Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

With the passage of time, the incidence rate of diabetes continues to rise. As a common and serious complication of diabetes, the economic burden of diabetes ulcers is also increasing. However, there is currently no unified clinical treatment strategy for its repair and research, and the treatment effect is not satisfactory. Exosomes derived from MSCs play a crucial role in improving diseases.

Methods

This study used the explant culture method to isolate human umbilical cord mesenchymal stem cells (hucMSCs) from Wharton’s jelly, which were identified by flow cytometry and differentiation potential and evaluated tumorigenic potential. The supernatant of P3-P5 cell culture medium was collected and high-concentration human umbilical cord mesenchymal stem cell exosomes (hucMSCs-Exos) were isolated through ultracentrifugation. Qualitatively identified were finished by transmission electron microscopy (TEM), nanosight tracking analysis (NTA) and Western blot (WB). CCK-8 assay and cell scratch experiment were used to evaluate the effects of hucMSCs-Exos on proliferation and migration ability of cells; chicken embryo chorioallantoic membrane experiment (CAM) was used to evaluate the angiogenic effect of hucMSCs-Exos. In order to study the effect of hucMSCs-Exos on diabetes wound healing, type 2 diabetes mellitus (T2DM) mouse model was constructed by a high-fat feeding and a low-dose streptozotocin (STZ) injection. Fasting blood glucose and blood lipids were measured and oral glucose tolerance test (OGTT) was conducted; HucMSCs-Exos were subcutaneously injected into the T2DM wound model mice which were established by a high-fat diet and by a low-dose STZ, and the wound healing was evaluations.

Results

Cells were isolated by explant culture method, and flow cytometry analyses showed that these isolated cells were positive for cells markers CD29, CD90, and CD105, while negative for CD34 and CD45; moreover, these cells could be induced to osteoblasts, adipocytes, and islet-like cells. The tumorigenic experiments showed that these cells have no tumorigenicity. HucMSCs-Exos, separated by ultracentrifugation, displayed spherical or ellipsoidal vesicles with a diameter of around 120 nm, positive for CD9, CD63, and CD81. And they could promote cell proliferation and migration, as well as promote vascular growth ( 0.01). experiments showed that hucMSCs-Exos had a promoting effect on wound repair in T2DM mice ( 0.01).

Conclusion

This study provides a new scheme for the treatment of T2DM ulcer.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X333277240919113345
2024-10-01
2025-12-08
Loading full text...

Full text loading...

References

  1. SunH. SaeediP. KarurangaS. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  2. MemarpourS. RaoufiniaR. SaburiE. The future of diabetic wound healing: Unveiling the potential of mesenchymal stem cell and exosomes therapy.Am. J. Stem Cells20241328710010.62347/OVBK9820 38765803
    [Google Scholar]
  3. DengH. LiB. ShenQ. Mechanisms of diabetic foot ulceration: A review.J. Diabetes202315429931210.1111/1753‑0407.13372 36891783
    [Google Scholar]
  4. BergmanM. MancoM. SatmanI. International diabetes federation position statement on the 1-hour post-load plasma glucose for the diagnosis of intermediate hyperglycaemia and type 2 diabetes.Diabetes Res. Clin. Pract.202420911158910.1016/j.diabres.2024.111589 38458916
    [Google Scholar]
  5. GrennanD. Diabetic foot ulcers.JAMA2019321111410.1001/jama.2018.18323 30620372
    [Google Scholar]
  6. YuQ. QiaoG. WangM. Stem cell-based therapy for diabetic foot ulcers.Front. Cell Dev. Biol.20221081226210.3389/fcell.2022.812262 35178389
    [Google Scholar]
  7. ShawT.J. MartinP. Wound repair at a glance.J. Cell Sci.2009122183209321310.1242/jcs.031187 19726630
    [Google Scholar]
  8. BoniakowskiA.E. KimballA.S. JacobsB.N. KunkelS.L. GallagherK.A. Macrophage-mediated inflammation in normal and diabetic wound healing.J. Immunol.20171991172410.4049/jimmunol.1700223 28630109
    [Google Scholar]
  9. ShiW. LiX. WangZ. LiC. WangD. LiC. CCL3 promotes cutaneous wound healing through recruiting macrophages in mice.Cell Transplant.2024330963689724126491210.1177/09636897241264912 39076075
    [Google Scholar]
  10. Perez-FavilaA. Martinez-FierroM.L. Rodriguez-LazaldeJ.G. Current therapeutic strategies in diabetic foot ulcers.Medicina (Kaunas)2019551171410.3390/medicina55110714 31731539
    [Google Scholar]
  11. LeeK.B. ChoiJ. ChoS.B. Topical embryonic stem cells enhance wound healing in diabetic rats.J. Orthop. Res.201129101554156210.1002/jor.21385 21469178
    [Google Scholar]
  12. UccioliL. MeloniM. IzzoV. GiuratoL. MerollaS. GandiniR. Critical limb ischemia: Current challenges and future prospects.Vasc. Health Risk Manag.201814637410.2147/VHRM.S125065 29731636
    [Google Scholar]
  13. AnY. LinS. TanX. Exosomes from adipose‐derived stem cells and application to skin wound healing.Cell Prolif.2021543e1299310.1111/cpr.12993 33458899
    [Google Scholar]
  14. SunH. PrattR.E. HodgkinsonC.P. DzauV.J. Sequential paracrine mechanisms are necessary for the therapeutic benefits of stem cell therapy.Am. J. Physiol. Cell Physiol.20203196C1141C115010.1152/ajpcell.00516.2019 33026832
    [Google Scholar]
  15. JiangL. ZhangY. LiuT. Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing.Biochimie2020177404910.1016/j.biochi.2020.08.003 32800897
    [Google Scholar]
  16. MuthuS. BapatA. JainR. JeyaramanN. JeyaramanM. Exosomal therapy — A new frontier in regenerative medicine.Stem Cell Investig.20218710.21037/sci‑2020‑037 33969112
    [Google Scholar]
  17. HaD.H. KimH. LeeJ. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration.Cells202095115710.3390/cells9051157 32392899
    [Google Scholar]
  18. WeiliangZ. LiliG. Research advances in the application of adipose-derived stem cells derived exosomes in cutaneous wound healing.Ann. Dermatol.202133430931710.5021/ad.2021.33.4.309 34341631
    [Google Scholar]
  19. FawcettS. Al KassasR. M Dykes I, Hughes ATL, Ghali F, Ross K. A time to heal: MicroRNA and circadian dynamics in cutaneous wound repair.Clin. Sci. (Lond.)2022136857959710.1042/CS20220011 35445708
    [Google Scholar]
  20. HanC. SunX. LiuL. Exosomes and their therapeutic potentials of stem cells.Stem Cells Int.201620161765348910.1155/2016/7653489 26770213
    [Google Scholar]
  21. ZhangJ. LiuX. LiH. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway.Stem Cell Res. Ther.20167113610.1186/s13287‑016‑0391‑3 27650895
    [Google Scholar]
  22. YangG. WaheedS. WangC. ShekhM. LiZ. WuJ. Exosomes and their bioengineering strategies in the cutaneous wound healing and related complications: Current knowledge and future perspectives.Int. J. Biol. Sci.20231951430145410.7150/ijbs.80430 37056923
    [Google Scholar]
  23. MaH. SiuW.S. LeungP.C. The potential of MSC-based cell-free therapy in wound healing — A literature review.Int. J. Mol. Sci.20232411935610.3390/ijms24119356 37298306
    [Google Scholar]
  24. SunY. ShiH. YinS. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction.ACS Nano20181287613762810.1021/acsnano.7b07643 30052036
    [Google Scholar]
  25. ZhouY. ZhangX.L. LuS.T. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration.Stem Cell Res. Ther.202213140710.1186/s13287‑022‑02980‑3 35941707
    [Google Scholar]
  26. QiuH. LiuS. WuK. ZhaoR. CaoL. WangH. Prospective application of exosomes derived from adipose‐derived stem cells in skin wound healing: A review.J. Cosmet. Dermatol.202019357458110.1111/jocd.13215 31755172
    [Google Scholar]
  27. ZhouY. ZhaoB. ZhangX.L. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration.Stem Cell Res. Ther.202112125710.1186/s13287‑021‑02287‑9 33933157
    [Google Scholar]
  28. HeX. DongZ. CaoY. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing.Stem Cells Int.2019201911610.1155/2019/7132708 31582986
    [Google Scholar]
  29. DehghaniL. OwliaeeI. SadeghianF. ShojaeianA. The therapeutic potential of human umbilical cord mesenchymal stromal cells derived exosomes for wound healing: Harnessing exosomes as a cell-free therapy.J. Stem Cells Regen. Med.20242011423 39044811
    [Google Scholar]
  30. YaghoubiY. MovassaghpourA. ZamaniM. TalebiM. MehdizadehA. YousefiM. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment.Life Sci.201923311673310.1016/j.lfs.2019.116733 31394127
    [Google Scholar]
  31. AbbaszadehH. GhorbaniF. DerakhshaniM. MovassaghpourA. YousefiM. Human umbilical cord mesenchymal stem cell‐derived extracellular vesicles: A novel therapeutic paradigm.J. Cell. Physiol.2020235270671710.1002/jcp.29004 31254289
    [Google Scholar]
  32. AnastasiuD.M. CeanA. BojinM.F. Explants-isolated human placenta and umbilical cord cells share characteristics of both epithelial and mesenchymal stem cells.Rom. J. Morphol. Embryol.2016572383390 27516009
    [Google Scholar]
  33. SemenovaE. GrudniakM.P. MachajE.K. Mesenchymal stromal cells from different parts of umbilical cord: Approach to comparison & characteristics.Stem Cell Rev. Rep.20211751780179510.1007/s12015‑021‑10157‑3 33860454
    [Google Scholar]
  34. OzelC. ApaydinE. SariboyaciA.E. TamayolA. AvciH. A multifunctional sateen woven dressings for treatment of skin injuries.Colloids Surf. B Biointerfaces202322411319710.1016/j.colsurfb.2023.113197 36822118
    [Google Scholar]
  35. KyllönenL. HaimiS. MannerströmB. Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro.Stem Cell Res. Ther.2013411710.1186/scrt165 23415114
    [Google Scholar]
  36. YangY.H.K. OgandoC.R. Wang SeeC. ChangT.Y. BarabinoG.A. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro.Stem Cell Res. Ther.20189113110.1186/s13287‑018‑0876‑3 29751774
    [Google Scholar]
  37. ShirkoohiF.J. GhollasiM. HalabianR. EftekhariE. GhiasiM. Oxaloacetate as new inducer for osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro.Mol. Biol. Rep.202451145110.1007/s11033‑024‑09389‑6 38536507
    [Google Scholar]
  38. MuX.P. RenL.Q. YanH.W. Enhanced differentiation of human amniotic fluid‐derived stem cells into insulin‐producing cells in vitro.J. Diabetes Investig.201781344310.1111/jdi.12544 27240324
    [Google Scholar]
  39. BeeravoluN. McKeeC. AlamriA. Isolation and characterization of mesenchymal stromal cells from human umbilical cord and fetal placenta.J. Vis. Exp.201720171225522410.3791/55224
    [Google Scholar]
  40. NekoeiS.M. AzarpiraN. SadeghiL. KamalifarS. In vitro differentiation of human umbilical cord Wharton’s jelly mesenchymal stromal cells to insulin producing clusters.World J. Clin. Cases20153764064910.12998/wjcc.v3.i7.640 26244156
    [Google Scholar]
  41. YangX.F. ChenT. RenL.W. YangL. QiH. LiF.R. Immunogenicity of insulin-producing cells derived from human umbilical cord mesenchymal stem cells.Exp. Ther. Med.20171341456146410.3892/etm.2017.4096 28413492
    [Google Scholar]
  42. HosseiniS.R. Hashemi-NajafabadiS. BagheriF. Differentiation of the mesenchymal stem cells to pancreatic β-like cells in alginate/trimethyl chitosan/alginate microcapsules.Prog. Biomater.202211327328010.1007/s40204‑022‑00194‑7 35802251
    [Google Scholar]
  43. YangC. ZhangM. LiY. Streptozotocin aggravated osteopathology and insulin induced osteogenesis through co-treatment with fluoride.Biol. Trace Elem. Res.2015168245346110.1007/s12011‑015‑0374‑8 26018496
    [Google Scholar]
  44. SchneiderM.R. Von Kossa and his staining technique.Histochem. Cell Biol.20211566523526 34799748
    [Google Scholar]
  45. BonewaldL.F. HarrisS.E. RosserJ. Von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation.Calcif. Tissue Int.200372553754710.1007/s00223‑002‑1057‑y 12724828
    [Google Scholar]
  46. SattaryM. RafieniaM. KazemiM. SalehiH. MahmoudzadehM. Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering.Mater. Sci. Eng. C20199714115510.1016/j.msec.2018.12.030 30678899
    [Google Scholar]
  47. BhaskarN. BasuB. Osteogenesis, hemocompatibility, and foreign body response of polyvinylidene difluoride-based composite reinforced with carbonaceous filler and higher volume of piezoelectric ceramic phase.Biomaterials202329712210010.1016/j.biomaterials.2023.122100 37004426
    [Google Scholar]
  48. SzmacinskiH. HegdeK. ZengH.H. Imaging hydroxyapatite in sub-retinal pigment epithelial deposits by fluorescence lifetime imaging microscopy with tetracycline staining.J. Biomed. Opt.202025411110.1117/1.JBO.25.4.047001 32319262
    [Google Scholar]
  49. DeutschM.J. SchrieverS.C. RoscherA.A. EnsenauerR. Digital image analysis approach for lipid droplet size quantitation of Oil Red O-stained cultured cells.Anal. Biochem.2014445878910.1016/j.ab.2013.10.001 24120410
    [Google Scholar]
  50. CamaraB.O.S. OcarinoN.M. BertassoliB.M. Differentiation of canine adipose mesenchymal stem cells into insulin-producing cells: Comparison of different culture medium compositions.Domest. Anim. Endocrinol.20217410657210.1016/j.domaniend.2020.106572 33039930
    [Google Scholar]
  51. KassemD.H. HabibS.A. BadrO.I. KamalM.M. Isolation of rat adipose tissue mesenchymal stem cells for differentiation into insulin-producing cells.J. Vis. Exp.2022202218610.3791/63348
    [Google Scholar]
  52. BorghesiJ. Ferreira LimaM. MarioL.C. Canine amniotic membrane mesenchymal stromal/stem cells: Isolation, characterization and differentiation.Tissue Cell2019589910610.1016/j.tice.2019.04.007 31133253
    [Google Scholar]
  53. ZhaoH. SunJ. WuY. ZhangJ. ShenC. Promotion of skin wound healing using hypoimmunogenic epidermal cell sheets.Regen. Ther.20232424525510.1016/j.reth.2023.07.003 37534237
    [Google Scholar]
  54. TheryC. AmigorenaS. RaposoG. ClaytonA. Isolation and characterization of exosomes from cell culture supernatants and biological fluids.Curr. Protoc. Cell Biol.200610.1002/0471143030.cb0322s30
    [Google Scholar]
  55. PurushothamanA. Exosomes from cell culture-conditioned medium: Isolation by ultracentrifugation and characterization.Methods Mol. Biol.2019195223324410.1007/978‑1‑4939‑9133‑4_19 30825179
    [Google Scholar]
  56. BaiW. ZhuT. ZuoJ. LiY. HuangX. LiG. Delivery of SAV-siRNA via exosomes from adipose-derived stem cells for the treatment of myocardial infarction.Tissue Eng. Regen. Med.20232071063107710.1007/s13770‑023‑00588‑z 37801227
    [Google Scholar]
  57. HuangC. LuoW. WangQ. Human mesenchymal stem cells promote ischemic repairment and angiogenesis of diabetic foot through exosome miRNA-21-5p.Stem Cell Res. (Amst.)20215210223510.1016/j.scr.2021.102235 33601096
    [Google Scholar]
  58. ZhangX. SunG. TianM. Mussel-inspired antibacterial polydopamine/chitosan/temperature-responsive hydrogels for rapid hemostasis.Int. J. Biol. Macromol.201913832133310.1016/j.ijbiomac.2019.07.052 31295499
    [Google Scholar]
  59. WeiS. XuP. YaoZ. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes.Acta Biomater.202112420521810.1016/j.actbio.2021.01.046 33524559
    [Google Scholar]
  60. VarinskáL. FáberL. PetrovováE. Galectin-8 favors vegf-induced angiogenesis: In vitro study in human umbilical vein endothelial cells and in vivo study in chick chorioallantoic membrane.Anticancer Res.20204063191320110.21873/anticanres.14300 32487613
    [Google Scholar]
  61. AnJ. WangL. SongS. Electroacupuncture reduces blood glucose by regulating intestinal flora in type 2 diabetic mice.J. Diabetes2022141069571010.1111/1753‑0407.13323 36195536
    [Google Scholar]
  62. WangM. SongL. StrangeC. DongX. WangH. Therapeutic effects of adipose stem cells from diabetic mice for the treatment of type 2 diabetes.Mol. Ther.20182681921193010.1016/j.ymthe.2018.06.013 30005867
    [Google Scholar]
  63. ZhangY. WangM. LiP. LvG. YaoJ. ZhaoL. Hypoglycemic effect of polysaccharides from Physalis alkekengi l. in type 2 diabetes mellitus mice.Biology (Basel)202413749610.3390/biology13070496 39056690
    [Google Scholar]
  64. HongY. LiJ. ZhongY. Elabela inhibits TRAF1/NF-κB induced oxidative DNA damage to promote diabetic foot ulcer wound healing.iScience202326910760110.1016/j.isci.2023.107601 37664606
    [Google Scholar]
  65. DengX. ZhangS. QingQ. Distinct biological characteristics of mesenchymal stem cells separated from different components of human placenta.Biochem. Biophys. Rep.20243910173910.1016/j.bbrep.2024.101739 38974020
    [Google Scholar]
  66. YiX. ChenF. LiuF. Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions.Stem Cell Res. Ther.202011118310.1186/s13287‑020‑01690‑y 32430063
    [Google Scholar]
  67. WuM. ZhangR. ZouQ. Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord.Sci. Rep.201881501410.1038/s41598‑018‑23396‑1 29568084
    [Google Scholar]
  68. KowalskiG. DomagalskaM. SłowińskiK. Morphine (10, 20 mg) in a postoperative dressing used with patients after surgical debridement of burn wounds: A prospective, double-blinded, randomized controlled trial.Adv. Wound Care (New Rochelle)202413311512210.1089/wound.2023.0037 37742106
    [Google Scholar]
  69. DominiciM. Le BlancK. MuellerI. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.Cytotherapy20068431531710.1080/14653240600855905 16923606
    [Google Scholar]
  70. FischerD. FluegenG. GarciaP. The CAM model — Q&A with experts.Cancers (Basel)202215119110.3390/cancers15010191 36612187
    [Google Scholar]
  71. WeiW. WangM. LiuZ. ZhengW. TremblayP.L. ZhangT. An antibacterial nanoclay- and chitosan-based quad composite with controlled drug release for infected skin wound healing.Carbohydr. Polym.202432412150710.1016/j.carbpol.2023.121507 37985094
    [Google Scholar]
  72. DondersR. BogieJ.F.J. RavanidisS. Human Wharton’s jelly-derived stem cells display a distinct immunomodulatory and proregenerative transcriptional signature compared to bone marrow-derived stem cells.Stem Cells Dev.2018272658410.1089/scd.2017.0029 29267140
    [Google Scholar]
  73. ChristodoulouI. GoulielmakiM. DevetziM. PanagiotidisM. KoliakosG. ZoumpourlisV. Mesenchymal stem cells in preclinical cancer cytotherapy: A systematic review.Stem Cell Res. Ther.20189133610.1186/s13287‑018‑1078‑8 30526687
    [Google Scholar]
  74. VenugopalP. BalasubramanianS. MajumdarA.S. TaM. Isolation, characterization, and gene expression analysis of Wharton’s jelly-derived mesenchymal stem cells under xeno-free culture conditions.Stem Cells Cloning201143950 24198529
    [Google Scholar]
  75. YoonJ.H. RohE.Y. ShinS. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton’s jelly.BioMed Res. Int.201320131810.1155/2013/428726 23653895
    [Google Scholar]
  76. LaluM.M. McIntyreL. PuglieseC. Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials.PLoS One2012710e4755910.1371/journal.pone.0047559 23133515
    [Google Scholar]
  77. ThompsonM. MeiS.H.J. WolfeD. Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: An updated systematic review and meta-analysis.EClinicalMedicine20201910024910.1016/j.eclinm.2019.100249 31989101
    [Google Scholar]
  78. MathurA. TaurinS. AlshammaryS. The safety and efficacy of mesenchymal stem cells in the treatment of type 2 diabetes- A literature review.Diabetes Metab. Syndr. Obes.20231676977710.2147/DMSO.S392161 36941907
    [Google Scholar]
  79. ZhangH. WangL. LiC. Exosome-induced regulation in inflammatory bowel disease.Front. Immunol.201910146410.3389/fimmu.2019.01464
    [Google Scholar]
  80. ThéryC. WitwerK.W. AikawaE. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.J. Extracell. Vesicles201871153575010.1080/20013078.2018.1535750 30637094
    [Google Scholar]
  81. HettaH.F. ElsaghirA. SijercicV.C. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review.Health Sci. Rep.202474e203610.1002/hsr2.2036 38650719
    [Google Scholar]
  82. BaileyA.J.M. LiH. KirkhamA.M. MSC-derived extracellular vesicles to heal diabetic wounds: A systematic review and meta-analysis of preclinical animal studies.Stem Cell Rev. Rep.202218396897910.1007/s12015‑021‑10164‑4 33893619
    [Google Scholar]
  83. YouH.J. NamgoongS. HanS.K. JeongS.H. DhongE.S. KimW.K. Wound-healing potential of human umbilical cord blood–derived mesenchymal stromal cells in vitro — A pilot study.Cytotherapy201517111506151310.1016/j.jcyt.2015.06.011 26212609
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X333277240919113345
Loading
/content/journals/cscr/10.2174/011574888X333277240919113345
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test