Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Introduction

During mesenchymal stem cell (MSCs) aging, a decrease in its proliferation and regenerative capacity occurs, which is implicated in human aging. The MSCs aging process is regulated by genetics, metabolism, the external environment, and various complex pathways.

Methods

The aging of MSCs during culture poses a major challenge for developing cell therapy aimed at combating human diseases and aging. To identify the contributing factors underlying MSCs aging, we obtained datasets of mRNA expression changes before and after aging from the Gene Expression Omnibus (GEO) database and datasets of extracellular vesicles (EVs) microRNAs (miRNAs) expression changes (GSE153752, GSE195634, and GSE226464). We conducted an in-depth analysis to screen the correlation between EVs-miRNAs and MSCs aging.

Results

Our analysis identified significant differences in the expression of hsa-miR-146a-5p, hsa-miR-432-5p, hsa-miR-7706, hsa-miR-409-3p, and hsa-miR-17-5p in EVs before and after MSCs aging. These differences arise from the post-MSCs aging activation of signaling pathways, such as FOXO and P53, which promote the expression of hsa-miR-146a-5p, hsa-miR-432-5p, hsa-miR-7706, hsa-miR-409-3p, and hsa-miR-17-5p.

Conclusion

Subsequently, these miRNAs are transported to EVs upon binding to the RNA-binding proteins A2BP1, SFRS2, MBNL1, EIF4B, and ACO1. This study used the correlation between MSCs aging and specific EVs-miRNAs to predict MSCs aging during the culture process.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X342545241202050636
2025-09-01
2025-12-19
Loading full text...

Full text loading...

References

  1. HouY. DanX. BabbarM. etal Ageing as a risk factor for neurodegenerative disease.Nat. Rev. Neurol.2019151056558110.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  2. Di MiccoR. KrizhanovskyV. BakerD. d’Adda di FagagnaF. Cellular senescence in ageing: from mechanisms to therapeutic opportunities.Nat. Rev. Mol. Cell Biol.2021222759510.1038/s41580‑020‑00314‑w 33328614
    [Google Scholar]
  3. CampisiJ. d’Adda di FagagnaF. Cellular senescence: when bad things happen to good cells.Nat. Rev. Mol. Cell Biol.20078972974010.1038/nrm2233 17667954
    [Google Scholar]
  4. López-OtínC. BlascoM.A. PartridgeL. SerranoM. KroemerG. The hallmarks of aging.Cell201315361194121710.1016/j.cell.2013.05.039 23746838
    [Google Scholar]
  5. ChenZ. JinM. HeH. etal Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing.J. Orthop. Translat.202339637310.1016/j.jot.2022.12.005 37188000
    [Google Scholar]
  6. YuJ. ShiJ. ZhangY. etal The replicative senescent mesenchymal stem/stromal cells defect in DNA damage response and anti-oxidative capacity.Int. J. Med. Sci.201815877178110.7150/ijms.24635 30008586
    [Google Scholar]
  7. UruskiP. SepetowskaA. KoniecznaC. etal Primary high-grade serous ovarian cancer cells are sensitive to senescence induced by carboplatin and paclitaxel in vitro.Cell. Mol. Biol. Lett.20212614410.1186/s11658‑021‑00287‑4 34674640
    [Google Scholar]
  8. KundrotasG. GasperskajaE. SlapsyteG. etal Identity, proliferation capacity, genomic stability and novel senescence markers of mesenchymal stem cells isolated from low volume of human bone marrow.Oncotarget2016710107881080210.18632/oncotarget.7456 26910916
    [Google Scholar]
  9. WeiZ. MaH. FangE.F. ChenH.Z. Editorial: Cellular Senescence and Cellular Communications Within Tissue Microenvironments During Aging.Front. Physiol.20221389057710.3389/fphys.2022.890577 35480049
    [Google Scholar]
  10. StreetJ.M. BarranP.E. MackayC.L. etal Identification and proteomic profiling of exosomes in human cerebrospinal fluid.J. Transl. Med.2012101510.1186/1479‑5876‑10‑5 22221959
    [Google Scholar]
  11. JiaS. ZoccoD. SamuelsM.L. etal Emerging technologies in extracellular vesicle-based molecular diagnostics.Expert Rev. Mol. Diagn.201414330732110.1586/14737159.2014.893828 24575799
    [Google Scholar]
  12. VlassovA.V. MagdalenoS. SetterquistR. ConradR. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials.Biochim. Biophys. Acta, Gen. Subj.20121820794094810.1016/j.bbagen.2012.03.017 22503788
    [Google Scholar]
  13. FrühbeisC. FröhlichD. KuoW.P. etal Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication.PLoS Biol.2013117e100160410.1371/journal.pbio.1001604 23874151
    [Google Scholar]
  14. RobbinsP.D. MorelliA.E. Regulation of immune responses by extracellular vesicles.Nat. Rev. Immunol.201414319520810.1038/nri3622 24566916
    [Google Scholar]
  15. SkogJ. WürdingerT. van RijnS. etal Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.Nat. Cell Biol.200810121470147610.1038/ncb1800 19011622
    [Google Scholar]
  16. AilawadiS. WangX. GuH. FanG.C. Pathologic function and therapeutic potential of exosomes in cardiovascular disease.Biochim. Biophys. Acta Mol. Basis Dis.20151852111110.1016/j.bbadis.2014.10.008 25463630
    [Google Scholar]
  17. KulshreshthaA. AhmadT. AgrawalA. GhoshB. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation.J. Allergy Clin. Immunol.201313141194120310.1016/j.jaci.2012.12.1565
    [Google Scholar]
  18. KellerS. RidingerJ. RuppA.K. JanssenJ.W.G. AltevogtP. Body fluid derived exosomes as a novel template for clinical diagnostics.J. Transl. Med.2011918610.1186/1479‑5876‑9‑86 21651777
    [Google Scholar]
  19. KadotaT. FujitaY. YoshiokaY. ArayaJ. KuwanoK. OchiyaT. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases.Mol. Aspects Med.2018609210310.1016/j.mam.2017.11.005 29146100
    [Google Scholar]
  20. PasutA. MatsumotoA. ClohessyJ.G. PandolfiP.P. The pleiotropic role of non-coding genes in development and cancer.Curr. Opin. Cell Biol.20164310411310.1016/j.ceb.2016.10.005 27865128
    [Google Scholar]
  21. WilczynskaA. BushellM. The complexity of miRNA-mediated repression.Cell Death Differ.2015221223310.1038/cdd.2014.112 25190144
    [Google Scholar]
  22. ZhangZ. MouZ. XuC. etal Autophagy-associated circular RNA hsa_circ_0007813 modulates human bladder cancer progression via hsa-miR-361-3p/IGF2R regulation.Cell Death Dis.202112877810.1038/s41419‑021‑04053‑4 34365465
    [Google Scholar]
  23. LinC.C. ChangY.M. PanC.T. etal Functional evolution of cardiac microRNAs in heart development and functions.Mol. Biol. Evol.201431102722273410.1093/molbev/msu217 25063441
    [Google Scholar]
  24. TaganovK.D. BoldinM.P. ChangK.J. BaltimoreD. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses.Proc. Natl. Acad. Sci. USA200610333124811248610.1073/pnas.0605298103 16885212
    [Google Scholar]
  25. BarrettT. WilhiteS.E. LedouxP. etal NCBI GEO: archive for functional genomics data sets—update.Nucleic Acids Res.201241D1D991D99510.1093/nar/gks1193 23193258
    [Google Scholar]
  26. LewinskaA. Adamczyk-GrochalaJ. KwasniewiczE. etal Reduced levels of methyltransferase DNMT2 sensitize human fibroblasts to oxidative stress and DNA damage that is accompanied by changes in proliferation-related miRNA expression.Redox Biol.201814203410.1016/j.redox.2017.08.012 28843151
    [Google Scholar]
  27. DuWW LiX LiT etal Expression of microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. J Cell Sci20141282jcs.15836010.1242/jcs.158360 25472717
    [Google Scholar]
  28. ShanT. XuZ. LiuJ. WuW. WangY. Lkb1 regulation of skeletal muscle development, metabolism and muscle progenitor cell homeostasis.J. Cell. Physiol.2017232102653265610.1002/jcp.25786 28067405
    [Google Scholar]
  29. CartierA. HlaT. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy.Science20193666463eaar555110.1126/science.aar5551 31624181
    [Google Scholar]
  30. WeichhartT. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review.Gerontology201864212713410.1159/000484629 29190625
    [Google Scholar]
  31. MartinsR. LithgowG.J. LinkW. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity.Aging Cell201615219620710.1111/acel.12427 26643314
    [Google Scholar]
  32. HwangS.Y. KukM.U. KimJ.W. etal ATM mediated-p53 signaling pathway forms a novel axis for senescence control.Mitochondrion202055546310.1016/j.mito.2020.09.002 32949791
    [Google Scholar]
  33. LiN. WangZ. YangF. HuW. ZhaX. DuanX. MiR-29b Downregulation by p53/Sp1 complex plays a critical role in bleb scar formation after glaucoma filtration surgery.Transl. Vis. Sci. Technol.202312125
    [Google Scholar]
  34. QuX. WangZ. WuK. WangY. ShanL. Zoledronate inhibits the differentiation potential of adipose-derived stem cells into osteoblasts in repairing jaw necrosis.Mol. Cell. Probes20205110152510.1016/j.mcp.2020.101525 31982509
    [Google Scholar]
  35. JiangL.B. LeeS. WangY. XuQ.T. MengD.H. ZhangJ. Adipose-derived stem cells induce autophagic activation and inhibit catabolic response to pro-inflammatory cytokines in rat chondrocytes.Osteoarthritis Cartilage20162461071108110.1016/j.joca.2015.12.021 26778531
    [Google Scholar]
  36. Wongtrakul-KishK. HerbertB.R. PackerN.H. Bisecting GlcNAc Protein N -Glycosylation Is Characteristic of Human Adipogenesis.J. Proteome Res.20212021313132710.1021/acs.jproteome.0c00702 33383989
    [Google Scholar]
  37. MaziniL. EzzoubiM. MalkaG. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: flow chart and regulation updates before and after COVID-19.Stem Cell Res. Ther.2021121110.1186/s13287‑020‑02006‑w 33397467
    [Google Scholar]
  38. ChenS. HeZ. XuJ. Application of adipose-derived stem cells in photoaging: basic science and literature review.Stem Cell Res. Ther.202011149110.1186/s13287‑020‑01994‑z 33225962
    [Google Scholar]
  39. DuS. LingH. GuoZ. CaoQ. SongC. Roles of exosomal miRNA in vascular aging.Pharmacol. Res.202116510527810.1016/j.phrs.2020.105278 33166733
    [Google Scholar]
  40. Al-AzabM. SafiM. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting.Cell. Mol. Biol. Lett.202227169
    [Google Scholar]
  41. Liam-OrR. FaruquF.N. WaltersA. etal Cellular uptake and in vivo distribution of mesenchymal-stem-cell-derived extracellular vesicles are protein corona dependent.Nat. Nanotechnol.202419684685510.1038/s41565‑023‑01585‑y 38366223
    [Google Scholar]
  42. JonesB.J. McTaggartS.J. Immunosuppression by mesenchymal stromal cells: From culture to clinic.Exp. Hematol.200836673374110.1016/j.exphem.2008.03.006 18474304
    [Google Scholar]
  43. PelagiadisI. DimitriouH. KalmantiM. Biologic characteristics of mesenchymal stromal cells and their clinical applications in pediatric patients.J. Pediatr. Hematol. Oncol.200830430130910.1097/MPH.0b013e31816356e3 18391700
    [Google Scholar]
  44. EnglishK. MahonB.P. Allogeneic mesenchymal stem cells: Agents of immune modulation.J. Cell. Biochem.201111281963196810.1002/jcb.23119 21445861
    [Google Scholar]
  45. ChuD.T. PhuongT.N.T. TienN.L.B. etal An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells.Int. J. Mol. Sci.202021370810.3390/ijms21030708 31973182
    [Google Scholar]
  46. XieQ. LiuR. JiangJ. etal What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment?Stem Cell Res. Ther.202011151910.1186/s13287‑020‑02011‑z 33261658
    [Google Scholar]
  47. Al-GhadbanS. BunnellB.A. Adipose Tissue-Derived Stem Cells: Immunomodulatory Effects and Therapeutic Potential.Physiology (Bethesda)202035212513310.1152/physiol.00021.2019 32027561
    [Google Scholar]
  48. WagnerW. WeinF. SeckingerA. etal Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood.Exp. Hematol.200533111402141610.1016/j.exphem.2005.07.003 16263424
    [Google Scholar]
  49. MusinaR.A. BekchanovaE.S. BelyavskiiA.V. SukhikhG.T. Differentiation potential of mesenchymal stem cells of different origin.Bull. Exp. Biol. Med.2006141114715110.1007/s10517‑006‑0115‑2 16929987
    [Google Scholar]
  50. MaziniL. RochetteL. AmineM. MalkaG. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs).Int. J. Mol. Sci.20192010252310.3390/ijms20102523 31121953
    [Google Scholar]
  51. RossiniA.A. LikeA.A. ChickW.L. AppelM.C. CahillG.F.Jr Studies of streptozotocin-induced insulitis and diabetes.Proc. Natl. Acad. Sci. USA19777462485248910.1073/pnas.74.6.2485 142253
    [Google Scholar]
  52. SiY.L. ZhaoY.L. HaoH.J. FuX.B. HanW.D. MSCs: Biological characteristics, clinical applications and their outstanding concerns.Ageing Res. Rev.20111019310310.1016/j.arr.2010.08.005 20727988
    [Google Scholar]
  53. WangY. ChenX. CaoW. ShiY. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications.Nat. Immunol.201415111009101610.1038/ni.3002 25329189
    [Google Scholar]
  54. Casado-DíazA. Quesada-GómezJ.M. DoradoG. Extracellular Vesicles Derived From Mesenchymal Stem Cells (MSC) in Regenerative Medicine: Applications in Skin Wound Healing.Front. Bioeng. Biotechnol.2020814610.3389/fbioe.2020.00146 32195233
    [Google Scholar]
  55. ColomboM. RaposoG. ThéryC. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu. Rev. Cell Dev. Biol.201430125528910.1146/annurev‑cellbio‑101512‑122326 25288114
    [Google Scholar]
  56. McBrideJ.D. Rodriguez-MenocalL. BadiavasE.V. Extracellular Vesicles as Biomarkers and Therapeutics in Dermatology: A Focus on Exosomes.J. Invest. Dermatol.201713781622162910.1016/j.jid.2017.04.021 28648952
    [Google Scholar]
  57. LiuJ. ZhuJ. XiaoZ. WangX. LuoJ. BBOX1‐AS1 contributes to colorectal cancer progression by sponging hsa‐ miR‐361‐3p and targeting SH2B1.FEBS Open Bio202212598399210.1002/2211‑5463.12802 31984680
    [Google Scholar]
  58. ShakeriH. GevaertA.B. SchrijversD.M. etal Neuregulin-1 attenuates stress-induced vascular senescence.Cardiovasc. Res.201811471041105110.1093/cvr/cvy059 29528383
    [Google Scholar]
  59. BeckmanJ.A. CreagerM.A. Vascular Complications of Diabetes.Circ. Res.2016118111771178510.1161/CIRCRESAHA.115.306884 27230641
    [Google Scholar]
  60. DonatoAJ MachinDR LesniewskiLA Mechanisms of dysfunction in the aging vasculature and role in age-related disease.Circ Res20181237-848825-4810.1161/CIRCRESAHA.118.312563
    [Google Scholar]
  61. HumbertM. MorrellN.W. ArcherS.L. etal Cellular and molecular pathobiology of pulmonary arterial hypertension.J. Am. Coll. Cardiol.20044312Suppl. SS13S2410.1016/j.jacc.2004.02.029 15194174
    [Google Scholar]
  62. EckhardtC.M. GambazzaS. BloomquistT.R. etal Extracellular Vesicle-Encapsulated microRNAs as Novel Biomarkers of Lung Health.Am. J. Respir. Crit. Care Med.20232071505910.1164/rccm.202109‑2208OC 35943330
    [Google Scholar]
  63. MizobuchiM. TowlerD. SlatopolskyE. Vascular Calcification.J. Am. Soc. Nephrol.20092071453146410.1681/ASN.2008070692 19478096
    [Google Scholar]
  64. ShanahanC.M. Mechanisms of vascular calcification in CKD—evidence for premature ageing?Nat. Rev. Nephrol.201391166167010.1038/nrneph.2013.176 24018414
    [Google Scholar]
  65. ZhouJ. ZhangB. ZhangX. WangC. XuY. Identification of a 3-miRNA Signature Associated With the Prediction of Prognosis in Nasopharyngeal Carcinoma.Front. Oncol.20221182360310.3389/fonc.2021.823603 35155213
    [Google Scholar]
  66. HeY. LiQ. FengF. etal Extracellular vesicles produced by human-induced pluripotent stem cell-derived endothelial cells can prevent arterial stenosis in mice via autophagy regulation.Front. Cardiovasc. Med.2022992279010.3389/fcvm.2022.922790 36324745
    [Google Scholar]
  67. WuJ. LiangW. TianY. etal Inhibition of P53/miR‐34a improves diabetic endothelial dysfunction via activation of SIRT1.J. Cell. Mol. Med.20192353538354810.1111/jcmm.14253 30793480
    [Google Scholar]
  68. HollaS. BalajiK.N. Epigenetics and miRNA during bacteria-induced host immune responses.Epigenomics2015771197121210.2217/epi.15.75 26585338
    [Google Scholar]
  69. ThumT. CondorelliG. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology.Circ. Res.20151164751762
    [Google Scholar]
  70. SheikhshabaniS.H. Amini-FarsaniZ. KazemifardN. etal Acute Kidney Injury (AKI) in COVID-19: In silico Identification of LncRNA-MiRNA-Gene Networks and Key Transcription Factors.Curr. Pharm. Des.202329241907191710.2174/1381612829666230816105221 37584353
    [Google Scholar]
  71. SharmaA.R. SharmaG. LeeS.S. ChakrabortyC. miRNA‐Regulated Key Components of Cytokine Signaling Pathways and Inflammation in Rheumatoid Arthritis.Med. Res. Rev.201636342543910.1002/med.21384 26786912
    [Google Scholar]
  72. XingC. LinQ. GaoX. etal Intracellular miRNA Imaging Based on a Self-Powered and Self-Feedback Entropy-Driven Catalyst–DNAzyme Circuit.ACS Appl. Mater. Interfaces20221435398663987210.1021/acsami.2c11923 36018586
    [Google Scholar]
  73. LaiW.F. LinM. WongW.T. Tackling Aging by Using miRNA as a Target and a Tool.Trends Mol. Med.201925867368410.1016/j.molmed.2019.04.007 31126873
    [Google Scholar]
  74. HoP.T.B. ClarkI.M. LeL.T.T. MicroRNA-Based Diagnosis and Therapy.Int. J. Mol. Sci.20222313716710.3390/ijms23137167 35806173
    [Google Scholar]
  75. YaoQ. ChenY. ZhouX. The roles of microRNAs in epigenetic regulation.Curr. Opin. Chem. Biol.201951111710.1016/j.cbpa.2019.01.024 30825741
    [Google Scholar]
  76. BorkS. PfisterS. WittH. etal DNA methylation pattern changes upon long‐term culture and aging of human mesenchymal stromal cells.Aging Cell201091546310.1111/j.1474‑9726.2009.00535.x 19895632
    [Google Scholar]
  77. DixsonA.C. DawsonT.R. Di VizioD. WeaverA.M. Context-specific regulation of extracellular vesicle biogenesis and cargo selection.Nat. Rev. Mol. Cell Biol.202324745447610.1038/s41580‑023‑00576‑0 36765164
    [Google Scholar]
  78. HessK. BesslerS. SchneiderJ.M. von RaminM. Abstraction and simulation of EV battery systems—resilience engineering by biological transformation.Bioinspir. Biomim.202318505600310.1088/1748‑3190/ace8da 37467754
    [Google Scholar]
  79. MassaroF. CorrillonF. StamatopoulosB. etal Age-related changes in human bone marrow mesenchymal stromal cells: morphology, gene expression profile, immunomodulatory activity and miRNA expression.Front. Immunol.202314126755010.3389/fimmu.2023.1267550 38130717
    [Google Scholar]
  80. AlfonzoM.C. Al SaediA. FulzeleS. HamrickM.W. Extracellular Vesicles as Communicators of Senescence in Musculoskeletal Aging.JBMR Plus2022611e1068610.1002/jbm4.10686 36398109
    [Google Scholar]
  81. YiD. WangR. ShiX. XuL. YilihamuY. SangJ. METTL14 promotes the migration and invasion of breast cancer cells by modulating N6 methyladenosine and hsa miR 146a 5p expression.Oncol. Rep.20204351375138610.3892/or.2020.7515 32323801
    [Google Scholar]
  82. Yerukala SathipatiS. TsaiM.J. ShuklaS.K. HoS.Y. LiuY. BeheshtiA. MicroRNA signature for estimating the survival time in patients with bladder urothelial carcinoma.Sci. Rep.2022121414110.1038/s41598‑022‑08082‑7 35264666
    [Google Scholar]
  83. LiuY. QiangW. XuX. etal Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells.Oncotarget2015636389833899810.18632/oncotarget.5493 26472020
    [Google Scholar]
  84. XuX. KimJ.J. LiY. XieJ. ShaoC. WeiJ.J. Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma.J. Mol. Med. (Berl.)201896101095110610.1007/s00109‑018‑1682‑1 30097674
    [Google Scholar]
  85. WangF. DaiM. ChenH. etal Prognostic value of hsa mir 299 and hsa mir 7706 in hepatocellular carcinoma.Oncol. Lett.201816181582010.3892/ol.2018.8710 29963149
    [Google Scholar]
  86. MinX. CaiM. ShaoT. etal A circular intronic RNA ciPVT1 delays endothelial cell senescence by regulating the miR‐24‐3p/CDK4/pRb axis.Aging Cell2022211e1352910.1111/acel.13529 34902213
    [Google Scholar]
  87. BuH. BaraldoG. LepperdingerG. Jansen-DürrP. mir-24 activity propagates stress-induced senescence by down regulating DNA topoisomerase 1.Exp. Gerontol.201675485210.1016/j.exger.2015.12.012 26748253
    [Google Scholar]
  88. Soriano-ArroquiaA. GostageJ. XiaQ. etal miR‐24 and its target gene Prdx6 regulate viability and senescence of myogenic progenitors during aging.Aging Cell20212010e1347510.1111/acel.13475 34560818
    [Google Scholar]
  89. DarA.A. MajidS. de SemirD. NosratiM. BezrookoveV. Kashani-SabetM. miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein.J. Biol. Chem.201128619166061661410.1074/jbc.M111.227611 21454583
    [Google Scholar]
  90. MaX. WangN. ChenK. ZhangC. Oncosuppressive role of MicroRNA-205–3p in gastric cancer through inhibition of proliferation and induction of senescence.Transl. Oncol.2021141110119910.1016/j.tranon.2021.101199 34388692
    [Google Scholar]
  91. GerasymchukM. CherkasovaV. KovalchukO. KovalchukI. The Role of microRNAs in Organismal and Skin Aging.Int. J. Mol. Sci.20202115528110.3390/ijms21155281 32722415
    [Google Scholar]
  92. TanP. GuoY.H. ZhanJ.K. etal LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1.Biochem. Cell Biol.201997557158010.1139/bcb‑2018‑0126 30789795
    [Google Scholar]
  93. HuangY. YanH. YangY. ZhouJ. XuQ. MengH. Downregulated miR-181a alleviates H2O2-induced oxidative stress and cellular senescence by targeting PDIA6 in human foreskin fibroblasts.An. Bras. Dermatol.2023981172510.1016/j.abd.2021.12.007 36244946
    [Google Scholar]
  94. WagnerW. HornP. CastoldiM. etal Replicative senescence of mesenchymal stem cells: a continuous and organized process.PLoS One200835e221310.1371/journal.pone.0002213 18493317
    [Google Scholar]
  95. LeeY.N. WuY.J. LeeH.I. etal Hsa‐miR ‐409‐3p regulates endothelial progenitor senescence via PP2A‐P38 and is a potential ageing marker in humans.J. Cell. Mol. Med.202327568770010.1111/jcmm.17691 36756741
    [Google Scholar]
  96. DuW.W. YangW. FangL. etal miR-17 extends mouse lifespan by inhibiting senescence signaling mediated by MKP7.Cell Death Dis.201457e135510.1038/cddis.2014.305 25077541
    [Google Scholar]
  97. Al-KhalafH.H. AboussekhraA. p16 INK4A induces senescence and inhibits EMT through microRNA‐141/microRNA‐146b‐5p‐dependent repression of AUF1.Mol. Carcinog.201756398599910.1002/mc.22564 27596953
    [Google Scholar]
  98. HaoY. ZhouQ. MaJ. ZhaoY. WangS. miR-146a is upregulated during retinal pigment epithelium (RPE)/choroid aging in mice and represses IL-6 and VEGF-A expression in RPE cells.J. Clin. Exp. Ophthalmol.20167356210.4172/2155‑9570.1000562 27917303
    [Google Scholar]
  99. LuY. LiuL. PanJ. etal MFG-E8 regulated by miR-99b-5p protects against osteoarthritis by targeting chondrocyte senescence and macrophage reprogramming via the NF-κB pathway.Cell Death Dis.202112653310.1038/s41419‑021‑03800‑x 34031369
    [Google Scholar]
  100. WangS. ShiM. ZhouJ. WangW. ZhangY. LiY. Circulating Exosomal miR-181b-5p Promoted Cell Senescence and Inhibited Angiogenesis to Impair Diabetic Foot Ulcer via the Nuclear Factor Erythroid 2-Related Factor 2/Heme Oxygenase-1 Pathway.Front. Cardiovasc. Med.2022984404710.3389/fcvm.2022.844047 35528840
    [Google Scholar]
  101. CandiniO. SpanoC. MurgiaA. etal Mesenchymal progenitors aging highlights a miR-196 switch targeting HOXB7 as master regulator of proliferation and osteogenesis.Stem Cells201533393995010.1002/stem.1897 25428821
    [Google Scholar]
  102. LiZ. ZhuS. ChenX. etal ARID1A suppresses malignant transformation of human pancreatic cells via mediating senescence-associated miR-503/CDKN2A regulatory axis.Biochem. Biophys. Res. Commun.201749321018102510.1016/j.bbrc.2017.09.099 28942143
    [Google Scholar]
  103. VerduciL. SimiliM. RizzoM. etal MicroRNA (miRNA)-mediated interaction between leukemia/lymphoma-related factor (LRF) and alternative splicing factor/splicing factor 2 (ASF/SF2) affects mouse embryonic fibroblast senescence and apoptosis.J. Biol. Chem.201028550395513956310.1074/jbc.M110.114736 20923760
    [Google Scholar]
  104. TambeM. PruikkonenS. Mäki-JouppilaJ. etal Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells’ sensitivity to paclitaxel.Oncotarget2016711122671228510.18632/oncotarget.7860 26943585
    [Google Scholar]
  105. LangA. Grether-BeckS. SinghM. etal MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4.Aging (Albany NY)20168348450510.18632/aging.100905 26959556
    [Google Scholar]
  106. LeeY.H. KimS.Y. BaeY.S. Upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells.Mol. Cells201437862062710.14348/molcells.2014.0157 25139266
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X342545241202050636
Loading
/content/journals/cscr/10.2174/011574888X342545241202050636
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): aging; extracellular vesicle; GEO database; KEGG; miRNA; MSCs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test