Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Nucleus pulposus mesenchymal stem cells play a fatal role in intervertebral disc homeostasis. Magnesium is an essential bioactive element for the human body, regulating intracellular enzyme activity and promoting stem cell adhesion and differentiation.

Objective

This study aimed to detect the effects of Mg2+ on nucleus pulposus mesenchymal stem cells and explore the mechanism by which magnesium ions promote the differentiation of nucleus pulposus mesenchymal stem cells.

Methods

Nucleus pulposus mesenchymal stem cells digested from the caudal intervertebral disc of 3-month-old SD rats were interfered with using different concentrations of magnesium ions, and their levels of migration, adhesion, and differentiation were evaluated by biochemical and molecular indices.

Results

Magnesium ion treatment significantly enhanced the migration and adhesion ability of NPMSCs. Meanwhile, magnesium ion treatment promoted NP differentiation of NPMSCs and the formation of nucleus pulposus precipitates. p-Smad2 immunofluorescence staining demonstrated that the nuclear translocation of p-Smad2 was significantly up-regulated after Mg2+ stimulation, while this effect was significantly attenuated by the addition of β1 blocker. In addition, protein quantification experiments demonstrated the same results. These results showed that 10mM magnesium can significantly promote the differentiation of NPMSCs, and its mechanism is related to the integrin receptor and TGF-β signaling pathway.

Conclusion

Mg2+ at 10 mM significantly promoted migration and differentiation of NPMSCs by a mechanism related to the integrin-TGF signaling pathway.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X304570240705094512
2024-07-15
2026-02-05
Loading full text...

Full text loading...

References

  1. KatzJ.N. Lumbar disc disorders and low-back pain: Socioeconomic factors and consequences.J. Bone Joint Surg. Am.2006882212410.2106/00004623‑200604002‑0000516595438
    [Google Scholar]
  2. AdamsM.A. RoughleyP.J. What is intervertebral disc degeneration, and what causes it?Spine200631182151216110.1097/01.brs.0000231761.73859.2c16915105
    [Google Scholar]
  3. AshinskyB. SmithH.E. MauckR.L. GullbrandS.E. Intervertebral disc degeneration and regeneration: A motion segment perspective.Eur. Cell. Mater.20214137038710.22203/eCM.v041a2433763848
    [Google Scholar]
  4. XinJ. WangY. Treatment of intervertebral disc degeneration.Orthop Surg202214712711280
    [Google Scholar]
  5. KrutZ. PelledG. GazitD. GazitZ. Stem cells and exosomes: New therapies for intervertebral disc degeneration.Cells2021109224110.3390/cells1009224134571890
    [Google Scholar]
  6. WangF. ShiR. CaiF. WangY.T. WuX.T. Stem cell approaches to intervertebral disc regeneration: Obstacles from the disc microenvironment.Stem Cells Dev.201524212479249510.1089/scd.2015.015826228642
    [Google Scholar]
  7. MernD.S. BeierfußA. ThoméC. HegewaldA.A. Enhancing human nucleus pulposus cells for biological treatment approaches of degenerative intervertebral disc diseases: A systematic review.J. Tissue Eng. Regen. Med.201481292593610.1002/term.158322927290
    [Google Scholar]
  8. HuangS. TamV. CheungK.M. LongD. LvM. WangT. ZhouG. Stem cell-based approaches for intervertebral disc regeneration.Curr. Stem Cell Res. Ther.20116431732610.2174/15748881179790433521190533
    [Google Scholar]
  9. LeungVY ChanD CheungKM Regeneration of intervertebral disc by mesenchymal stem cells: Potentials, limitations, and future direction.Eur Spine J200615Suppl 3S406S41310.1007/s00586‑006‑0183‑z
    [Google Scholar]
  10. TessierS. DoolittleA.C. SaoK. RottyJ.D. BearJ.E. UliciV. LoeserR.F. ShapiroI.M. DiekmanB.O. RisbudM.V. Arp2/3 inactivation causes intervertebral disc and cartilage degeneration with dysregulated TonEBP-mediated osmoadaptation.JCI Insight202054e13138210.1172/jci.insight.13138231961823
    [Google Scholar]
  11. VadalàG AmbrosioL. Interaction between mesenchymal stem cells and intervertebral disc microenvironment: From cell therapy to tissue engineering.Stem Cells Int201920192376172
    [Google Scholar]
  12. YangRZ XuWN ZhengHL Involvement of oxidative stress-induced annulus fibrosus cell and nucleus pulposus cell ferroptosis in intervertebral disc degeneration pathogenesis.J Cell Physiol202123642725273910.1002/jcp.30039
    [Google Scholar]
  13. WuJ ChenY LiaoZ Self-amplifying loop of NF-κB and periostin initiated by PIEZO1 accelerates mechano-induced senescence of nucleus pulposus cells and intervertebral disc degeneration.Mol Ther2022301032413256
    [Google Scholar]
  14. GaoB. JiangB. XingW. XieZ. LuoZ. ZouW. Discovery and application of postnatal nucleus pulposus progenitors essential for intervertebral disc homeostasis and degeneration.Adv. Sci.2022913210488810.1002/advs.20210488835195356
    [Google Scholar]
  15. SloanSRJr WipplingerC Combined nucleus pulposus augmentation and annulus fibrosus repair prevents acute intervertebral disc degeneration after discectomy.Sci Transl Med202012534eaay238010.1126/scitranslmed.aay2380
    [Google Scholar]
  16. ShiY LiH ChuD LinW WangX WuY Rescuing nucleus pulposus cells from senescence via dual-functional greigite nanozyme to alleviate intervertebral disc degeneration.Adv Sci20231025e230098810.1002/advs.202300988
    [Google Scholar]
  17. RisbudM.V. GuttapalliA. TsaiT.T. LeeJ.Y. DanielsonK.G. VaccaroA.R. AlbertT.J. GazitZ. GazitD. ShapiroI.M. Evidence for skeletal progenitor cells in the degenerate human intervertebral disc.Spine200732232537254410.1097/BRS.0b013e318158dea617978651
    [Google Scholar]
  18. SakaiD. NakamuraY. NakaiT. MishimaT. KatoS. GradS. AliniM. RisbudM.V. ChanD. CheahK.S.E. YamamuraK. MasudaK. OkanoH. AndoK. MochidaJ. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc.Nat. Commun.201231126410.1038/ncomms222623232394
    [Google Scholar]
  19. ZhangYY HuZL QiYH LiHY ChangX GaoXX Pretreatment of nucleus pulposus mesenchymal stem cells with appropriate concentration of H2O2 enhances their ability to treat intervertebral disc degeneration.Stem Cell Res Ther.202213340
    [Google Scholar]
  20. HuangZ.N. WangZ.Y. ChengX.F. HuangZ.Z. HanY.L. CuiY.Z. LiuB. TianW. Melatonin alleviates oxidative stress-induced injury to nucleus pulposus-derived mesenchymal stem cells through activating PI3K/Akt pathway.J. Orthop. Translat.202343668410.1016/j.jot.2023.10.00238089645
    [Google Scholar]
  21. WuH. ZengX. YuJ. ShangY. TuM. CheangL.H. ZhangJ. Comparison of nucleus pulposus stem/progenitor cells isolated from degenerated intervertebral discs with umbilical cord derived mesenchymal stem cells.Exp. Cell Res.2017361232433210.1016/j.yexcr.2017.10.03429097182
    [Google Scholar]
  22. ZhangQ. ShenY. ZhaoS. JiangY. ZhouD. ZhangY. Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3.Cell. Signal.20218611008310.1016/j.cellsig.2021.11008334252537
    [Google Scholar]
  23. ZhaoW.J. LiuX. HuM. ZhangY. ShiP.Z. WangJ.W. LuX.H. ChengX.F. TaoY.P. FengX.M. WangY.X. ZhangL. Quercetin ameliorates oxidative stress-induced senescence in rat nucleus pulposus-derived mesenchymal stem cells via the miR-34a-5p/SIRT1 axis.World J. Stem Cells202315884286510.4252/wjsc.v15.i8.84237700818
    [Google Scholar]
  24. ChenS. DengX. MaK. ZhaoL. HuangD. LiZ. ShaoZ. Icariin improves the viability and function of cryopreserved human nucleus pulposus-derived mesenchymal stem cells.Oxid. Med. Cell. Longev.2018201811210.1155/2018/345961230050653
    [Google Scholar]
  25. LiZ. ChenS. MaK. LvX. LinH. HuB. HeR. ShaoZ. CsA attenuates compression-induced nucleus pulposus mesenchymal stem cells apoptosis via alleviating mitochondrial dysfunction and oxidative stress.Life Sci.2018205263710.1016/j.lfs.2018.05.01429746847
    [Google Scholar]
  26. LiangH. ChenS. HuangD. DengX. MaK. ShaoZ. Effect of compression loading on human nucleus pulposus-derived mesenchymal stem cells.Stem Cells Int.2018201811010.1155/2018/148124330402107
    [Google Scholar]
  27. LiuJ. TaoH. WangH. DongF. ZhangR. LiJ. GeP. SongP. ZhangH. XuP. LiuX. ShenC. Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration.Stem Cells Dev.2017261290191110.1089/scd.2016.031428298159
    [Google Scholar]
  28. ZhangK. FengQ. XuJ. XuX. TianF. YeungK.W.K. BianL. Self-assembled injectable nanocomposite hydrogels stabilized by bisphosphonate-magnesium (Mg 2+ ) coordination regulates the differentiation of encapsulated stem cells via dual crosslinking.Adv. Funct. Mater.20172734170164210.1002/adfm.201701642
    [Google Scholar]
  29. NunesAM MinettiC RemetaDP BaumJ Magnesium activates microsecond dynamics to regulate integrin-collagen recognition.Structure20182681080109010.1016/j.str.2018.05.010
    [Google Scholar]
  30. FiorentiniD CappadoneC FarruggiaG. Magnesium: Biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency.Nutrients20211341136
    [Google Scholar]
  31. BarbagalloM. VeroneseN. DominguezL.J. Magnesium in aging, health and diseases.Nutrients202113246310.3390/nu1302046333573164
    [Google Scholar]
  32. ShmagelA. OnizukaN. LangsetmoL. VoT. FoleyR. EnsrudK. ValenP. Low magnesium intake is associated with increased knee pain in subjects with radiographic knee osteoarthritis: Data from the Osteoarthritis Initiative.Osteoarthritis Cartilage201826565165810.1016/j.joca.2018.02.00229454594
    [Google Scholar]
  33. VeroneseN. StubbsB. MaggiS. NotarnicolaM. BarbagalloM. FirthJ. DominguezL. CarusoM. Dietary magnesium and incident frailty in older people at risk for knee osteoarthritis: an eight-year longitudinal study.Nutrients2017911125310.3390/nu911125329144404
    [Google Scholar]
  34. CastiglioniS. CazzanigaA. AlbisettiW. MaierJ. Magnesium and osteoporosis: Current state of knowledge and future research directions.Nutrients2013583022303310.3390/nu508302223912329
    [Google Scholar]
  35. BoS. DurazzoM. GuidiS. CarelloM. SacerdoteC. SilliB. RosatoR. CassaderM. GentileL. PaganoG. Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort.Am. J. Clin. Nutr.20068451062106910.1093/ajcn/84.5.106217093158
    [Google Scholar]
  36. YaoH. XuJ.K. ZhengN.Y. WangJ.L. MokS.W. LeeY.W. ShiL. WangJ.Y. YueJ. YungS.H. HuP.J. RuanY.C. ZhangY.F. HoK.W. QinL. Intra-articular injection of magnesium chloride attenuates osteoarthritis progression in rats.Osteoarthritis Cartilage201927121811182110.1016/j.joca.2019.08.00731536815
    [Google Scholar]
  37. LiaoZ. FuL. LiP. WuJ. YuanX. NingC. Incorporation of magnesium ions into an aptamer-functionalized ECM bioactive scaffold for articular cartilage regeneration.ACS Appl Mater Interfaces202315192294422958
    [Google Scholar]
  38. YaoH. XuJ. WangJ. ZhangY. ZhengN. YueJ. MiJ. ZhengL. DaiB. HuangW. YungS. HuP. RuanY. XueQ. HoK. QinL. Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice.Bioact. Mater.2021651341135210.1016/j.bioactmat.2020.10.01633210027
    [Google Scholar]
  39. KuangX. ChiouJ. LoK. WenC. Magnesium in joint health and osteoarthritis.Nutr. Res.202190243510.1016/j.nutres.2021.03.00234023805
    [Google Scholar]
  40. Martínez SánchezA.H. OmidiM. WurlitzerM. FuhM.M. FeyerabendF. SchlüterH. Willumeit-RömerR. LuthringerB.J.C. Proteome analysis of human mesenchymal stem cells undergoing chondrogenesis when exposed to the products of various magnesium-based materials degradation.Bioact. Mater.2019416818810.1016/j.bioactmat.2019.04.00131049466
    [Google Scholar]
  41. ShimayaM. MunetaT. IchinoseS. TsujiK. SekiyaI. Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins.Osteoarthritis Cartilage201018101300130910.1016/j.joca.2010.06.00520633668
    [Google Scholar]
  42. ZhangZ.Z. ZhouY.F. LiW.P. JiangC. ChenZ. LuoH. SongB. Local administration of magnesium promotes meniscal healing through homing of endogenous stem cells: A proof-of-concept study.Am. J. Sports Med.201947495496710.1177/036354651882007630786213
    [Google Scholar]
  43. HagandoraC.K. TudaresM.A. AlmarzaA.J. The effect of magnesium ion concentration on the fibrocartilage regeneration potential of goat costal chondrocytes.Ann. Biomed. Eng.201240368869610.1007/s10439‑011‑0433‑z22009314
    [Google Scholar]
  44. ZhaoY. JiaZ. HuangS. WuY. LiuL. LinL. WangD. HeQ. RuanD. Age-related changes in nucleus pulposus mesenchymal stem cells: An In Vitro study in rats.Stem Cells Int.2017201711310.1155/2017/676157228396688
    [Google Scholar]
  45. LiX.C. WangM.S. LiuW. ZhongC.F. DengG.B. LuoS.J. HuangC.M. Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence.Stem Cell Res. Ther.20189117110.1186/s13287‑018‑0919‑929941029
    [Google Scholar]
  46. ChengS. LiX. JiaZ. LinL. YingJ. WenT. ZhaoY. GuoZ. ZhaoX. LiD. JiW. WangD. RuanD. The inflammatory cytokine TNF-α regulates the biological behavior of rat nucleus pulposus mesenchymal stem cells through the NF-κB signaling pathway in vitro.J. Cell. Biochem.20191208136641367910.1002/jcb.2864030938863
    [Google Scholar]
  47. ChenS. ZhaoL. DengX. ShiD. WuF. LiangH. HuangD. ShaoZ. Mesenchymal stem cells protect nucleus pulposus cells from compression-induced apoptosis by inhibiting the mitochondrial pathway.Stem Cells Int.2017201711010.1155/2017/984312029387092
    [Google Scholar]
  48. XuF. LiuC. ZhouD. ZhangL. TGF-β/SMAD pathway and its regulation in hepatic fibrosis.J. Histochem. Cytochem.201664315716710.1369/002215541562768126747705
    [Google Scholar]
  49. WangD. PunC.C.M. HuangS. TangT.C.M. HoK.K.W. RothrauffB.B. YungP.S.H. BlockiA.M. KerE.D.F. TuanR.S. Tendon-derived extracellular matrix induces mesenchymal stem cell tenogenesis via an integrin/transforming growth factor-β crosstalk-mediated mechanism.FASEB J.20203468172818610.1096/fj.201902377RR32301551
    [Google Scholar]
  50. DuX LiangK DingS ShiH. Signaling mechanisms of stem cell therapy for intervertebral disc degeneration.Biomedicines2023119246710.3390/biomedicines11092467
    [Google Scholar]
  51. LiB. YangY. WangL. LiuG. Stem cell therapy and exercise for treatment of intervertebral disc degeneration.Stem Cells Int202120217982333
    [Google Scholar]
  52. NourisaJ. Zeller-PlumhoffB. HelmholzH. Luthringer-FeyerabendB. IvannikovV. Willumeit-RömerR. Magnesium ions regulate mesenchymal stem cells population and osteogenic differentiation: A fuzzy agent-based modeling approach.Comput. Struct. Biotechnol. J.2021194110412210.1016/j.csbj.2021.07.00534527185
    [Google Scholar]
  53. LiJ. KeH. LeiX. ZhangJ. WenZ. XiaoZ. ChenH. YaoJ. WangX. WeiZ. ZhangH. PanW. ShaoY. ZhaoY. XieD. ZengC. Controlled-release hydrogel loaded with magnesium-based nanoflowers synergize immunomodulation and cartilage regeneration in tendon-bone healing.Bioact. Mater.202436628210.1016/j.bioactmat.2024.02.02438440323
    [Google Scholar]
  54. AntoniacI. Manescu PaltaneaV. AntoniacA. PaltaneaG. Magnesium-based alloys with adapted interfaces for bone implants and tissue engineering.Regen. Biomater.202310rbad09510.1093/rb/rbad09538020233
    [Google Scholar]
  55. ZhangH. LiW. WuY. ZhangS. LiJ. HanL. ChenH. WangZ. ShenC. ZhangY. TaoH. Effects of changes in osmolarity on the biological activity of human normal nucleus pulposus mesenchymal stem cells.Stem Cells Int.2022202211510.1155/2022/112106435502327
    [Google Scholar]
  56. YingJ.W. WenT.Y. PeiS.S. SuL.H. RuanD.K. Stromal cell-derived factor-1α promotes recruitment and differentiation of nucleus pulposus-derived stem cells.World J. Stem Cells201911319621110.4252/wjsc.v11.i3.19630949297
    [Google Scholar]
  57. MarimuthuC. Pushpa RaniV. Elucidating the role of cell-mediated inflammatory cytokines on allogeneic mouse-derived nucleus pulposus mesenchymal stem cells.J. Food Biochem.2021454e1368110.1111/jfbc.1368133694170
    [Google Scholar]
  58. ChenQ. YangQ. PanC. DingR. WuT. CaoJ. WuH. ZhaoX. LiB. ChengX. Quiescence preconditioned nucleus pulposus stem cells alleviate intervertebral disc degeneration by enhancing cell survival via adaptive metabolism pattern in rats.Front. Bioeng. Biotechnol.202311107323810.3389/fbioe.2023.107323836845177
    [Google Scholar]
  59. HeR WangZ. HIF1A Alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy.Autophagy2021171133383360
    [Google Scholar]
  60. FranciscoV PinoJ González-GayM. A new immunometabolic perspective of intervertebral disc degeneration.Nat Rev Rheumatol2022181476010.1038/s41584‑021‑00713‑z
    [Google Scholar]
  61. KirnazS. CapadonaC. WongT. GoldbergJ.L. MedaryB. SommerF. McGrathL.B.Jr HärtlR. Fundamentals of intervertebral disc degeneration.World Neurosurg.202215726427310.1016/j.wneu.2021.09.06634929784
    [Google Scholar]
  62. ZhangT. WangY. LiR. XinJ. ZhengZ. ZhangX. XiaoC. ZhangS. ROS-responsive magnesium-containing microspheres for antioxidative treatment of intervertebral disc degeneration.Acta Biomater.202315847549210.1016/j.actbio.2023.01.02036640954
    [Google Scholar]
  63. TangY. ZhangK. ZhouH. ZhangC. LiuZ. ChenH. LiH. ChenK. Transplantation of active nucleus pulposus cells with a keep-charging hydrogel microsphere system to rescue intervertebral disc degeneration.J. Nanobiotechnology202321145310.1186/s12951‑023‑02226‑138017517
    [Google Scholar]
  64. WangZ. YangH. XuX. HuH. BaiY. HaiJ. ChengL. ZhuR. Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway.Bioact. Mater.202322759010.1016/j.bioactmat.2022.08.02336203960
    [Google Scholar]
  65. Bessa-GonçalvesM. Ribeiro-MachadoC. CostaM. RibeiroC.C. BarbosaJ.N. BarbosaM.A. SantosS.G. Magnesium incorporation in fibrinogen scaffolds promotes macrophage polarization towards M2 phenotype.Acta Biomater.202315566768310.1016/j.actbio.2022.10.04636328124
    [Google Scholar]
  66. GuzmánD.C. BrizuelaN.O. HerreraM.O. PerazaA.V. GarciaE.H. MejíaG.B. Assessment of the roles of magnesium and zinc in clinical disorders.Curr Neurovasc Res2023204505513
    [Google Scholar]
  67. FeyerabendF. WitteF. KammalM. WillumeitR. Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation.Tissue Eng.200612123545355610.1089/ten.2006.12.354517518690
    [Google Scholar]
  68. ChengP. HanP. ZhaoC. ZhangS. WuH. NiJ. HouP. ZhangY. LiuJ. XuH. LiuS. ZhangX. ZhengY. ChaiY. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF.Biomaterials201681142610.1016/j.biomaterials.2015.12.00526713681
    [Google Scholar]
  69. DouY. LiN. ZhengY. GeZ. Effects of fluctuant magnesium concentration on phenotype of the primary chondrocytes.J. Biomed. Mater. Res. A2014102124455-6310.1002/jbm.a.3511324616293
    [Google Scholar]
  70. MiaM.S. JarajapuY. RaoR. MathewS. Integrin β1 promotes pancreatic tumor growth by upregulating kindlin-2 and TGF-β receptor-2.Int. J. Mol. Sci.202122191059910.3390/ijms22191059934638957
    [Google Scholar]
  71. MargadantC. SonnenbergA. Integrin–TGF-β crosstalk in fibrosis, cancer and wound healing.EMBO Rep.20101129710510.1038/embor.2009.27620075988
    [Google Scholar]
  72. ZhangL QuJ QiY DuanY HuangYW ZhouZ EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation.Nat Commun20221312543
    [Google Scholar]
  73. FrangogiannisN.G. Transforming growth factor–β in tissue fibrosis.J. Exp. Med.20202173e2019010310.1084/jem.2019010332997468
    [Google Scholar]
  74. ChenS. LiuS. MaK. ZhaoL. LinH. ShaoZ. TGF-β signaling in intervertebral disc health and disease.Osteoarthritis Cartilage20192781109111710.1016/j.joca.2019.05.00531132405
    [Google Scholar]
  75. ZhangJ. LiZ. ChenF. LiuH. WangH. LiX. LiuX. WangJ. ZhengZ. TGF-β1 suppresses CCL3/4 expression through the ERK signaling pathway and inhibits intervertebral disc degeneration and inflammation-related pain in a rat model.Exp. Mol. Med.2017499e37910.1038/emm.2017.13628935976
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X304570240705094512
Loading
/content/journals/cscr/10.2174/011574888X304570240705094512
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test