Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Introduction

Oral mucositis (OM) is a common and debilitating side effect of cancer therapies such as radiotherapy, chemotherapy, hematopoietic cell transplant, or their combinations. This study focused on the reparative effects of human embryonic stem cell-derived mesenchymal stem cells(hESC-MSCs) in OM and possible mechanisms.

Methods

An ulcer model was created in the rat buccal mucosa to mimic an animal model of OM mucosal injury, and hESC-MSCs were injected 48h later to assess their reparative effects. , the efficacy of hESC-MSCs in regulating apoptosis and proliferation in LPS- or 5-fluorouracil (5-FU)-injured HaCaT cells was studied using a transwell coculture system. Subsequently, the PI3K inhibitor LY24002 was used to assess whether hESC-MSCs regulated injured HaCaT cells through the PI3K/AKT pathway.

Results

, we found that hESC-MSCs injection promoted OM healing in rats through the acceleration of re-epithelialization and a decrease in apoptosis. , our findings revealed that the hESC-MSCs treatment led to a reduction in the quantity of HaCaT cells undergoing apoptosis. Western blot analysis revealed that hESC-MSCs activated AKT, resulting in increased protein levels of PCNA and BCL-2 and decreased protein levels of Bax and Caspase-3. Whereas LY294002 reversed these changes.

Conclusion

These findings suggest that hESC-MSCs promoted OM wound healing by stimulating the proliferation of epithelial cells and inhibiting their apoptosis in rat models. Furthermore, hESC-MSCs might mediate the PI3K/AKT pathway to modulate apoptosis/proliferation injured by LPS or 5-FU in HaCaT cells.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X338333241010104024
2024-10-22
2026-02-05
Loading full text...

Full text loading...

References

  1. PulitoC. CristaudoA. PortaC.L. ZapperiS. BlandinoG. MorroneA. StranoS. Oral mucositis: the hidden side of cancer therapy.J. Exp. Clin. Cancer Res.202039121010.1186/s13046‑020‑01715‑733028357
    [Google Scholar]
  2. ChenC. ZhangQ. YuW. ChangB. LeA.D. Oral Mucositis: An Update on Innate Immunity and New Interventional Targets.J. Dent. Res.202099101122113010.1177/002203452092542132479139
    [Google Scholar]
  3. Abdalla-AslanR. KeeganR. ZadikY. YaromN. EladS. Recent advances in cancer therapy‐associated oral mucositis.Oral Dis.20242024odi.1499910.1111/odi.1499938968169
    [Google Scholar]
  4. BrennanP.A. LewthwaiteR. SakthithasanP. McGuiganS. DonnellyO. AlamP. GomezR.S. FedeleS. Diclofenac Mouthwash as a potential therapy for reducing pain and discomfort in chemo‐radiotherapy–induced oral mucositis.J. Oral Pathol. Med.202049995695910.1111/jop.1300132017243
    [Google Scholar]
  5. FasanaroE. Del BiancoP. GroffE. RivaA. PetrangoliniG. BusatoF. StritoniP. ScarzelloG. LoreggianL. De SalvoG.L. Role of SAMITAL in the Prevention and Treatment of Chemo-Radiotherapy-Induced Oral Mucositis in Head and Neck Carcinoma: A Phase 2, Randomized, Double-Blind, Placebo-Controlled Clinical Trial (ROSAM).Cancers (Basel)20221424619210.3390/cancers1424619236551677
    [Google Scholar]
  6. MinhasS. SajjadA. ChaudhryR.M. ZahidH. ShahidA. KashifM. Assessment and prevalence of concomitant chemo-radiotherapy-induced oral mucositis in patients with oral squamous cell carcinoma.Turk. J. Med. Sci.202151267568410.3906/sag‑2007‑13133155791
    [Google Scholar]
  7. PengT.R. TsaiF.P. WuT.W. Effects of various treatments for preventing oral mucositis in cancer patients: A network meta-analysis.PLoS One20221712e027810210.1371/journal.pone.027810236480513
    [Google Scholar]
  8. SonisS.T. Treatment for Oral Mucositis—Current Options and an Update of Small Molecules Under Development.Curr. Treat. Options Oncol.20212232510.1007/s11864‑021‑00823‑633595722
    [Google Scholar]
  9. HosseinzadehA. Jamshidi NaeiniA. SheibaniM. GholamineB. ReiterR.J. MehrzadiS. Melatonin and oral diseases: possible therapeutic roles based on cellular mechanisms.Pharmacol. Rep.202476348750310.1007/s43440‑024‑00593‑638607587
    [Google Scholar]
  10. SonisS.T. The pathobiology of mucositis.Nat. Rev. Cancer20044427728410.1038/nrc131815057287
    [Google Scholar]
  11. GhasemiS. FarokhpourF. MortezagholiB. MovahedE. GhaediA. GargariM.K. KhanzadehM. BazrgarA. KhanzadehS. Systematic review and meta-analysis of oxidative stress and antioxidant markers in recurrent aphthous stomatitis.BMC Oral Health202323196010.1186/s12903‑023‑03636‑138042793
    [Google Scholar]
  12. IdreesM. KujanO. A curcumin-based oral gel has potential protective efficacy against oral mucositis: In vitro study.J. Pers. Med.202320231410.3390/jpm14010001
    [Google Scholar]
  13. Viana FilhoJ.M.C. de SouzaB.F. CoêlhoM.C. ValençaA.M.G. PersuhnD.C. de OliveiraN.F.P. Polymorphism but not methylation status in the vitamin D receptor gene contributes to oral mucositis in children.Oral Dis.20232983381339210.1111/odi.1439436200993
    [Google Scholar]
  14. YangD.W. WangT.M. ZhangJ.B. LiX.Z. HeY.Q. XiaoR. XueW.Q. ZhengX.H. ZhangP.F. ZhangS.D. HuY.Z. ShenG.P. ChenM. SunY. JiaW.H. Genome-wide association study identifies genetic susceptibility loci and pathways of radiation-induced acute oral mucositis.J. Transl. Med.202018122410.1186/s12967‑020‑02390‑032503578
    [Google Scholar]
  15. Al-JamaeiA.A.H. EpsteinJ.B. de VisscherJ.G.A.M. SpielbergerR.T. NakamuraR. Raber-DurlacherJ.E. Comparing the risk of severe oral mucositis associated with methotrexate as graft-versus host-disease prophylaxis to other immunosuppressive prophylactic agents in hematopoietic cell transplantation: a systematic review and meta-analysis.Support. Care Cancer202432851910.1007/s00520‑024‑08722‑w39017899
    [Google Scholar]
  16. LinP. ZhuangJ. LaiJ. CuiJ. JiangD. HuangJ. Efficacy of probiotics in the treatment of oral mucositis in head and neck cancer patients: A systematic review and meta-analysis.Microb. Pathog.202419310678510.1016/j.micpath.2024.10678538971507
    [Google Scholar]
  17. PaivaD.L. OliveiraV.R. BagnatoV.S. SimõesA. Long-term survival of cancer patients after photobiomodulation therapy for prevention and treatment of oral mucositis.Photodiagn. Photodyn. Ther.20244810424810.1016/j.pdpdt.2024.10424838944404
    [Google Scholar]
  18. ZuoF. LiT. ChenY. WenM. CaoH. Knowledge, attitudes, barriers and practices concerning cancer therapy–associated oral mucositis amongst oncology nurses: A mixed methods systematic review.Asia Pac. J. Oncol. Nurs.202411810054210.1016/j.apjon.2024.10054239148938
    [Google Scholar]
  19. EladS. YaromN. ZadikY. Kuten-ShorrerM. SonisS.T. The broadening scope of oral mucositis and oral ulcerative mucosal toxicities of anticancer therapies.CA Cancer J. Clin.2022721577710.3322/caac.2170434714553
    [Google Scholar]
  20. HannaR. DalviS. BenedicentiS. AmaroliA. SălăgeanT. PopI.D. TodeaD. BordeaI.R. Photobiomodulation Therapy in Oral Mucositis and Potentially Malignant Oral Lesions: A Therapy Towards the Future.Cancers (Basel)2020127194910.3390/cancers1207194932708390
    [Google Scholar]
  21. EladS. ChengK.K.F. LallaR.V. YaromN. HongC. LoganR.M. BowenJ. GibsonR. SaundersD.P. ZadikY. AriyawardanaA. CorreaM.E. RannaV. BossiP. Mucositis Guidelines Leadership Group of the Multinational Association of Supportive Care in Cancer and International Society of Oral Oncology (MASCC/ISOO) MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy.Cancer2020126194423443110.1002/cncr.3310032786044
    [Google Scholar]
  22. GongW. WangF. HeY. ZengX. ZhangD. ChenQ. Mesenchymal Stem Cell Therapy for Oral Inflammatory Diseases: Research Progress and Future Perspectives.Curr. Stem Cell Res. Ther.202116216517410.2174/1574888X1566620072622413232713335
    [Google Scholar]
  23. BaillyC. Potential use of edaravone to reduce specific side effects of chemo-, radio- and immuno-therapy of cancers.Int. Immunopharmacol.20197710596710.1016/j.intimp.2019.10596731670091
    [Google Scholar]
  24. GugjooM.B. FarooqF. DarE.R. AhmadS.M. ShahR.A. Amarpal ParrahJ.D. Adult Stem Cell Research in Light of the Bovine Mammary Gland Regenerative Medicine.Curr. Stem Cell Res. Ther.202318674074910.2174/1574888X1766622070516281035792118
    [Google Scholar]
  25. SharanJ. BarmadaA. ProdromosC. CandidoK. First Human Report of Relief of Lumbar and Cervical Discogenic and Arthritic Back Pain after Epidural and Facet Joint Mesenchymal Stem Cell Injection: A Case Report.Curr. Stem Cell Res. Ther.20231871013101510.2174/1574888X1766622062812311535762554
    [Google Scholar]
  26. WahidF.S.A. IsmailN.A. Wan JamaludinW.F. MuhamadN.A. Mohamad IdrisM.A. LaiN.M. Efficacy and Safety of Autologous Cell-based Therapy in Patients with No-option Critical Limb Ischaemia: A Meta-Analysis.Curr. Stem Cell Res. Ther.201813426528310.2174/1574888X1366618031314141629532760
    [Google Scholar]
  27. HendijaniF. Human mesenchymal stromal cell therapy for prevention and recovery of chemo/radiotherapy adverse reactions.Cytotherapy201517550952510.1016/j.jcyt.2014.10.01525599589
    [Google Scholar]
  28. ShiH. SunY. RuanH. JiC. ZhangJ. WuP. LiL. HuangC. JiaY. ZhangX. XuW. JiangJ. QianH. 3,3′-Diindolylmethane Promotes Gastric Cancer Progression via β-TrCP-Mediated NF-κB Activation in Gastric Cancer-Derived MSCs.Front. Oncol.20211160353310.3389/fonc.2021.60353333842314
    [Google Scholar]
  29. YuH.Y. ShinJ.H. YunH. RyuC.M. LeeS. HeoJ. LimJ. ParkJ. HongK.S. ChungH.M. ShinD.M. ChooM.S. A Preclinical Study of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells for Treating Detrusor Underactivity by Chronic Bladder Ischemia.Stem Cell Rev. Rep.20211762139215210.1007/s12015‑021‑10204‑z34189670
    [Google Scholar]
  30. ShenZ. WangJ. HuangQ. ShiY. WeiZ. ZhangX. QiuY. ZhangM. WangY. QinW. HuangS. HuangY. LiuX. XiaK. ZhangX. LinZ. Genetic modification to induce CXCR2 overexpression in mesenchymal stem cells enhances treatment benefits in radiation-induced oral mucositis.Cell Death Dis.20189222910.1038/s41419‑018‑0310‑x29445104
    [Google Scholar]
  31. MariaO.M. ShalabyM. SymeA. EliopoulosN. MuanzaT. Adipose mesenchymal stromal cells minimize and repair radiation-induced oral mucositis.Cytotherapy20161891129114510.1016/j.jcyt.2016.06.00827424150
    [Google Scholar]
  32. GuanZ. ZhangJ. JiangN. TianM. WangH. LiangB. Efficacy of mesenchymal stem cell therapy in rodent models of radiation-induced xerostomia and oral mucositis: a systematic review.Stem Cell Res. Ther.20231418210.1186/s13287‑023‑03301‑y37046350
    [Google Scholar]
  33. LimJ.Y. YiT. ChoiJ.S. JangY.H. LeeS. KimH.J. SongS.U. KimY.M. Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage.Oral Oncol.201349213614310.1016/j.oraloncology.2012.08.01022981389
    [Google Scholar]
  34. HuangJ. UK.P. YangF. JiZ. LinJ. WengZ. TsangL.L. MersonT.D. RuanY.C. WanC. LiG. JiangX. Human pluripotent stem cell-derived ectomesenchymal stromal cells promote more robust functional recovery than umbilical cord-derived mesenchymal stromal cells after hypoxic-ischaemic brain damage.Theranostics202212114316610.7150/thno.5723434987639
    [Google Scholar]
  35. LeeE.J. LeeH.N. KangH.J. KimK.H. HurJ. ChoH.J. LeeJ. ChungH.M. ChoJ. ChoM.Y. OhS.K. MoonS.Y. ParkY.B. KimH.S. Novel embryoid body-based method to derive mesenchymal stem cells from human embryonic stem cells.Tissue Eng. Part A201016270571510.1089/ten.tea.2008.059619895342
    [Google Scholar]
  36. González-KingH. RodriguesP.G. AlberyT. TangruksaB. GurrapuR. SilvaA.M. MusaG. KardaszD. LiuK. KullB. ÅvallK. Rydén-MarkinhuhtaK. IncittiT. SharmaN. GraneliC. ValadiH. PetkeviciusK. CarracedoM. TejedorS. IvanovaA. Heydarkhan-HagvallS. MenaschéP. SynnergrenJ. DekkerN. WangQ.D. JennbackenK. Head‐to‐head comparison of relevant cell sources of small extracellular vesicles for cardiac repair: Superiority of embryonic stem cells.J. Extracell. Vesicles2024135e1244510.1002/jev2.1244538711334
    [Google Scholar]
  37. ZhangY. HeY. DengR. JiangZ. ZhangL. ZengY. ZouL. Multifaceted Characterization of Human Embryonic Stem Cell-Derived Mesenchymal Stem/Stromal Cells Revealed Amelioration of Acute Liver Injury in NOD-SCID Mice.Cell Transplant.2024330963689723121838310.1177/0963689723121838338173232
    [Google Scholar]
  38. ZhongY. ZhuY. HuX. ZhangL. XuJ. WangQ. LiuJ. Human embryonic stem cell–derived mesenchymal stromal cells suppress inflammation in mouse models of rheumatoid arthritis and lung fibrosis by regulating T-cell function.Cytotherapy202426893093810.1016/j.jcyt.2024.03.00838520411
    [Google Scholar]
  39. BahrehbarK. ValojerdiM.R. EsfandiariF. FathiR. HassaniS.N. BaharvandH. Human embryonic stem cell-derived mesenchymal stem cells improved premature ovarian failure.World J. Stem Cells202012885787810.4252/wjsc.v12.i8.85732952863
    [Google Scholar]
  40. XuJ. WangX. ChenJ. ChenS. LiZ. LiuH. BaiY. ZhiF. Embryonic stem cell-derived mesenchymal stem cells promote colon epithelial integrity and regeneration by elevating circulating IGF-1 in colitis mice.Theranostics20201026122041222210.7150/thno.4768333204338
    [Google Scholar]
  41. YoonS.Y. YoonJ.A. ParkM. ShinE.Y. JungS. LeeJ.E. EumJ.H. SongH. LeeD.R. LeeW.S. LyuS.W. Recovery of ovarian function by human embryonic stem cell-derived mesenchymal stem cells in cisplatin-induced premature ovarian failure in mice.Stem Cell Res. Ther.202011125510.1186/s13287‑020‑01769‑632586410
    [Google Scholar]
  42. SiddiqiS. KlomjitN. JiangK. ConleyS.M. ZhuX. SaadiqI.M. FergusonC.M. TangH. LermanA. LermanL.O. Efficacy of Human Embryonic Stem Cells Compared to Adipose Tissue-Derived Human Mesenchymal Stem/Stromal Cells for Repair of Murine Post-Stenotic Kidneys.Stem Cell Rev. Rep.202319249150210.1007/s12015‑022‑10443‑836048327
    [Google Scholar]
  43. KhezriM.R. HsuehH.Y. MohammadipanahS. Khalili FardJ. Ghasemnejad-BerenjiM. The interplay between the PI3K / AKT pathway and circadian clock in physiologic and cancer‐related pathologic conditions.Cell Prolif.2024577e1360810.1111/cpr.1360838336976
    [Google Scholar]
  44. ChenT. ZhangP. CongX.F. WangY.Y. LiS. WangH. ZhaoS.R. SunX.J. Synergistic antitumor activity of baicalein combined with almonertinib in almonertinib-resistant non-small cell lung cancer cells through the reactive oxygen species-mediated PI3K/Akt pathway.Front. Pharmacol.202415140552110.3389/fphar.2024.140552139144617
    [Google Scholar]
  45. QinL. SongC. YuanF. WangX. YangY. MaY. ChenZ. ELOVL1 is upregulated and promotes tumor growth in hepatocellular carcinoma through regulating PI3K-AKT-mTOR signaling.Heliyon20241015e3496110.1016/j.heliyon.2024.e3496139144963
    [Google Scholar]
  46. TangS. LiuJ. LiF. YanY. LongX. FuY. AP-1 inhibitor induces ferroptosis via the PI3K/AKT pathway in multiple myeloma cells.Heliyon20241014e3439710.1016/j.heliyon.2024.e3439739104494
    [Google Scholar]
  47. WuC. YangJ. YeC. WuH. ShuW. LiR. WangS. LuY. ChenH. ZhangZ. YaoQ. Berberine attenuates 5-fluorouracil-induced intestinal mucosal injury by modulating the gut microbiota without compromising its anti-tumor efficacy.Heliyon20241014e3452810.1016/j.heliyon.2024.e3452839114045
    [Google Scholar]
  48. YanS. BaoS. ChenT. ChenJ. ZhangJ. HuX. LiangY. ZhouX. LiJ. Cinnamaldehyde alleviates aspirin-induced gastric mucosal injury by regulating pi3k/akt pathway-mediated apoptosis, autophagy and ferroptosis.Phytomedicine202413215579110.1016/j.phymed.2024.15579138901284
    [Google Scholar]
  49. GaoZ. GuanL. LiuZ. YanF. FangS. ZhangX. GaoC. Using extracellular vesicles derived from human umbilical cord mesenchymal stem cells for a topical coating promotes oral mucositis healing in rats.Ann. Transl. Med.202210629010.21037/atm‑22‑76735434027
    [Google Scholar]
  50. JunE. ZhangQ. YoonB. MoonJ.H. LeeG. ParkG. KangP. LeeJ. KimA. YouS. Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways.Int. J. Mol. Sci.201415160562810.3390/ijms1501060524398984
    [Google Scholar]
  51. LeeC.C. ChenY.W. KangY.N. ChenJ.H. ChenC. LuC.Y. HuangT.W. GautamaM.S.N. Efficacy of natural products in preventing oral mucositis resulting from cancer therapies: A network meta-analysis of randomized controlled trials.Crit. Rev. Oncol. Hematol.202419910437310.1016/j.critrevonc.2024.10437338710295
    [Google Scholar]
  52. YangZ. ZhangS. YingL. ZhangW. ChenX. LiangY. ChenR. YaoK. LiC. YuC. JamilianP. ZarezadehM. Kord-VarkanehH. WangJ. LiH. The effect of probiotics supplementation on cancer-treatment complications: a critical umbrella review of interventional meta-analyses.Crit. Rev. Food Sci. Nutr.202412610.1080/10408398.2024.237288039002141
    [Google Scholar]
  53. CavalieriR. de OliveiraH.F. Louvain de SouzaT. KanashiroM.M. Single Nucleotide Polymorphisms as Biomarker Predictors of Oral Mucositis Severity in Head and Neck Cancer Patients Submitted to Combined Radiation Therapy and Chemotherapy: A Systematic Review.Cancers (Basel)202416594910.3390/cancers1605094938473311
    [Google Scholar]
  54. MakarewiczJ. Kaźmierczak-SiedleckaK. SobockiB.K. DobruckiI.T. KalinowskiL. StachowskaE. Anti-cancer management of head and neck cancers and oral microbiome—what can we clinically obtain?Front. Cell. Infect. Microbiol.202414132905710.3389/fcimb.2024.132905738481661
    [Google Scholar]
  55. San ValentinE.M.D. DoK.A. YeungS.C.J. Reyes-GibbyC.C. Attempts to Understand Oral Mucositis in Head and Neck Cancer Patients through Omics Studies: A Narrative Review.Int. J. Mol. Sci.202324231699510.3390/ijms24231699538069314
    [Google Scholar]
  56. IovoliA.J. TureckiL. QiuM.L. KhanM. SmithK. YuH. MaS.J. FarrugiaM.K. SinghA.K. Severe Oral Mucositis After Intensity-Modulated Radiation Therapy for Head and Neck Cancer.JAMA Netw. Open2023610e233726510.1001/jamanetworkopen.2023.3726537819659
    [Google Scholar]
  57. ZhangW. FanL. XieY. GaoT. ZengJ. Clinical efficacy and applicability of natural products in the treatment and prevention of radiotherapy-induced oral mucositis: A systematic review.PLoS One2024195e030398810.1371/journal.pone.030398838781255
    [Google Scholar]
  58. BowenJ. CrossC. The Role of the Innate Immune Response in Oral Mucositis Pathogenesis.Int. J. Mol. Sci.202324221631410.3390/ijms24221631438003503
    [Google Scholar]
  59. BrunoJ.S. Al-QadamiG.H. LaheijA.M.G.A. BossiP. FregnaniE.R. WardillH.R. From Pathogenesis to Intervention: The Importance of the Microbiome in Oral Mucositis.Int. J. Mol. Sci.2023249827410.3390/ijms2409827437175980
    [Google Scholar]
  60. de ArrudaJ.A.A. HeimlichF.V. DrumondV.Z. SchuchL.F. MartinsM.D. AbreuL.G. TeixeiraA.L. MesquitaR.A. SilvaT.A. Association of anxiety and depression with oral mucositis: A systematic review.Oral Dis.20232972538255110.1111/odi.1435535993910
    [Google Scholar]
  61. TreisterN. SonisS. Mucositis: biology and management.Curr. Opin. Otolaryngol. Head Neck Surg.200715212312910.1097/MOO.0b013e3280523ad617413415
    [Google Scholar]
  62. LeeD.Y. KimH.B. ShimI.K. KanaiN. OkanoT. KwonS.K. Treatment of chemically induced oral ulcer using adipose‐derived mesenchymal stem cell sheet.J. Oral Pathol. Med.201746752052710.1111/jop.1251727805722
    [Google Scholar]
  63. KraskiewiczH. PaprockaM. Bielawska-PohlA. KrawczenkoA. PanekK. KaczyńskaJ. SzyposzyńskaA. PsurskiM. KuropkaP. KlimczakA. Can supernatant from immortalized adipose tissue MSC replace cell therapy? An in vitro study in chronic wounds model.Stem Cell Res. Ther.20201112910.1186/s13287‑020‑1558‑531964417
    [Google Scholar]
  64. FarabiB. RosterK. HiraniR. TepperK. AtakM.F. SafaiB. The Efficacy of Stem Cells in Wound Healing: A Systematic Review.Int. J. Mol. Sci.2024255300610.3390/ijms2505300638474251
    [Google Scholar]
  65. SadrS. Ahmadi SimabP. NiaziM. YousefsaniZ. LotfalizadehN. HajjafariA. BorjiH. Anti-inflammatory and immunomodulatory effects of mesenchymal stem cell therapy on parasitic drug resistance.Expert Rev. Anti Infect. Ther.202422643545110.1080/14787210.2024.236068438804866
    [Google Scholar]
  66. JungH. KimH.S. LeeJ.H. LeeJ.J. ParkH.S. Wound Healing Promoting Activity of Tonsil-Derived Stem Cells on 5-Fluorouracil-Induced Oral Mucositis Model.Tissue Eng. Regen. Med.202017110511910.1007/s13770‑019‑00226‑732002842
    [Google Scholar]
  67. Asgari TaeiA. NasoohiS. HassanzadehG. KadivarM. DargahiL. FarahmandfarM. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell‐derived mesenchymal stem cells in ischemic stroke model.Biomed. Pharmacother.202114011170910.1016/j.biopha.2021.11170934020250
    [Google Scholar]
  68. YoonD. YoonD. SimH. HwangI. LeeJ.S. ChunW. Accelerated Wound Healing by Fibroblasts Differentiated from Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in a Pressure Ulcer Animal Model.Stem Cells Int.2018201811210.1155/2018/478956830693037
    [Google Scholar]
  69. HoxhajG. ManningB.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism.Nat. Rev. Cancer2020202748810.1038/s41568‑019‑0216‑731686003
    [Google Scholar]
  70. HanN. JiaL. SuY. DuJ. GuoL. LuoZ. LiuY. Lactobacillus reuteri extracts promoted wound healing via PI3K/AKT/β-catenin/TGFβ1 pathway.Stem Cell Res. Ther.201910124310.1186/s13287‑019‑1324‑831391121
    [Google Scholar]
  71. MiX. JiaoW. YangY. QinY. ChenZ.J. ZhaoS. HGF Secreted by Mesenchymal Stromal Cells Promotes Primordial Follicle Activation by Increasing the Activity of the PI3K-AKT Signaling Pathway.Stem Cell Rev. Rep.20221851834185010.1007/s12015‑022‑10335‑x35089464
    [Google Scholar]
  72. YangJ. LinN. LiS. DongZ. WangD. LiuY. ZhouY. YuanH. Cannabidiol Alleviates Oral Mucositis by Inhibiting PI3K/Akt/NF-κB-Mediated Pyroptosis.Balkan Med. J.202441428629710.4274/balkanmedj.galenos.2024.2024‑2‑6638966918
    [Google Scholar]
  73. KamelN.M. El-SayedS.S. El-SaidY.A.M. El-KershD.M. HashemM.M. MohamedS.S. Unlocking milk thistle’s anti-psoriatic potential in mice: Targeting PI3K/AKT/mTOR and KEAP1/NRF2/NF-κB pathways to modulate inflammation and oxidative stress.Int. Immunopharmacol.202413911278110.1016/j.intimp.2024.11278139059101
    [Google Scholar]
  74. SurapinitA. ChaideeA. PinlaorS. KongsintaweesukS. CharoenramN. MahaamnadN. SakonsinsiriC. HongsrichanN. Atrazine promotes cholangiocarcinoma cell proliferation and migration via GPER-mediated PI3K/Akt/NF-κB pathway.Pestic. Biochem. Physiol.202420310598810.1016/j.pestbp.2024.10598839084791
    [Google Scholar]
  75. AlaM. Mohammad JafariR. AlaM. HejaziS.M. TavangarS.M. MahdaviS.R. DehpourA.R. Sildenafil improves radiation‐induced oral mucositis by attenuating oxidative stress, NF‐κB, ERK and JNK signalling pathways.J. Cell. Mol. Med.202226164556456510.1111/jcmm.1748035810384
    [Google Scholar]
  76. MaF. YaoJ. NiuX. ZhangJ. ShiD. DaM. MARK4 promotes the malignant phenotype of gastric cancer through the MAPK/ERK signaling pathway.Pathol. Res. Pract.202426115547110.1016/j.prp.2024.15547139079384
    [Google Scholar]
  77. PohP.S.P. SeeligerC. UngerM. FalldorfK. BalmayorE.R. van GriensvenM. Osteogenic Effect and Cell Signaling Activation of Extremely Low-Frequency Pulsed Electromagnetic Fields in Adipose-Derived Mesenchymal Stromal Cells.Stem Cells Int.2018201811110.1155/2018/540285330123287
    [Google Scholar]
  78. LiC. XieX. LiuZ. YangJ. ZuoD. XuS. Neu5Ac Induces Human Dental Pulp Stem Cell Osteo-/Odontoblastic Differentiation by Enhancing MAPK/ERK Pathway Activation.Stem Cells Int.2021202111210.1155/2021/556087234603453
    [Google Scholar]
  79. JeonS.J. ChoiE.Y. HanE.J. LeeS.W. MoonJ.M. JungS.H. JungJ.Y. Piperlongumine induces apoptosis via the MAPK pathway and ERK‑mediated autophagy in human melanoma cells.Int. J. Mol. Med.202352611510.3892/ijmm.2023.531837830157
    [Google Scholar]
  80. WangY. DengX. LiuY. WangY. LuoX. ZhaoT. WangZ. ChengG. Protective effect of Anneslea fragrans ethanolic extract against CCl4-induced liver injury by inhibiting inflammatory response, oxidative stress and apoptosis.Food Chem. Toxicol.202317511375210.1016/j.fct.2023.11375237004906
    [Google Scholar]
  81. YueJ. LópezJ.M. Understanding MAPK signaling pathways in apoptosis.Int. J. Mol. Sci.2020217234610.3390/ijms2107234632231094
    [Google Scholar]
  82. KośmiderK. KarskaK. KozakiewiczA. LejmanM. ZawitkowskaJ. Overcoming steroid resistance in pediatric acute lymphoblastic leukemia—the state-of-the-art knowledge and future prospects.Int. J. Mol. Sci.2022237379510.3390/ijms2307379535409154
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X338333241010104024
Loading
/content/journals/cscr/10.2174/011574888X338333241010104024
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test