Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Alcohol-induced fatty liver disease (AFLD) begins with steatosis and may progress to a range of pathological liver changes, including fibrosis, cirrhosis, and complications. Menstrual blood-derived endometrial stem cells (MenSCs) have shown potential therapeutic effects against various types of liver damage. However, the liver-protective effects of MenSCs in AFLD are not well understood. This study aimed to evaluate the therapeutic effects of MenSCs on AFLD progression.

Methods

MenSCs were sourced from women in good health (N=5, 25-34 years old). Male C57BL/6 mice were separated into three distinct groups to establish the mouse models. The AH/MenSCs group received MenSCs (5×105 cells/mouse) transplantation through tail injection on the 7th and 13th days following the initiation of the alcohol-induced fatty liver model. The therapeutic effects of MenSCs transplantation in AFLD mouse models were subsequently explored using qPCR, Western blotting, histopathological examination, and mRNA sequencing analysis.

Results

MenSCs significantly improved liver function and reduced lipid accumulation in AFLD. Treatment with MenSCs was also found to reduce the expression levels of inflammatory cytokines and profibrotic markers in the liver tissues of the mouse model. Additionally, the MenSCs-treated group demonstrated a significant reduction in endoplasmic reticulum (ER) stress and oxidative stress, along with an increase in autophagic activity.

Conclusion

The findings provided preliminary evidence of the multifaced protective effects of MenSCs in AFLD.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X329341241018060516
2024-10-29
2025-12-24
Loading full text...

Full text loading...

References

  1. WakilA. NiaziM. MeybodiM.A. PyrsopoulosN.T. Emerging pharmacotherapies in alcohol-associated hepatitis.J. Clin. Exp. Hepatol.202313111612610.1016/j.jceh.2022.06.01236647403
    [Google Scholar]
  2. SingalA.K. KamathP.S. GoresG.J. ShahV.H. Alcoholic hepatitis: Current challenges and future directions.Clin. Gastroenterol. Hepatol.201412455556410.1016/j.cgh.2013.06.01323811249
    [Google Scholar]
  3. SeitzH.K. BatallerR. Cortez-PintoH. GaoB. GualA. LacknerC. MathurinP. MuellerS. SzaboG. TsukamotoH. Alcoholic liver disease.Nat. Rev. Dis. Primers2018411610.1038/s41572‑018‑0014‑730115921
    [Google Scholar]
  4. Higuera-de-la-TijeraF. Lira-VeraJ.E. Morales-GutiérrezO. Martínez-CastilloM. Medina-ÁvilaZ. Servín-CaamañoA. Pérez-HernándezJ.L. Gutiérrez-ReyesG. Alcoholic Liver Disease.Clin. Liver Dis. (Hoboken)2022192636710.1002/cld.116435308479
    [Google Scholar]
  5. JohnstonM.P. PatelJ. ByrneC.D. Causes of Mortality in Non-Alcoholic Fatty Liver Disease (NAFLD) and Alcohol Related Fatty Liver Disease (AFLD).Curr. Pharm. Des.202026101079109210.2174/138161282666620012809423132003662
    [Google Scholar]
  6. YanS. KhambuB. HongH. LiuG. HudaN. YinX.M. Autophagy, metabolism, and alcohol-related liver disease: Novel modulators and functions.Int. J. Mol. Sci.201920205029504810.3390/ijms2020502931614437
    [Google Scholar]
  7. PrinceD.S. NashE. LiuK. Alcohol-Associated Liver Disease: Evolving Concepts and Treatments.Drugs202383161459147410.1007/s40265‑023‑01939‑937747685
    [Google Scholar]
  8. LiB. MaoQ. ZhouD. LuoM. GanR. LiH. HuangS. SaimaitiA. ShangA. LiH. Effects of Tea against Alcoholic Fatty Liver Disease by Modulating Gut Microbiota in Chronic Alcohol- Exposed Mice.Foods2021106123210.3390/foods1006123234071491
    [Google Scholar]
  9. XiaoJ. WangF. WongN.K. LvY. LiuY. ZhongJ. ChenS. LiW. KoikeK. LiuX. WangH. Epidemiological Realities of Alcoholic Liver Disease: Global Burden, Research Trends, and Therapeutic Promise.Gene Expr.202020210511810.3727/105221620X1595266409182332690129
    [Google Scholar]
  10. EomY.W. KangS.H. KimM.Y. LeeJ.I. BaikS.K. Mesenchymal stem cells to treat liver diseases.Ann. Transl. Med.20208856357610.21037/atm.2020.02.16332775364
    [Google Scholar]
  11. WatanabeY. TsuchiyaA. TeraiS. The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future.Clin. Mol. Hepatol.2021271708010.3350/cmh.2020.019433317249
    [Google Scholar]
  12. ShiJ. ZhaoY.C. NiuZ.F. FanH.J. HouS.K. GuoX.Q. SangL. LvQ. Mesenchymal stem cell-derived small extracellular vesicles in the treatment of human diseases: Progress and prospect.World J. Stem Cells2021131496310.4252/wjsc.v13.i1.4933584979
    [Google Scholar]
  13. DuJ. JiX. XuB. DuQ. LiY. ZhouB. LiuX. XuZ. JiangY. KouB. LiZ. CuiC. LinJ. Ubiquitination of cytoplasmic HMGB1 by RNF186 regulates hepatic lipophagy in non-alcoholic fatty liver disease.Metabolism202415215576910.1016/j.metabol.2023.15576938158076
    [Google Scholar]
  14. ChungJ.S. HwangS. HongJ.E. JoM. RheeK.J. KimS. JungP.Y. YoonY. KangS.H. RyuH. KimM.Y. BaeK.S. EomY.W. Skeletal muscle satellite cell-derived mesenchymal stem cells ameliorate acute alcohol-induced liver injury.Int. J. Med. Sci.202219235336310.7150/ijms.6897135165521
    [Google Scholar]
  15. SukK.T. YoonJ.H. KimM.Y. KimC.W. KimJ.K. ParkH. HwangS.G. KimD.J. LeeB.S. LeeS.H. KimH.S. JangJ.Y. LeeC.H. KimB.S. JangY.O. ChoM.Y. JungE.S. KimY.M. BaeS.H. BaikS.K. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial.Hepatology20166462185219710.1002/hep.2869327339398
    [Google Scholar]
  16. HanJ. LeeC. HurJ. JungY. Current therapeutic options and potential of mesenchymal stem cell therapy for alcoholic liver disease.Cells20221212210.3390/cells1201002236611816
    [Google Scholar]
  17. YangF. WuY. ChenY. XiJ. ChuY. JinJ. YanY. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate liver steatosis by promoting fatty acid oxidation and reducing fatty acid synthesis.JHEP Rep. Innov. Hepatol.20235710074610.1016/j.jhepr.2023.10074637274776
    [Google Scholar]
  18. AlfaifiM. EomY.W. NewsomeP.N. BaikS.K. Mesenchymal stromal cell therapy for liver diseases.J. Hepatol.20186861272128510.1016/j.jhep.2018.01.03029425678
    [Google Scholar]
  19. LiuY. NiuR. YangF. YanY. LiangS. SunY. ShenP. LinJ. Biological characteristics of human menstrual blood-derived endometrial stem cells.J. Cell. Mol. Med.20182231627163910.1111/jcmm.1343729278305
    [Google Scholar]
  20. ChenL. QuJ. XiangC. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine.Stem Cell Res. Ther.2019101110.1186/s13287‑018‑1105‑930606242
    [Google Scholar]
  21. ChenL. QuJ. MeiQ. ChenX. FangY. ChenL. LiY. XiangC. Small extracellular vesicles from menstrual blood-derived mesenchymal stem cells (MenSCs) as a novel therapeutic impetus in regenerative medicine.Stem Cell Res. Ther.202112143310.1186/s13287‑021‑02511‑634344458
    [Google Scholar]
  22. DuJ. JiangY. LiuX. JiX. XuB. ZhangY. LiuY. ZhangT. LinJ. HGF secreted by menstrual blood-derived endometrial stem cells ameliorates non-alcoholic fatty liver disease through downregulation of hepatic Rnf186.Stem Cells202341215316810.1093/stmcls/sxac09136573461
    [Google Scholar]
  23. ChenL. ZhangC. ChenL. WangX. XiangB. WuX. GuoY. MouX. YuanL. ChenB. WangJ. XiangC. Human menstrual blood-derived stem cells ameliorate liver fibrosis in mice by targeting hepatic stellate cells via paracrine mediators.Stem Cells Transl. Med.20176127228410.5966/sctm.2015‑026528170193
    [Google Scholar]
  24. LiH. WeiJ. LiM. LiY. ZhangT. TianJ. LiuX. LiK. LinJ. Biological characteristics of Muse cells derived from MenSCs and their application in acute liver injury and intracerebral hemorrhage diseases.Regen. Ther.202427486210.1016/j.reth.2024.03.00338496012
    [Google Scholar]
  25. DuJ. ZhuX. GuoR. XuZ. ChengF.F. LiuQ. YangF. GuanL. LiuY. LinJ. Autophagy induces G0/G1 arrest and apoptosis in menstrual blood-derived endometrial stem cells via GSK3-β/β-catenin pathway.Stem Cell Res. Ther.20189133010.1186/s13287‑018‑1073‑030486857
    [Google Scholar]
  26. LiuX. ZhangY. MaC. LinJ. DuJ. Alternate-day fasting alleviates high fat diet induced non-alcoholic fatty liver disease through controlling PPARα/Fgf21 signaling.Mol. Biol. Rep.20224943113312210.1007/s11033‑022‑07142‑535107741
    [Google Scholar]
  27. DuJ. LiuX. ZhangY. HanX. MaC. LiuY. GuanL. QiaoL. LinJ. The Effects of Combined Therapy With Metformin and Hydroxypropyl-β-Cyclodextrin in a Mouse Model of Niemann-Pick Disease Type C1.Front. Pharmacol.20221282542510.3389/fphar.2021.82542535095535
    [Google Scholar]
  28. OdriozolaA. Santos-LasoA. del BarrioM. CabezasJ. IruzubietaP. Arias-LosteM.T. RivasC. DuqueJ.C.R. AntónÁ. FábregaE. CrespoJ. Fatty Liver Disease, Metabolism and Alcohol Interplay: A Comprehensive Review.Int. J. Mol. Sci.2023249779110.3390/ijms2409779137175497
    [Google Scholar]
  29. MiyataT. NagyL.E. Programmed cell death in alcohol-associated liver disease.Clin. Mol. Hepatol.202026461862510.3350/cmh.2020.014232951412
    [Google Scholar]
  30. LeeK.C. WuP.S. LinH.C. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis.Clin. Mol. Hepatol.2023291779810.3350/cmh.2022.023736226471
    [Google Scholar]
  31. DingW.X. ManleyS. NiH.M. The emerging role of autophagy in alcoholic liver disease.Exp. Biol. Med. (Maywood)2011236554655610.1258/ebm.2011.01036021478210
    [Google Scholar]
  32. AgharaH. ChadhaP. ZalaD. MandalP. Stress mechanism involved in the progression of alcoholic liver disease and the therapeutic efficacy of nanoparticles.Front. Immunol.202314120582110.3389/fimmu.2023.120582137841267
    [Google Scholar]
  33. HanY. YangJ. FangJ. ZhouY. CandiE. WangJ. HuaD. ShaoC. ShiY. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases.Signal Transduct. Target. Ther.2022719210.1038/s41392‑022‑00932‑035314676
    [Google Scholar]
  34. HuC. WuZ. LiL. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells.Int. J. Biol. Sci.202016589390310.7150/ijbs.3972532071558
    [Google Scholar]
  35. XuH. FuJ. ChenL. ZhouS. FangY. ZhangQ. ChenX. YuanL. LiY. XuZ. XiangC. TNF-α Enhances the Therapeutic Effects of MenSC-Derived Small Extracellular Vesicles on Inflammatory Bowel Disease through Macrophage Polarization by miR-24-3p.Stem Cells Int.2023202312810.1155/2023/298890736895784
    [Google Scholar]
  36. PanY. WuW. JiangX. LiuY. Mesenchymal stem cell-derived exosomes in cardiovascular and cerebrovascular diseases: From mechanisms to therapy.Biomed. Pharmacother.202316311481710.1016/j.biopha.2023.11481737141733
    [Google Scholar]
  37. SpeesJ.L. LeeR.H. GregoryC.A. Mechanisms of mesenchymal stem/stromal cell function.Stem Cell Res. Ther.20167112510.1186/s13287‑016‑0363‑727581859
    [Google Scholar]
  38. ShengM. LinY. XuD. TianY. ZhanY. LiC. FarmerD.G. Kupiec-WeglinskiJ.W. KeB. CD47-Mediated Hedgehog/SMO/GLI1 Signaling Promotes Mesenchymal Stem Cell Immunomodulation in Mouse Liver Inflammation.Hepatology20217431560157710.1002/hep.3183133765345
    [Google Scholar]
  39. WuR. FanX. WangY. ShenM. ZhengY. ZhaoS. YangL. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Liver Immunity and Therapy.Front. Immunol.20221383387810.3389/fimmu.2022.83387835309311
    [Google Scholar]
  40. WatanabeY. TsuchiyaA. SeinoS. KawataY. KojimaY. IkarashiS. Starkey LewisP.J. LuW.Y. KikutaJ. KawaiH. YamagiwaS. ForbesS.J. IshiiM. TeraiS. Mesenchymal Stem Cells and Induced Bone Marrow-Derived Macrophages Synergistically Improve Liver Fibrosis in Mice.Stem Cells Transl. Med.20198327128410.1002/sctm.18‑010530394698
    [Google Scholar]
  41. XuX. WangW. LinL. ChenP. Liraglutide in combination with human umbilical cord mesenchymal stem cell could improve liver lesions by modulating TLR4/NF-kB inflammatory pathway and oxidative stress in T2DM/NAFLD rats.Tissue Cell20206610138210.1016/j.tice.2020.10138232933722
    [Google Scholar]
  42. YangM. CuiY. SongJ. CuiC. WangL. LiangK. WangC. ShaS. HeQ. HuH. GuoX. ZangN. SunL. ChenL. Mesenchymal stem cell-conditioned medium improved mitochondrial function and alleviated inflammation and apoptosis in non-alcoholic fatty liver disease by regulating SIRT1.Biochem. Biophys. Res. Commun.2021546748210.1016/j.bbrc.2021.01.09833578292
    [Google Scholar]
  43. BiY. GuoX. ZhangM. ZhuK. ShiC. FanB. WuY. YangZ. JiG. Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice.Stem Cell Res. Ther.202112160210.1186/s13287‑021‑02663‑534895322
    [Google Scholar]
  44. SongJ. LiuJ. CuiC. HuH. ZangN. YangM. YangJ. ZouY. LiJ. WangL. HeQ. GuoX. ZhaoR. YanF. LiuF. HouX. SunZ. ChenL. Mesenchymal stromal cells ameliorate diabetes-induced muscle atrophy through exosomes by enhancing AMPK/ULK1-mediated autophagy.J. Cachexia Sarcopenia Muscle202314291592910.1002/jcsm.1317736708027
    [Google Scholar]
  45. CeniE. MelloT. GalliA. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism.World J. Gastroenterol.20142047177561777210.3748/wjg.v20.i47.1775625548474
    [Google Scholar]
  46. LiuS.Y. TsaiI.T. HsuY.C. Alcohol-Related Liver Disease: Basic Mechanisms and Clinical Perspectives.Int. J. Mol. Sci.20212210517010.3390/ijms2210517034068269
    [Google Scholar]
  47. YueR. ChenG. XieG. HaoL. GuoW. SunX. JiaW. ZhangQ. ZhouZ. ZhongW. Activation of PPARα-catalase pathway reverses alcoholic liver injury via upregulating NAD synthesis and accelerating alcohol clearance.Free Radic. Biol. Med.202117424926310.1016/j.freeradbiomed.2021.08.00534390780
    [Google Scholar]
  48. XuL. YuY. SangR. LiJ. GeB. ZhangX. Protective Effects of Taraxasterol against Ethanol-Induced Liver Injury by Regulating CYP2E1/Nrf2/HO-1 and NF- κ B Signaling Pathways in Mice.Oxid. Med. Cell. Longev.201820181828410710.1155/2018/828410730344887
    [Google Scholar]
  49. BrowningJ.D. HortonJ.D. Molecular mediators of hepatic steatosis and liver injury.J. Clin. Invest.2004114214715210.1172/JCI20042242215254578
    [Google Scholar]
  50. LiL. WuY. YinF. FengQ. DongX. ZhangR. YinZ. LuoL. Fructose 1, 6-diphosphate prevents alcohol-induced liver injury through inhibiting oxidative stress and promoting alcohol metabolism in mice.Eur. J. Pharmacol.201781527428110.1016/j.ejphar.2017.09.03428943104
    [Google Scholar]
  51. HuaiQ. ZhuC. ZhangX. DaiH. LiX. WangH. Mesenchymal stem/stromal cells armored by FGF21 ameliorate alcohol-induced liver injury through modulating polarization of macrophages.Hepatol. Commun.202484e041010.1097/HC9.000000000000041038551384
    [Google Scholar]
  52. LiM. LvY. ChenF. WangX. ZhuJ. LiH. XiaoJ. Co-stimulation of LPAR1 and S1PR1/3 increases the transplantation efficacy of human mesenchymal stem cells in drug-induced and alcoholic liver diseases.Stem Cell Res. Ther.20189116110.1186/s13287‑018‑0860‑y29898789
    [Google Scholar]
  53. HuC. WuZ. LiL. Pre-treatments enhance the therapeutic effects of mesenchymal stem cells in liver diseases.J. Cell. Mol. Med.2020241404910.1111/jcmm.1478831691463
    [Google Scholar]
  54. DukićM. RadonjićT. JovanovićI. ZdravkovićM. TodorovićZ. KraišnikN. AranđelovićB. MandićO. PopadićV. NikolićN. KlašnjaS. ManojlovićA. DivacA. GačićJ. BrajkovićM. OprićS. PopovićM. BrankovićM. Alcohol, Inflammation, and Microbiota in Alcoholic Liver Disease.Int. J. Mol. Sci.20232443735374810.3390/ijms2404373536835145
    [Google Scholar]
  55. ZhangX. DongZ. FanH. YangQ. YuG. PanE. HeN. LiX. ZhaoP. FuM. DongJ. Scutellarin prevents acute alcohol-induced liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and inhibiting inflammation by regulating the AKT, p38 MAPK/NF-κB pathways.J. Zhejiang Univ. Sci. B202324761763110.1631/jzus.B220061237455138
    [Google Scholar]
  56. FeldsteinA.E. GoresG.J. Apoptosis in alcoholic and nonalcoholic steatohepatitis.Front. Biosci.2005101-33093309910.2741/176515970563
    [Google Scholar]
  57. WanY.M. LiZ. ZhouQ. LiuC. WangM.J. WuH.X. MuY.Z. HeY.F. ZhangY. WuX.N. LiY.H. XuZ.Y. WuH.M. XuY. YangJ.H. WangX.F. Mesenchymal stem cells alleviate liver injury induced by chronic-binge ethanol feeding in mice via release of TSG6 and suppression of STAT3 activation.Stem Cell Res. Ther.20201112410.1186/s13287‑019‑1547‑831931878
    [Google Scholar]
  58. Guijarro-MuñozI. CompteM. Álvarez-CienfuegosA. Álvarez- VallinaL. SanzL. Lipopolysaccharide activates toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway and proinflammatory response in human pericytes.J. Biol. Chem.201428942457246810.1074/jbc.M113.52116124307174
    [Google Scholar]
  59. NowakA.J. ReljaB. The impact of acute or chronic alcohol intake on the nf-κb signaling pathway in alcohol-related liver disease.Int. J. Mol. Sci.20202124940710.3390/ijms2124940733321885
    [Google Scholar]
  60. CauletS. FabreM. SchoevaertD. LestyC. MeduriG. MartinE. Quantitative study of centrolobular hepatic fibrosis in alcoholic disease before cirrhosis.Virchows Arch. A Pathol. Anat. Histopathol.19894161111710.1007/BF016064652510397
    [Google Scholar]
  61. LacknerC. TiniakosD. Fibrosis and alcohol-related liver disease.J. Hepatol.201970229430410.1016/j.jhep.2018.12.00330658730
    [Google Scholar]
  62. HanJ. LeeC. JeongH. JeonS. LeeM. LeeH. ChoiY.H. JungY. Tumor necrosis factor-inducible gene 6 protein and its derived peptide ameliorate liver fibrosis by repressing CD44 activation in mice with alcohol-related liver disease.J. Biomed. Sci.20243115410.1186/s12929‑024‑01042‑538790021
    [Google Scholar]
  63. HintermannE. ChristenU. The many roles of cell adhesion molecules in hepatic fibrosis.Cells20198121503153010.3390/cells812150331771248
    [Google Scholar]
  64. WuX. FanX. MiyataT. KimA. Cajigas-Du RossC.K. RayS. HuangE. TaiwoM. AryaR. WuJ. NagyL.E. Recent advances in understanding of pathogenesis of alcohol-associated liver disease.Annu. Rev. Pathol.202318141143810.1146/annurev‑pathmechdis‑031521‑03043536270295
    [Google Scholar]
  65. Salete-GranadoD. CarbonellC. Puertas-MirandaD. Vega-RodríguezV.J. García-MaciaM. HerreroA.B. MarcosM. Autophagy, Oxidative Stress, and Alcoholic Liver Disease: A Systematic Review and Potential Clinical Applications.Antioxidants2023127142510.3390/antiox1207142537507963
    [Google Scholar]
  66. LiuX. GreenR.M. Endoplasmic reticulum stress and liver diseases.Liver Res.201931556410.1016/j.livres.2019.01.00232670671
    [Google Scholar]
  67. SamuvelD.J. LiL. KrishnasamyY. GoozM. TakemotoK. WosterP.M. LemastersJ.J. ZhongZ. Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice.Autophagy202218112671268510.1080/15548627.2022.204645735293288
    [Google Scholar]
  68. ChaoX. WangS. ZhaoK. LiY. WilliamsJ.A. LiT. ChavanH. KrishnamurthyP. HeX.C. LiL. BallabioA. NiH.M. DingW.X. Impaired TFEB-Mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-Induced Liver Injury and Steatosis in Mice.Gastroenterology20181553865879.e1210.1053/j.gastro.2018.05.02729782848
    [Google Scholar]
  69. ZhaoX. ZhouM. DengY. GuoC. LiaoL. HeL. PengC. LiY. Functional teas from penthorum chinense pursh alleviates ethanol-induced hepatic oxidative stress and autophagy impairment in zebrafish via modulating the AMPK/p62/Nrf2/mTOR Signaling Axis.Plant Foods Hum. Nutr.202277451452010.1007/s11130‑022‑01010‑036103040
    [Google Scholar]
  70. LiR. YuL. QinY. ZhouY. LiuW. LiY. ChenY. XuY. Protective effects of rare earth lanthanum on acute ethanol-induced oxidative stress in mice via Keap 1/Nrf2/p62 activation.Sci. Total Environ.202175814362610.1016/j.scitotenv.2020.14362633243512
    [Google Scholar]
  71. HernandezJ.C. YehD.W. MarhJ. ChoiH.Y. KimJ. ChopraS. DingL. ThorntonM. GrubbsB. MakowkaL. SherL. MachidaK. Activated and nonactivated MSCs increase survival in humanized mice after acute liver injury through alcohol binging.Hepatol. Commun.2022671549156010.1002/hep4.192435246968
    [Google Scholar]
  72. EzquerF. BrunaF. CalligarisS. CongetP. EzquerM. Multipotent mesenchymal stromal cells: A promising strategy to manage alcoholic liver disease.World J. Gastroenterol.2016221243610.3748/wjg.v22.i1.2426755858
    [Google Scholar]
  73. KorkidaF. StamatopoulouA. RoubelakisM.G. Recent Advances in Mesenchymal Stem/Stromal Cell-Based Therapy for Alcohol-Associated Liver Disease and Non-alcoholic Fatty Liver Disease.Stem Cells Transl. Med.20232023szad08210.1093/stcltm/szad08238016185
    [Google Scholar]
  74. KangS.H. KimM.Y. EomY.W. BaikS.K. Mesenchymal stem cells for the treatment of liver disease: present and perspectives.Gut Liver202014330631510.5009/gnl1841231581387
    [Google Scholar]
  75. YangX. MengY. HanZ. YeF. WeiL. ZongC. Mesenchymal stem cell therapy for liver disease: Full of chances and challenges.Cell Biosci.202010112310.1186/s13578‑020‑00480‑633117520
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X329341241018060516
Loading
/content/journals/cscr/10.2174/011574888X329341241018060516
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): autophagy; ER stress; fibrosis; inflammation; Lipid metabolism; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test