Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Acute Kidney Injury (AKI) is a severe complication of cisplatin-based chemotherapy. Thus, searching for novel therapeutic approaches to reduce system toxicity is vital for improving patient outcomes. The use of stem cells or the paracrine factors released by these cells during cultivation is currently being explored as a potential method for AKI prevention during chemotherapy. However, the conditions of stem cell cultivation considerably affect the composition of paracrine factors released by cells.

Objective

In this study, we aimed to investigate the impact of paracrine factors derived from mesenchymal stem cells cultured under hypoxic conditions on the progression of AKI induced by cisplatin.

Methods

AKI was induced in mice by intraperitoneal administration of cisplatin with the simultaneous injection of fractions of conditioned medium obtained from the cultivation of mesenchymal stem cells under hypoxic conditions. The survival rate of animals was assessed alongside qRT-PCR implementation to assess gene expression of cytokines.

Results

The total fraction of conditioned medium and >30 kDa fraction had no impact on cisplatin nephrotoxicity in mice. However, either subcutaneous or intraperitoneal administration of <30 kDa fraction of conditioned medium exacerbated animal mortality and led to severe damage to renal tissues. The effect was in a good correlation with KIM-1 and CDKN1A gene expression.

Conclusion

The conditioned medium obtained during mesenchymal stem cells under hypoxic conditions has been found to markedly amplify the toxicity of cisplatin, which should be considered in stem cell therapy of AKI patients.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X321387240909111413
2024-09-20
2026-02-05
Loading full text...

Full text loading...

References

  1. MehtaR.L. CerdáJ. BurdmannE.A. TonelliM. García-GarcíaG. JhaV. SusantitaphongP. RoccoM. VanholderR. SeverM.S. CruzD. JaberB. LameireN.H. LombardiR. LewingtonA. FeehallyJ. FinkelsteinF. LevinN. PannuN. ThomasB. Aronoff-SpencerE. RemuzziG. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): A human rights case for nephrology.Lancet201538599872616264310.1016/S0140‑6736(15)60126‑X25777661
    [Google Scholar]
  2. AmmiratiA.L. Chronic kidney disease.Rev. Assoc. Med Bras.202066S1S3S9
    [Google Scholar]
  3. KomadaT. MuruveD.A. The role of inflammasomes in kidney disease.Nat. Rev. Nephrol.201915850152010.1038/s41581‑019‑0158‑z31164720
    [Google Scholar]
  4. CaoJ.Y. WangB. TangT.T. WenY. LiZ.L. FengS.T. WuM. LiuD. YinD. MaK.L. TangR.N. WuQ.L. LanH.Y. LvL.L. LiuB.C. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury.Theranostics202111115248526610.7150/thno.5455033859745
    [Google Scholar]
  5. LiangR. YanD. ZhangX. ChenX. ZhangW. JiaH. Kidney Mesenchymal stem cells alleviate cisplatin-induced kidney injury and apoptosis in rats.Tissue Cell20238010199810.1016/j.tice.2022.10199836529038
    [Google Scholar]
  6. WangS.Y. XuY. HongQ. ChenX.M. CaiG.Y. Mesenchymal stem cells ameliorate cisplatin-induced acute kidney injury via let-7b-5p.Cell Tissue Res.2023392251753310.1007/s00441‑022‑03729‑336543894
    [Google Scholar]
  7. CaoJ. WangB. TangT. LvL. DingZ. LiZ. HuR. WeiQ. ShenA. FuY. LiuB. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury.Stem Cell Res. Ther.202011120610.1186/s13287‑020‑01719‑232460853
    [Google Scholar]
  8. WanY. YuY. YuC. LuoJ. WenS. ShenL. WeiG. HuaY. Human umbilical cord mesenchymal stem cell exosomes alleviate acute kidney injury by inhibiting pyroptosis in rats and NRK-52E cells.Ren. Fail.2023451222113810.1080/0886022X.2023.222113837293812
    [Google Scholar]
  9. CseteM. Oxygen in the cultivation of stem cells. Ann N Y Acad Sci 2005;1049:1–8.; Ma T, Grayson WL, Fröhlich M, Vunjak-Novakovic G. Hypoxia and stem cell-based engineering of mesenchymal tissues.Biotechnol. Prog.2009251324219198002
    [Google Scholar]
  10. KhubutiaM.S. TemnovA.A. Low molecular peptide drugs obtained from cultured stem cells in the treatment of acute renal failure.Transplantology2011201142025
    [Google Scholar]
  11. TemnovA.A. RogovK.A. SklifasA.N. KlychnikovaE.V. HartlM. Djinovic-CarugoK. CharnagalovA. Protective properties of the cultured stem cell proteome studied in an animal model of acetaminophen-induced acute liver failure.Mol. Biol. Rep.20194633101311210.1007/s11033‑019‑04765‑z30977085
    [Google Scholar]
  12. TemnovA. AstrelinaT. RogovK. MorozB. LebedevV. NasonovaT. LyrshchikovaA. DobryninaO. DeshevoyY. MelerzanovA. BaderA. MishraA. GiriS. BoyarintsevV. TrofimenkoA. BushmanovA. SamoylovA. Use of paracrine factors from stem cells to treat local radiation burns in rats.Stem Cells Cloning201811697610.2147/SCCAA.S16463030464536
    [Google Scholar]
  13. TemnovA. RogovK. ZhalimovV. IgorP. PekovS. BaderA. SklifasA. GiriS. The effect of a mesenchymal stem cell conditioned medium fraction on morphological characteristics of hepatocytes in acetaminophen-induced acute liver failure: A preliminary study.Hepat. Med.201911899610.2147/HMER.S19635431410073
    [Google Scholar]
  14. YagiH. Soto-GutierrezA. Navarro-AlvarezN. NahmiasY. GoldwasserY. KitagawaY. TillesA.W. TompkinsR.G. ParekkadanB. YarmushM.L. Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1.Mol. Ther.201018101857186410.1038/mt.2010.15520664529
    [Google Scholar]
  15. SchmittgenT.D. LivakK.J. Analyzing real-time PCR data by the comparative CT method.Nat. Protoc.2008361101110810.1038/nprot.2008.7318546601
    [Google Scholar]
  16. LavoginaD. LustH. TahkM.J. LaasfeldT. VellamaH. NasirovaN. VardjaM. EsklaK.L. SalumetsA. RinkenA. JaalJ. Revisiting the resazurin-based sensing of cellular viability: Widening the application horizon.Biosensors (Basel)202212419610.3390/bios1204019635448256
    [Google Scholar]
  17. ZhuL. ZouJ. ZhaoY. JiangX. WangY. WangX. ChenB. ER-α36 mediates cisplatin resistance in breast cancer cells through EGFR/HER-2/ERK signaling pathway.J. Exp. Clin. Cancer Res.201837112310.1186/s13046‑018‑0798‑z29940998
    [Google Scholar]
  18. ZhangC. ZhangH. HanM. YangX. PeiC. XuZ. DuJ. LiW. ChenS. DNA–affibody nanoparticle delivery system for cisplatin-based breast cancer chemotherapy.RSC Advances2019941982198910.1039/C8RA08735K35516156
    [Google Scholar]
  19. TsydenovaI.A. DolgashevaD.S. GaptulbarovaK.A. IbragimovaM.K. TsyganovM.M. KravtsovaE.A. NushtaevaA.A. LitviakovN.V. WNT- Conditioned Mechanism of Exit from Postchemotherapy Shock of Differentiated Tumour Cells.Cancers (Basel)20231510276510.3390/cancers1510276537345102
    [Google Scholar]
  20. LiuW.J. PanP. SunY. WangJ. ZhouH. XieX. DuanZ. DongH. ChenW. ZhangL. WangC. Deferoxamine counteracts cisplatin resistance in A549 lung adenocarcinoma cells by increasing vulnerability to glutamine deprivation-induced cell death.Front. Oncol.20221179473510.3389/fonc.2021.79473535127502
    [Google Scholar]
  21. LiuM. CuiL. LiX. XiaC. LiY. WangR. RenF. LiuH. ChenJ. PD‐0332991 combined with cisplatin inhibits nonsmall cell lung cancer and reversal of cisplatin resistance.Thorac. Cancer202112692493110.1111/1759‑7714.1386633534964
    [Google Scholar]
  22. PriceP.M. SafirsteinR.L. MegyesiJ. Protection of renal cells from cisplatin toxicity by cell cycle inhibitors.Am. J. Physiol. Renal Physiol.20042862F378F38410.1152/ajprenal.00192.200312965891
    [Google Scholar]
  23. KwonY.H. JovanovicA. SerfasM.S. TynerA.L. The Cdk inhibitor p21 is required for necrosis, but it inhibits apoptosis following toxin-induced liver injury.J. Biol. Chem.200327832303483035510.1074/jbc.M30099620012759355
    [Google Scholar]
  24. GökeR. GökeA. GökeB. El-DeiryW.S. ChenY. Pioglitazone inhibits growth of carcinoid cells and promotes TRAIL-induced apoptosis by induction of p21waf1/cip1.Digestion2001642758010.1159/00004884311684819
    [Google Scholar]
  25. KangK.H. KimW.H. ChoiK.H. p21 promotes ceramide-induced apoptosis and antagonizes the antideath effect of Bcl-2 in human hepatocarcinoma cells.Exp. Cell Res.1999253240341210.1006/excr.1999.464410585263
    [Google Scholar]
  26. LincetH. PoulainL. RemyJ.S. DeslandesE. DuigouF. GauduchonP. StaedelC. The p21 cip1/waf1 cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells.Cancer Lett.20001611172610.1016/S0304‑3835(00)00586‑311078909
    [Google Scholar]
  27. SheikhM.S. RochefortH. GarciaM. Overexpression of p21WAF1/CIP1 induces growth arrest, giant cell formation and apoptosis in human breast carcinoma cell lines.Oncogene1995119189919057478620
    [Google Scholar]
  28. TsaoY.P. HuangS.J. ChangJ.L. HsiehJ.T. PongR.C. ChenS.L. Adenovirus-mediated p21 (WAF1/SDII/CIP1) gene transfer induces apoptosis of human cervical cancer cell lines.J. Virol.19997364983499010.1128/JVI.73.6.4983‑4990.199910233960
    [Google Scholar]
  29. ChineryR. BrockmanJ.A. PeelerM.O. ShyrY. BeauchampR.D. CoffeyR.J. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: A p53-independent induction of p21WAF1/CIP1 via C/EBPβ.Nat. Med.19973111233124110.1038/nm1197‑12339359698
    [Google Scholar]
  30. HingoraniR. BiB. DaoT. BaeY. MatsuzawaA. CrispeI.N. CD95/Fas signaling in T lymphocytes induces the cell cycle control protein p21cip-1/WAF-1, which promotes apoptosis.J. Immunol.200016484032403610.4049/jimmunol.164.8.403210754295
    [Google Scholar]
  31. GeorgeR.J. SturmoskiM.A. MayR. SurebanS.M. DieckgraefeB.K. AnantS. HouchenC.W. Loss of p21 Waf1/Cip1/Sdi1 enhances intestinal stem cell survival following radiation injury.Am. J. Physiol. Gastrointest. Liver Physiol.20092962G245G25410.1152/ajpgi.00021.200819056768
    [Google Scholar]
  32. GheisariY. AhmadbeigiN. Aghaee-BakhtiariS.H. NassiriS.M. AmanpourS. AzadmaneshK. HajarizadehA. MobarraZ. SoleimaniM. Human unrestricted somatic stem cell administration fails to protect nude mice from cisplatin-induced acute kidney injury.Nephron, Exp. Nephrol.20131233-4112110.1159/00035323323921434
    [Google Scholar]
  33. GheisariY. AhmadbeigiN. NaderiM. NassiriS.M. NadriS. SoleimaniM. Stem cell-conditioned medium does not protect against kidney failure.Cell Biol. Int.201135320921310.1042/CBI2010018320950276
    [Google Scholar]
  34. SharpC.N. SiskindL.J. Developing better mouse models to study cisplatin-induced kidney injury.Am. J. Physiol. Renal Physiol.20173134F835F84110.1152/ajprenal.00285.201728724610
    [Google Scholar]
  35. HeymanS.N. RosenbergerC. RosenS. Acute kidney injury: Lessons from experimental models.Contrib. Nephrol.201116928629610.1159/00031395721252527
    [Google Scholar]
  36. AggarwalS.K. BroomheadJ.A. FairlieD.P. WhitehouseM.W. Platinum drugs: Combined anti-lymphoproliferative and nephrotoxicity assay in rats.Cancer Chemother. Pharmacol.19804424925810.1007/BF002552697438327
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X321387240909111413
Loading
/content/journals/cscr/10.2174/011574888X321387240909111413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test