P. Transfer of cardiac mitochondria improves the therapeutic efficacy of mesenchymal stem cells in a preclinical model of ischemic heart disease. Cells 2023 12 4 582 10.3390/cells12040582 36831249
    [Google Scholar]
  56. Han D. Zheng X. Wang X. Jin T. Cui L. Chen Z. Mesenchymal stem/stromal cell-mediated mitochondrial transfer and the therapeutic potential in treatment of neurological diseases. Stem Cells Int. 2020 2020 1 16 10.1155/2020/8838046 32724315
    [Google Scholar]
  57. Jiang D. Gao F. Zhang Y. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 2016 7 11 e2467 10.1038/cddis.2016.358 27831562
    [Google Scholar]
  58. Kim S. Kim Y. Yu S.H. Platelet-derived mitochondria transfer facilitates wound-closure by modulating ROS levels in dermal fibroblasts. Platelets 2023 34 1 2151996 10.1080/09537104.2022.2151996 36529914
    [Google Scholar]
  59. Paliwal S. Chaudhuri R. Agrawal A. Mohanty S. Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities. Stem Cell Res. Ther. 2018 9 1 298 10.1186/s13287‑018‑1012‑0 30409230
    [Google Scholar]
  60. Dong L.F. Rohlena J. Zobalova R. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J. Cell Biol. 2023 222 3 e202211044 10.1083/jcb.202211044 36795453
    [Google Scholar]
  61. Golan K. Singh A.K. Kollet O. Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood 2020 136 23 2607 2619 10.1182/blood.2020005399 32929449
    [Google Scholar]
  62. Li L. Pan R. Li R. Mitochondrial biogenesis and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity: Intact adipocytokine signaling is required. Diabetes 2011 60 1 157 167 10.2337/db10‑0331 20929977
    [Google Scholar]
  63. Zheng C.X. Sui B.D. Qiu X.Y. Hu C.H. Jin Y. Mitochondrial regulation of stem cells in bone homeostasis. Trends Mol. Med. 2020 26 1 89 104 10.1016/j.molmed.2019.04.008 31126872
    [Google Scholar]
  64. Hsu Y.C. Wu Y.T. Yu T.H. Wei Y.H. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Semin. Cell Dev. Biol. 2016 52 119 131 10.1016/j.semcdb.2016.02.011 26868759
    [Google Scholar]
  65. Morganti C. Bonora M. Marchi S. Citrate mediates crosstalk between mitochondria and the nucleus to promote human mesenchymal stem cell in vitro osteogenesis. Cells 2020 9 4 1034 10.3390/cells9041034 32326298
    [Google Scholar]
  66. Ma S. Ding R. Cao J. Liu Z. Li A. Pei D. Mitochondria transfer reverses the inhibitory effects of low stiffness on osteogenic differentiation of human mesenchymal stem cells. Eur. J. Cell Biol. 2023 102 2 151297 10.1016/j.ejcb.2023.151297 36791653
    [Google Scholar]
  67. Guo Y. Chi X. Wang Y. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res. Ther. 2020 11 1 245 10.1186/s13287‑020‑01704‑9 32586355
    [Google Scholar]
  68. He Q. Zhao Q. Li Q. Pan R. Li X. Chen Y. Mtu1 defects are correlated with reduced osteogenic differentiation. Cell Death Dis. 2021 12 1 61 10.1038/s41419‑020‑03345‑5 33431792
    [Google Scholar]
  69. Zhang Y. Marsboom G. Toth P.T. Rehman J. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PLoS One 2013 8 10 e77077 10.1371/journal.pone.0077077 24204740
    [Google Scholar]
  70. Rehman J. Empowering self-renewal and differentiation: The role of mitochondria in stem cells. J. Mol. Med. (Berl.) 2010 88 10 981 986 10.1007/s00109‑010‑0678‑2 20809088
    [Google Scholar]
  71. Pattappa G. Heywood H.K. de Bruijn J.D. Lee D.A. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J. Cell. Physiol. 2011 226 10 2562 2570 10.1002/jcp.22605 21792913
    [Google Scholar]
  72. Yan W. Li L. Ge L. Zhang F. Fan Z. Hu L. The cannabinoid receptor I (CB1) enhanced the osteogenic differentiation of BMSCs by rescue impaired mitochondrial metabolism function under inflammatory condition. Stem Cell Res. Ther. 2022 13 1 22 10.1186/s13287‑022‑02702‑9 35063024
    [Google Scholar]
  73. Ito K. Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 2014 15 4 243 256 10.1038/nrm3772 24651542
    [Google Scholar]
  74. Khasawneh R.R. Abu-El-Rub E. Serhan A.O. Serhan B.O. Abu-El-Rub H. Cross talk between 26S proteasome and mitochondria in human mesenchymal stem cells’ ability to survive under hypoxia stress. J. Physiol. Sci. 2019 69 6 1005 1017 10.1007/s12576‑019‑00720‑6 31679117
    [Google Scholar]
  75. Zhang H. Li Z.L. Yang F. Radial shockwave treatment promotes human mesenchymal stem cell self-renewal and enhances cartilage healing. Stem Cell Res. Ther. 2018 9 1 54 10.1186/s13287‑018‑0805‑5 29523197
    [Google Scholar]
  76. Wang K. Zhang T. Dong Q. Nice E.C. Huang C. Wei Y. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 2013 4 3 e537 10.1038/cddis.2013.50 23492768
    [Google Scholar]
  77. Colletti E.J. Airey J.A. Liu W. Generation of tissue-specific cells from MSC does not require fusion or donor-to-host mitochondrial/membrane transfer. Stem Cell Res. (Amst.) 2009 2 2 125 138 10.1016/j.scr.2008.08.002 19383418
    [Google Scholar]
  78. Yan W. Diao S. Fan Z. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells. Stem Cell Res. Ther. 2021 12 1 140 10.1186/s13287‑021‑02194‑z 33597020
    [Google Scholar]
  79. Lin Q. Chen J. Gu L. Dan X. Zhang C. Yang Y. New insights into mitophagy and stem cells. Stem Cell Res. Ther. 2021 12 1 452 10.1186/s13287‑021‑02520‑5 34380561
    [Google Scholar]
  80. Zhou H. Li D. Shi C. Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci. Rep. 2015 5 1 12898 10.1038/srep12898 26250571
    [Google Scholar]
  81. Ding X. Saxena N.K. Lin S. Gupta N. Anania F.A. Exendin‐4, a glucagon‐like protein‐1 (GLP‐1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006 43 1 173 181 10.1002/hep.21006 16374859
    [Google Scholar]
  82. Liang Y. Zhou R. Liu X. Leukemia inhibitory factor facilitates self-renewal and differentiation and attenuates oxidative stress of BMSCs by activating PI3K/AKT signaling. Oxid. Med. Cell. Longev. 2022 2022 1 28 10.1155/2022/5772509 36105481
    [Google Scholar]
  83. Vallabhaneni K.C. Haller H. Dumler I. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev. 2012 21 17 3104 3113 10.1089/scd.2011.0691 22676452
    [Google Scholar]
  84. Liang X. Zhang Y. Lin F. Direct administration of mesenchymal stem cell‐derived mitochondria improves cardiac function after infarction via ameliorating endothelial senescence. Bioeng. Transl. Med. 2023 8 1 e10365 10.1002/btm2.10365 36684073
    [Google Scholar]
  85. Feng Y. Zhu R. Shen J. Human bone marrow mesenchymal stem cells rescue endothelial cells experiencing chemotherapy stress by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev. 2019 28 10 674 682 10.1089/scd.2018.0248 30808254
    [Google Scholar]
  86. Jiang D. Chen F.X. Zhou H. Bioenergetic crosstalk between mesenchymal stem cells and various ocular cells through the intercellular trafficking of mitochondria. Theranostics 2020 10 16 7260 7272 10.7150/thno.46332 32641991
    [Google Scholar]
  87. Giovannelli L. Bari E. Jommi C. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact. Mater. 2023 29 16 35 10.1016/j.bioactmat.2023.06.013 37456581
    [Google Scholar]
  88. Lindvall O. Kokaia Z. Stem cells in human neurodegenerative disorders — Time for clinical translation? J. Clin. Invest. 2010 120 1 29 40 10.1172/JCI40543 20051634
    [Google Scholar]
  89. Zheng Q. Liu H. Gao Y. Cao G. Wang Y. Li Z. Ameliorating mitochondrial dysfunction for the therapy of Parkinson’s disease. Small 2024 20 29 e2311571 10.1002/smll.202311571 38385823
    [Google Scholar]
  90. Duranti E. Villa C. Muscle involvement in amyotrophic lateral sclerosis: Understanding the pathogenesis and advancing therapeutics. Biomolecules 2023 13 11 1582 10.3390/biom13111582 38002264
    [Google Scholar]
  91. Regmi S. Liu D.D. Shen M. Mesenchymal stromal cells for the treatment of Alzheimer’s disease: Strategies and limitations. Front. Mol. Neurosci. 2022 15 1011225 10.3389/fnmol.2022.1011225 36277497
    [Google Scholar]
  92. Shoshan-Barmatz V. Nahon-Crystal E. Shteinfer-Kuzmine A. Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol. Res. 2018 131 87 101 10.1016/j.phrs.2018.03.010 29551631
    [Google Scholar]
  93. Canales-Aguirre A.A. Reza-Zaldivar E.E. Hernández-Sapiéns M.A. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer’s disease. Neural Regen. Res. 2019 14 9 1626 1634 10.4103/1673‑5374.255978 31089063
    [Google Scholar]
  94. Shin J.Y. Park H.J. Kim H.N. Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 2014 10 1 32 44 10.4161/auto.26508 24149893
    [Google Scholar]
  95. Cheignon C. Tomas M. Bonnefont-Rousselot D. Faller P. Hureau C. Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018 14 450 464 10.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  96. Nitzan K. Benhamron S. Valitsky M. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in alzheimer’s disease mice. J. Alzheimers Dis. 2019 72 2 587 604 10.3233/JAD‑190853 31640104
    [Google Scholar]
  97. Zhao Y. Chen X. Wu Y. Wang Y. Li Y. Xiang C. Transplantation of human menstrual blood-derived mesenchymal stem cells alleviates alzheimer’s disease-like pathology in APP/PS1 transgenic mice. Front. Mol. Neurosci. 2018 11 140 10.3389/fnmol.2018.00140 29740283
    [Google Scholar]
  98. Maldonado V.V. Patel N.H. Smith E.E. Clinical utility of mesenchymal stem/stromal cells in regenerative medicine and cellular therapy. J. Biol. Eng. 2023 17 1 44 10.1186/s13036‑023‑00361‑9 37434264
    [Google Scholar]
  99. Zhang Z. Sheng H. Liao L. Mesenchymal stem cell-conditioned medium improves mitochondrial dysfunction and suppresses apoptosis in okadaic acid-treated SH-SY5Y cells by extracellular vesicle mitochondrial transfer. J. Alzheimers Dis. 2020 78 3 1161 1176 10.3233/JAD‑200686 33104031
    [Google Scholar]
  100. Abou-Hany H.O. El-Sherbiny M. Elshaer S. Said E. Moustafa T. Neuro-modulatory impact of felodipine against experimentally-induced Parkinson’s disease: Possible contribution of PINK1-Parkin mitophagy pathway. Neuropharmacology 2024 250 109909 10.1016/j.neuropharm.2024.109909 38494124
    [Google Scholar]
  101. Geng Z. Guan S. Wang S. Intercellular mitochondrial transfer in the brain, a new perspective for targeted treatment of central nervous system diseases. CNS Neurosci. Ther. 2023 29 11 3121 3135 10.1111/cns.14344 37424172
    [Google Scholar]
  102. Kordower J.H. Freeman T.B. Snow B.J. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N. Engl. J. Med. 1995 332 17 1118 1124 10.1056/NEJM199504273321702 7700284
    [Google Scholar]
  103. Freed C.R. Greene P.E. Breeze R.E. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 2001 344 10 710 719 10.1056/NEJM200103083441002 11236774
    [Google Scholar]
  104. Yazar V. Kang S.U. Ha S. Dawson V.L. Dawson T.M. Integrative genome-wide analysis of dopaminergic neuron-specific PARIS expression in Drosophila dissects recognition of multiple PPAR-γ associated gene regulation. Sci. Rep. 2021 11 1 21500 10.1038/s41598‑021‑00858‑7 34728675
    [Google Scholar]
  105. Yang P. Sheng D. Guo Q. Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer’s disease. Biomaterials 2020 238 119844 10.1016/j.biomaterials.2020.119844 32062148
    [Google Scholar]
  106. Narendra D. Tanaka A. Suen D.F. Youle R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008 183 5 795 803 10.1083/jcb.200809125 19029340
    [Google Scholar]
  107. Chen N. Guo Z. Luo Z. Zheng F. Shao W. Yu G. Drp1-mediated mitochondrial fission contributes to mitophagy in paraquat-induced neuronal cell damage. Environ. Pollut. 2021 ••• 272 10.1016/j.envpol.2020.116413 33422762
    [Google Scholar]
  108. Venkataramana N.K. Kumar S.K.V. Balaraju S. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl. Res. 2010 155 2 62 70 10.1016/j.trsl.2009.07.006 20129486
    [Google Scholar]
  109. Canesi M. Giordano R. Lazzari L. Finding a new therapeutic approach for no-option Parkinsonisms: Mesenchymal stromal cells for progressive supranuclear palsy. J. Transl. Med. 2016 14 1 127 10.1186/s12967‑016‑0880‑2 27160012
    [Google Scholar]
  110. Barczewska M. Maksymowicz S. Zdolińska-Malinowska I. Siwek T. Grudniak M. Umbilical cord mesenchymal stem cells in amyotrophic lateral sclerosis: An original study. Stem Cell Rev. Rep. 2020 16 5 922 932 10.1007/s12015‑020‑10016‑7 32725316
    [Google Scholar]
  111. Syková E. Rychmach P. Drahorádová I. Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: Results of phase I/IIa clinical trial. Cell Transplant. 2017 26 4 647 658 10.3727/096368916X693716 27938483
    [Google Scholar]
  112. Siwek T. Jezierska-Woźniak K. Maksymowicz S. Repeat administration of bone marrow-derived mesenchymal stem cells for treatment of amyotrophic lateral sclerosis. Med. Sci. Monit. 2020 26 e927484 10.12659/MSM.927484 33301428
    [Google Scholar]
  113. Sadoshima J. Kitsis R.N. Sciarretta S. Editorial: Mitochondrial dysfunction and cardiovascular diseases. Front. Cardiovasc. Med. 2021 8 645986 10.3389/fcvm.2021.645986 33585590
    [Google Scholar]
  114. Sun M. Jiang W. Mu N. Zhang Z. Yu L. Ma H. Mitochondrial transplantation as a novel therapeutic strategy for cardiovascular diseases. J. Transl. Med. 2023 21 1 347 10.1186/s12967‑023‑04203‑6 37231493
    [Google Scholar]
  115. Mukkala A.N. Jerkic M. Khan Z. Szaszi K. Kapus A. Rotstein O. Therapeutic effects of mesenchymal stromal cells require mitochondrial transfer and quality control. Int. J. Mol. Sci. 2023 24 21 15788 10.3390/ijms242115788 37958771
    [Google Scholar]
  116. Mori D. Miyagawa S. Kawamura T. Mitochondrial transfer induced by adipose-derived mesenchymal stem cell transplantation improves cardiac function in rat models of ischemic cardiomyopathy. Cell Transplant. 2023 32 09636897221148457 10.1177/09636897221148457 36624995
    [Google Scholar]
  117. Plotnikov E.Y. Khryapenkova T.G. Galkina S.I. Sukhikh G.T. Zorov D.B. Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Exp. Cell Res. 2010 316 15 2447 2455 10.1016/j.yexcr.2010.06.009 20599955
    [Google Scholar]
  118. O’Brien C.G. Ozen M.O. Ikeda G. Mitochondria-rich extracellular vesicles rescue patient-specific cardiomyocytes from doxorubicin injury. JACC Cardiooncol. 2021 3 3 428 440 10.1016/j.jaccao.2021.05.006 34604804
    [Google Scholar]
  119. Booth L.K. Redgrave R.E. Folaranmi O. Gill J.H. Richardson G.D. Anthracycline-induced cardiotoxicity and senescence. Front. Aging 2022 3 1058435 10.3389/fragi.2022.1058435 36452034
    [Google Scholar]
  120. Fornaro A. Olivotto I. Rigacci L. Comparison of long‐term outcome in anthracycline‐related versus idiopathic dilated cardiomyopathy: A single centre experience. Eur. J. Heart Fail. 2018 20 5 898 906 10.1002/ejhf.1049 29148208
    [Google Scholar]
  121. Takemura G. Fujiwara H. Doxorubicin-induced cardiomyopathy. Prog. Cardiovasc. Dis. 2007 49 5 330 352 10.1016/j.pcad.2006.10.002 17329180
    [Google Scholar]
  122. Zhang Y. Yu Z. Jiang D. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Reports 2016 7 4 749 763 10.1016/j.stemcr.2016.08.009 27641650
    [Google Scholar]
  123. Smadja D.M. Extracellular microvesicles vs. Mitochondria: Competing for the top spot in cardiovascular regenerative medicine. Stem Cell Rev. Rep. 2024 20 7 1813 1818 10.1007/s12015‑024‑10758‑8 38976143
    [Google Scholar]
  124. Su Z. Guo Y. Huang X. Phytochemicals: Targeting mitophagy to treat metabolic disorders. Front. Cell Dev. Biol. 2021 9 686820 10.3389/fcell.2021.686820 34414181
    [Google Scholar]
  125. Chen Y. Yang F. Chu Y. Yun Z. Yan Y. Jin J. Mitochondrial transplantation: Opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease. J. Transl. Med. 2022 20 1 483 10.1186/s12967‑022‑03693‑0 36273156
    [Google Scholar]
  126. Bi Y. Guo X. Zhang M. Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice. Stem Cell Res. Ther. 2021 12 1 602 10.1186/s13287‑021‑02663‑5 34895322
    [Google Scholar]
  127. Chen P. Yao L. Yuan M. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis. 2024 11 3 101115 10.1016/j.gendis.2023.101115 38299199
    [Google Scholar]
  128. Nguyen L.T. Hoang D.M. Nguyen K.T. Type 2 diabetes mellitus duration and obesity alter the efficacy of autologously transplanted bone marrow-derived mesenchymal stem/stromal cells. Stem Cells Transl. Med. 2021 10 9 1266 1278 10.1002/sctm.20‑0506 34080789
    [Google Scholar]
  129. Nuzzi R. Buono L. Scalabrin S. De Iuliis M. Bussolati B. Effect of stem cell-derived extracellular vesicles on damaged human corneal endothelial cells. Stem Cells Int. 2021 2021 1 12 10.1155/2021/6644463 33531909
    [Google Scholar]
  130. Jiang D. Xu W. Peng F. Tunneling nanotubes-based intercellular mitochondrial trafficking as a novel therapeutic target in dry eye. Exp. Eye Res. 2023 232 109497 10.1016/j.exer.2023.109497 37169281
    [Google Scholar]
  131. Liu K. Zhou Z. Pan M. Zhang L. Stem cell‐derived mitochondria transplantation: A promising therapy for mitochondrial encephalomyopathy. CNS Neurosci. Ther. 2021 27 7 733 742 10.1111/cns.13618 33538116
    [Google Scholar]
  132. Loussouarn C. Pers Y.M. Bony C. Jorgensen C. Noël D. Mesenchymal stromal cell-derived extracellular vesicles regulate the mitochondrial metabolism via transfer of miRNAs. Front. Immunol. 2021 12 623973 10.3389/fimmu.2021.623973 33796099
    [Google Scholar]
  133. Michaeloudes C. Li X. Mak J.C.W. Bhavsar P.K. Study of mesenchymal stem cell-mediated mitochondrial transfer in in vitro models of oxidant-mediated airway epithelial and smooth muscle cell injury. Methods Mol. Biol. 2021 2269 93 105 10.1007/978‑1‑0716‑1225‑5_7 33687674
    [Google Scholar]
  134. Li X. Zhang Y. Liang Y. iPSC ‐derived mesenchymal stem cells exert SCF ‐dependent recovery of cigarette smoke‐induced apoptosis/proliferation imbalance in airway cells. J. Cell. Mol. Med. 2017 21 2 265 277 10.1111/jcmm.12962 27641240
    [Google Scholar]
  135. Rodriguez A.M. Nakhle J. Griessinger E. Vignais M.L. Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle 2018 17 6 712 721 10.1080/15384101.2018.1445906 29582715
    [Google Scholar]
  136. Zhang F. Zheng X. Zhao F. Li L. Ren Y. Li L. TFAM-Mediated mitochondrial transfer of MSCs improved the permeability barrier in sepsis-associated acute lung injury. Apoptosis 2023 28 7-8 1048 1059 10.1007/s10495‑023‑01847‑z 37060506
    [Google Scholar]
  137. Ikeda G. Santoso M.R. Tada Y. Mitochondria-rich extracellular vesicles from autologous stem cell–derived cardiomyocytes restore energetics of ischemic myocardium. J. Am. Coll. Cardiol. 2021 77 8 1073 1088 10.1016/j.jacc.2020.12.060 33632482
    [Google Scholar]
  138. Li L-L. Kofi A.J. Li X-X. Chang J. Bian Y-H. Chu X. A promising strategy for repairing tissue damage: Mitochondria transfer from mesenchymal stem cells. Biomed Eng Commun 2023 2 4 18
    [Google Scholar]
  139. Hu Z. Wang D. Gong J. MSCs deliver hypoxia‐treated mitochondria reprogramming acinar metabolism to alleviate severe acute pancreatitis injury. Adv. Sci. 2023 10 25 2207691 10.1002/advs.202207691 37409821
    [Google Scholar]
  140. Jackson M.V. Morrison T.J. Doherty D.F. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 2016 34 8 2210 2223 10.1002/stem.2372 27059413
    [Google Scholar]
  141. Yuan Y. Yuan L. Li L. Mitochondrial transfer from mesenchymal stem cells to macrophages restricts inflammation and alleviates kidney injury in diabetic nephropathy mice via PGC-1α activation. Stem Cells 2021 39 7 913 928 10.1002/stem.3375 33739541
    [Google Scholar]
  142. Ti D. Hao H. Tong C. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J. Transl. Med. 2015 13 1 308 10.1186/s12967‑015‑0642‑6 26386558
    [Google Scholar]
  143. Liu W. Li L. Rong Y. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater. 2020 103 196 212 10.1016/j.actbio.2019.12.020 31857259
    [Google Scholar]
  144. Keklik M. Deveci B. Celik S. Safety and efficacy of mesenchymal stromal cell therapy for multi-drug-resistant acute and late-acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Ann. Hematol. 2023 102 6 1537 1547 10.1007/s00277‑023‑05216‑3 37067556
    [Google Scholar]
  145. Huang T. Zhang T. Gao J. Targeted mitochondrial delivery: A therapeutic new era for disease treatment. J. Control. Release 2022 343 89 106 10.1016/j.jconrel.2022.01.025 35077740
    [Google Scholar]
  146. Li C.J. Chen P.K. Sun L.Y. Pang C.Y. Enhancement of mitochondrial transfer by antioxidants in human mesenchymal stem cells. Oxid. Med. Cell. Longev. 2017 2017 1 8510805 10.1155/2017/8510805 28596814
    [Google Scholar]
  147. Burch S.A. Luna Lopez C. Effects of cell density and microenvironment on stem cell mitochondria transfer among human adipose-derived stem cells and HEK293 tumorigenic cells. Int. J. Mol. Sci. 2022 23 4 2003 10.3390/ijms23042003 35216117
    [Google Scholar]
  148. Kitani T. Kami D. Kawasaki T. Nakata M. Matoba S. Gojo S. Direct human mitochondrial transfer: A novel concept based on the endosymbiotic theory. Transplant. Proc. 2014 46 4 1233 1236 10.1016/j.transproceed.2013.11.133 24815168
    [Google Scholar]
  149. Zhang T. Miao C. Mitochondrial transplantation as a promising therapy for mitochondrial diseases. Acta Pharm. Sin. B 2023 13 3 1028 1035 10.1016/j.apsb.2022.10.008 36970208
    [Google Scholar]
  150. Gómez-Tatay L. Hernández-Andreu J. Aznar J. Mitochondrial modification techniques and ethical issues. J. Clin. Med. 2017 6 3 25 10.3390/jcm6030025 28245555
    [Google Scholar]
  151. Court A.C. Le-Gatt A. Luz-Crawford P. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 2020 21 2 e48052 10.15252/embr.201948052 31984629
    [Google Scholar]
  152. Boudreau L.H. Duchez A.C. Cloutier N. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 2014 124 14 2173 2183 10.1182/blood‑2014‑05‑573543 25082876
    [Google Scholar]
  153. Masuzawa A. Black K.M. Pacak C.A. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2013 304 7 H966 H982 10.1152/ajpheart.00883.2012 23355340
    [Google Scholar]
  154. Pollara J. Edwards R.W. Lin L. Bendersky V.A. Brennan T.V. Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction. JCI Insight 2018 3 15 e121622 10.1172/jci.insight.121622 30089724
    [Google Scholar]
  155. Lin L. Xu H. Bishawi M. Circulating mitochondria in organ donors promote allograft rejection. Am. J. Transplant. 2019 19 7 1917 1929 10.1111/ajt.15309 30761731
    [Google Scholar]
  156. Ľupták M Hroudová J Important role of mitochondria and the effect of mood stabilizers on mitochondrial function. 2019
    [Google Scholar]
  157. Acquistapace A. Bru T. Lesault P.F. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells 2011 29 5 812 824 10.1002/stem.632 21433223
    [Google Scholar]
  158. Roy S. Kim D. Sankaramoorthy A. Mitochondrial structural changes in the pathogenesis of diabetic retinopathy. J. Clin. Med. 2019 8 9 1363 10.3390/jcm8091363 31480638
    [Google Scholar]
  159. Sercel A.J. Patananan A.N. Man T. Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery. eLife 2021 10 e63102 10.7554/eLife.63102 33438576
    [Google Scholar]
  160. Dawson E.R. Patananan A.N. Sercel A.J. Teitell M.A. Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells. Sci. Rep. 2020 10 1 14328 10.1038/s41598‑020‑71199‑0 32868785
    [Google Scholar]
  161. Merimi M. El-Majzoub R. Lagneaux L. The therapeutic potential of mesenchymal stromal cells for regenerative medicine: Current knowledge and future understandings. Front. Cell Dev. Biol. 2021 9 661532 10.3389/fcell.2021.661532 34490235
    [Google Scholar]
  162. Mansouri A. Gattolliat C.H. Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology 2018 155 3 629 647 10.1053/j.gastro.2018.06.083 30012333
    [Google Scholar]
  163. Liu C.S. Chang J.C. Kuo S.J. Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int. J. Biochem. Cell Biol. 2014 53 141 146 10.1016/j.biocel.2014.05.009 24842105
    [Google Scholar]
  164. Han H. Hu J. Yan Q. Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol. Med. Rep. 2016 13 2 1517 1524 10.3892/mmr.2015.4726 26718099
    [Google Scholar]
  165. Ahmad T. Mukherjee S. Pattnaik B. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014 33 9 10.1002/embj.201386030 24431222
    [Google Scholar]
  166. Frankenberg Garcia J. Rogers A.V. Mak J.C.W. Mitochondrial transfer regulates bioenergetics in healthy and chronic obstructive pulmonary disease airway smooth muscle. Am. J. Respir. Cell Mol. Biol. 2022 67 4 471 481 10.1165/rcmb.2022‑0041OC 35763375
    [Google Scholar]
  167. Marlein C.R. Zaitseva L. Piddock R.E. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 2017 130 14 1649 1660 10.1182/blood‑2017‑03‑772939 28733324
    [Google Scholar]
  168. Li X. Michaeloudes C. Zhang Y. Mesenchymal stem cells alleviate oxidative stress–induced mitochondrial dysfunction in the airways. J. Allergy Clin. Immunol. 2018 141 5 1634 1645.e5 10.1016/j.jaci.2017.08.017 28911970
    [Google Scholar]
  169. Shi X. Zhao M. Fu C. Fu A. Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion 2017 34 91 100 10.1016/j.mito.2017.02.005 28242362
    [Google Scholar]
  170. Nguyen H. Lee J.Y. Sanberg P.R. Napoli E. Borlongan C.V. Eye opener in stroke. Stroke 2019 50 8 2197 2206 10.1161/STROKEAHA.119.025249 31242827
    [Google Scholar]
  171. Jiang D. Xiong G. Feng H. Donation of mitochondria by iPSC-derived mesenchymal stem cells protects retinal ganglion cells against mitochondrial complex I defect-induced degeneration. Theranostics 2019 9 8 2395 2410 10.7150/thno.29422 31149051
    [Google Scholar]
  172. Shanmughapriya S. Langford D. Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res. Rev. 2020 62 101128 10.1016/j.arr.2020.101128 32712108
    [Google Scholar]
  173. Gäbelein C.G. Feng Q. Sarajlic E. Mitochondria transplantation between living cells. PLoS Biol. 2022 20 3 e3001576 10.1371/journal.pbio.3001576 35320264
    [Google Scholar]
  174. Lin W. Huang L. Li Y. Mesenchymal stem cells and cancer: Clinical challenges and opportunities. BioMed Res. Int. 2019 2019 1 12 10.1155/2019/2820853 31205939
    [Google Scholar]
  175. Suzuki R. Ogiya D. Ogawa Y. Kawada H. Ando K. Targeting CAM-DR and mitochondrial transfer for the treatment of multiple myeloma. Curr. Oncol. 2022 29 11 8529 8539 10.3390/curroncol29110672 36354732
    [Google Scholar]
  176. Vander Heiden M.G. Cantley L.C. Thompson C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009 324 5930 1029 1033 10.1126/science.1160809 19460998
    [Google Scholar]
  177. Valenti D. Vacca R.A. Moro L. Atlante A. Mitochondria can cross cell boundaries: An overview of the biological relevance, pathophysiological implications and therapeutic perspectives of intercellular mitochondrial transfer. Int. J. Mol. Sci. 2021 22 15 8312 10.3390/ijms22158312 34361078
    [Google Scholar]
  178. Koyanagi M. Brandes R.P. Haendeler J. Zeiher A.M. Dimmeler S. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: A novel mechanism for cell fate changes? Circ. Res. 2005 96 10 1039 1041 10.1161/01.RES.0000168650.23479.0c 15879310
    [Google Scholar]
  179. Luz-Crawford P. Hernandez J. Djouad F. Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res. Ther. 2019 10 1 232 10.1186/s13287‑019‑1307‑9 31370879
    [Google Scholar]
  180. Levoux J. Prola A. Lafuste P. Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell Metab. 2021 33 2 283 299.e9 10.1016/j.cmet.2020.12.006 33400911
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X362739250416153254
Loading
/content/journals/cscr/10.2174/011574888X362739250416153254
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test