Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Introduction

Human adipose-derived stem cells (hADSCs) are considered a promising source for cell replacement therapy in degenerative and traumatic conditions. This study explores the effects of phenylacetate and calcium on the neural differentiation of hADSCs for regenerative medicine. We assessed cell viability and cytotoxicity using the MTT assay, revealing that treatment with 1μM phenylacetate significantly enhanced cell viability compared to control groups over five days, while higher concentrations resulted in cytotoxic effects.

Methods

Additionally, qualitative analysis through Acridine orange/ethidium bromide (AO/EB) staining indicated normal cellular characteristics at lower phenylacetate concentrations, whereas higher doses led to observable cell death. A subsequent evaluation of intracellular calcium levels demonstrated a significant increase when hADSCs were treated with both phenylacetate and calcium.

Results

The neural differentiation potential was further assessed through the relative quantification of neuronal-specific genes, showing marked upregulation of , , , and in all treatment groups compared to controls. Immunohistochemistry confirmed elevated protein expression of neural markers in cultures supplemented with phenylacetate and calcium.

Conclusion

These findings suggest that phenylacetate, particularly in conjunction with calcium, enhances the neural differentiation of hADSCs, highlighting its potential utility in regenerative medicine strategies targeting neurodegenerative conditions.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X355333241203114713
2025-09-01
2025-12-20
Loading full text...

Full text loading...

References

  1. FerresL. EvangelistiL. MarisA. MelandriS. CaminatiW. StahlW. NguyenH.V.L. Skeletal torsion tunneling and methyl internal rotation: The coupled large amplitude motions in phenyl acetate.Molecules2022279273010.3390/molecules2709273035566082
    [Google Scholar]
  2. HornerP.J. GageF.H. Regenerating the damaged central nervous system.Nature2000407680796397010.1038/3503955911069169
    [Google Scholar]
  3. HanY. LiX. ZhangY. HanY. ChangF. DingJ. Mesenchymal stem cells for regenerative medicine.Cells20198888610.3390/cells808088631412678
    [Google Scholar]
  4. FitzsimmonsRE MazurekMS SoosA SimmonsCA Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering.Stem Cells Int201820188031718
    [Google Scholar]
  5. MargianaR. MarkovA. ZekiyA.O. HamzaM.U. Al-DabbaghK.A. Al-ZubaidiS.H. HameedN.M. AhmadI. SivaramanR. KzarH.H. Al-GazallyM.E. MustafaY.F. SiahmansouriH. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review.Stem Cell Res. Ther.202213136610.1186/s13287‑022‑03054‑035902958
    [Google Scholar]
  6. GhiasiM. HashemiM. SalimiA. JadidiK. TavallaieM. AghamollaeiH. Combination of natural scaffolds and conditional medium to induce the differentiation of adipose-derived mesenchymal stem cells into keratocyte-like cells and its safety evaluation in the animal cornea.Tissue Cell20238210211710.1016/j.tice.2023.10211737267821
    [Google Scholar]
  7. NorouzF. PoormoghadamD. HalabianR. GhiasiM. MonfarediM. SalimiA. A novel nanocomposite scaffold based on polyurethane (PU) containing cobalt nanoparticles (CoNPs) for bone tissue engineering applications.Curr. Stem Cell Res. Ther.20231881120113210.2174/1574888X1866623021608561536797606
    [Google Scholar]
  8. HoseinianM.S. PoormoghadamD. KheirollahzadehF. MojtahediA. SalimiA. HalabianR. Improved neural differentiation of human- induced pluripotent stem cell [hiPSCs] on a novel polyurethane- based scaffold containing iron oxide nanoparticles [Fe 2 O 3 NPs].Curr. Stem Cell Res. Ther.2023187993100010.2174/1574888X1766622063009041835786193
    [Google Scholar]
  9. GhiasiM. Kheirandish ZarandiP. DayaniA. SalimiA. ShokriE. Potential therapeutic effects and nano-based delivery systems of mesenchymal stem cells and their isolated exosomes to alleviate acute respiratory distress syndrome caused by COVID-19.Regen. Ther.20242731932810.1016/j.reth.2024.03.01538650667
    [Google Scholar]
  10. DayaniA. GhiasiM. New methods in cardiac regenerative medicine: The use of induced pluripotent stem cells, exosomes, and cardiac patch technology.J. Mazandaran Univ. Med. Sci.202434236158176
    [Google Scholar]
  11. ZukP.A. ZhuM. MizunoH. HuangJ. FutrellJ.W. KatzA.J. BenhaimP. LorenzH.P. HedrickM.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies.Tissue Eng.20017221122810.1089/10763270130006285911304456
    [Google Scholar]
  12. FreseL. DijkmanP.E. HoerstrupS.P. Adipose tissue-derived stem cells in regenerative medicine.Transfus. Med. Hemother.201643426827410.1159/00044818027721702
    [Google Scholar]
  13. Jahanbazi Jahan-AbadA. Sahab NegahS. Hosseini RavandiH. GhasemiS. Borhani-HaghighiM. StummerW. GorjiA. Khaleghi GhadiriM. Human neural stem/progenitor cells derived from epileptic human brain in a self-assembling peptide nanoscaffold improve traumatic brain injury in rats.Mol. Neurobiol.201855129122913810.1007/s12035‑018‑1050‑829651746
    [Google Scholar]
  14. ChengY-B. RenC. GengD-Q. ZhangR-C. DuW-Q. ZhangJ-Y. YuS-X. LuF-Z. DingH-M. Mesenchymal stem cell treatment for peripheral nerve injury: A narrative review.Neural Regen. Res.202116112170217610.4103/1673‑5374.31094133818489
    [Google Scholar]
  15. WightmanF. LightyD.L. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants.Physiol. Plant.1982551172410.1111/j.1399‑3054.1982.tb00278.x
    [Google Scholar]
  16. SandlerM. RuthvenC.R. GoodwinB.L. LeesA. SternG.M. Phenylacetic acid in human body fluids: High correlation between plasma and cerebrospinal fluid concentration values.J. Neurol. Neurosurg. Psychiatry198245436636810.1136/jnnp.45.4.3667077347
    [Google Scholar]
  17. SamidD. HudginsW.R. ShackS. LiuL. PrasannaP. MyersC.E. Phenylacetate and phenylbutyrate as novel, nontoxic differentiation inducers.Adv. Exp. Med. Biol.199740050150510.1007/978‑1‑4615‑5325‑0_679547596
    [Google Scholar]
  18. BrusilowS.W. DanneyM. WaberL.J. BatshawM. BurtonB. LevitskyL. RothK. McKeethrenC. WardJ. Treatment of episodic hyperammonemia in children with inborn errors of urea synthesis.N. Engl. J. Med.1984310251630163410.1056/NEJM1984062131025036427608
    [Google Scholar]
  19. SimellO. SipiläI. RajantieJ. ValleD.L. BrusilowS.W. Waste nitrogen excretion via amino acid acylation: Benzoate and phenylacetate in lysinuric protein intolerance.Pediatr. Res.198620111117112110.1203/00006450‑198611000‑000113099249
    [Google Scholar]
  20. HeydariS.F. GhollasiM. GhiasiM. BehzadiP. Evaluation of the effect of curcumin on the expression of matrix metalloproteinase genes in RAW264. 7 cell line treated with diethylhexyl phthalate.Journal of Applied Biotechnology Reports.2023101926933
    [Google Scholar]
  21. MasoumiN. GhollasiM. Raheleh Halabian EftekhariE. GhiasiM. Carbachol, along with calcium, indicates new strategy in neural differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Regen. Ther.202323606610.1016/j.reth.2023.04.00137122359
    [Google Scholar]
  22. SalimiA. NadriS. GhollasiM. KhajehK. SoleimaniM. Comparison of different protocols for neural differentiation of human induced pluripotent stem cells.Mol. Biol. Rep.20144131713172110.1007/s11033‑014‑3020‑124469709
    [Google Scholar]
  23. EftekhariE. GhollasiM. HalabianR. SoltanyzadehM. EnderamiS.E. Nisin and non-essential amino acids: New perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro.Hum. Cell20213441142115210.1007/s13577‑021‑00537‑933899160
    [Google Scholar]
  24. GhiasiM. JadidiK. HashemiM. ZareH. SalimiA. AghamollaeiH. Application of mesenchymal stem cells in corneal regeneration.Tissue Cell20217310160010.1016/j.tice.2021.10160034371292
    [Google Scholar]
  25. ShirkoohiF.J. GhollasiM. HalabianR. EftekhariE. GhiasiM. Oxaloacetate as new inducer for osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro.Mol. Biol. Rep.202451145110.1007/s11033‑024‑09389‑638536507
    [Google Scholar]
  26. CooneyD.S. WimmersE.G. IbrahimZ. GrahammerJ. ChristensenJ.M. BratG.A. WuL.W. SarhaneK.A. LopezJ. WallnerC. FurtmüllerG.J. YuanN. PangJ. SarkarK. LeeW.P.A. BrandacherG. Mesenchymal stem cells enhance nerve regeneration in a rat sciatic nerve repair and hindlimb transplant model.Sci. Rep.2016613130610.1038/srep3130627510321
    [Google Scholar]
  27. LevyM. BoulisN. RaoM. SvendsenC.N. Regenerative cellular therapies for neurologic diseases.Brain Res.20161638Pt A889610.1016/j.brainres.2015.06.05326239912
    [Google Scholar]
  28. EftekharzadehM. NobakhtM. AlizadehA. SoleimaniM. HajghasemM. Kordestani SharghB. Karkuki OsgueiN. BehnamB. SamadikuchaksaraeiA. The effect of intrathecal delivery of bone marrow stromal cells on hippocampal neurons in rat model of alzheimer’s disease.Iran. J. Basic Med. Sci.201518552052526124940
    [Google Scholar]
  29. BakshD. SongL. TuanR.S. Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy.J. Cell. Mol. Med.20048330131610.1111/j.1582‑4934.2004.tb00320.x15491506
    [Google Scholar]
  30. QiY. ZhangF. SongG. SunX. JiangR. ChenM. GeJ. Cholinergic neuronal differentiation of bone marrow mesenchymal stem cells in rhesus monkeys.Sci. China Life Sci.201053557358010.1007/s11427‑010‑0009‑420596940
    [Google Scholar]
  31. ZhangX. ZhangL. WangL. ChenW. MaZ. HanX. LiuC. ChengX. ShiW. GuoJ. QinJ. YangX. JinG. Neural differentiation of human Wharton’s jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats.Neural Regen. Res.20171271103111010.4103/1673‑5374.21118928852392
    [Google Scholar]
  32. HuW. FengZ. XuJ. JiangZ. FengM. Brain-derived neurotrophic factor modified human umbilical cord mesenchymal stem cells-derived cholinergic-like neurons improve spatial learning and memory ability in alzheimer’s disease rats.Brain Res.20191710617310.1016/j.brainres.2018.12.03430586546
    [Google Scholar]
  33. SanooghiD. AminiN. AzediF. BagherZ. ParvishanA. LotfiA. RashidiN. LotfiE. FaghihiF. FaghihiF. Differentiation of mesenchymal stem cells derived from human adipose tissue into cholinergic-like cells; in vitro.Basic Clin. Neurosci.202112331532310.32598/bcn.2021.1008.234917291
    [Google Scholar]
  34. SamidD. ShackS. ShermanL.T. Phenylacetate: A novel nontoxic inducer of tumor cell differentiation.Cancer Res.1992527198819921372534
    [Google Scholar]
  35. GoreS.D. WengL-J. ZhaiS. FiggW.D. DonehowerR.C. DoverG.J. GreverM. GriffinC.A. GrochowL.B. RowinskyE.K. ZabalenaY. HawkinsA.L. BurksK. MillerC.B. Impact of the putative differentiating agent sodium phenylbutyrate on myelodysplastic syndromes and acute myeloid leukemia.Clin. Cancer Res.2001782330233911489809
    [Google Scholar]
  36. CallC.T.G. StensonM.J. WitzigT.E. Effects of phenylacetate on cells from patients with B-chronic lymphocytic leukemia.Leuk. Lymphoma1994141-214514910.3109/104281994090496617920222
    [Google Scholar]
  37. EigelbergerM.S. WongM.G. DuhQ.Y. ClarkO.H. Phenylacetate enhances the antiproliferative effect of retinoic acid in follicular thyroid cancer.Surgery2001130693193510.1067/msy.2001.11838311742319
    [Google Scholar]
  38. (a WatanabeM. MiyajimaN. IgarashiM. Endo Y, Watanabe N, Sugano S. Sodium phenylacetate inhibits the Ras/MAPK signaling pathway to induce reduction of the c-Raf-1 protein in human and canine breast cancer cells. Breast cancer research and treatment.2009 Nov;118:281-91.
    [Google Scholar]
  39. (a WatanabeM. MiyajimaN. IgarashiM. Endo Y, Watanabe N, Sugano S. Sodium phenylacetate inhibits the Ras/MAPK signaling pathway to induce reduction of the c-Raf-1 protein in human and canine breast cancer cells. Breast cancer research and treatment.2009 Nov;118:281-91.
    [Google Scholar]
  40. FangJ. ZhaoX. LiS. XingX. WangH. LazaroviciP. ZhengW. Protective mechanism of artemisinin on rat bone marrow-derived mesenchymal stem cells against apoptosis induced by hydrogen peroxide via activation of c-Raf-Erk1/2-p90rsk-CREB pathway.Stem Cell Res. Ther.201910131210.1186/s13287‑019‑1419‑2
    [Google Scholar]
  41. AhamadN. SunY. SinghB.B. Increasing cytosolic Ca2+ levels restore cell proliferation and stem cell potency in aged MSCs.Stem Cell Res.20215610256010.1016/j.scr.2021.10256034624617
    [Google Scholar]
  42. MareiH.E.S. El-GamalA. AlthaniA. AfifiN. Abd-ElmaksoudA. FaragA. CenciarelliC. ThomasC. AnwarulH. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells.J. Cell. Physiol.2018233293694510.1002/jcp.2593728369825
    [Google Scholar]
  43. JahanS. SinghS. SrivastavaA. KumarV. KumarD. PandeyA. RajpurohitC.S. PurohitA.R. KhannaV.K. PantA.B. PKA-GSK3β and β-catenin signaling play a critical role in trans-resveratrol mediated neuronal differentiation in human cord blood stem cells.Mol. Neurobiol.20185542828283910.1007/s12035‑017‑0539‑x28455695
    [Google Scholar]
  44. NematiS. MehrjerdiN.Z. BaharvandH. Differentiation of human bone marrow mesenchymal stem cells to neural-like cells in vitro.Tehran Univ. Med. J.2009678
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X355333241203114713
Loading
/content/journals/cscr/10.2174/011574888X355333241203114713
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test