Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Introduction

Kartogenin (KGN) is a synthetic small molecule that stimulates chondrogenic cellular differentiation by activating smad-4/5 pathways. KGN has been proposed as a feasible alternative to expensive biologic growth factors, such as transforming growth factor β, which remain under strict regulatory scrutiny when it comes to their use in patients. This study reports the previously unexplored effects of KGN stimulation on cartilage-derived mesenchymal progenitor cells (CPCs), which have been shown to be effective in applications of cell-based musculoskeletal tissue regeneration.

Methods

Gene expression via RT-qPCR analysis was used to determine the effects of KGN treatment on CPCs and human marrow derived stromal cells (BM-MSCs). The expression of SOX9, COL1, COL2, COL10, RUNX2, and MMP-13 were quantified following 3-10 days of KGN treatment. Additionally, soluble MMP-13 protein was quantified using ELISA. A GAG assay was used to compare proteoglycan production. Cell viability was measured in response to different doses of KGN using an MTT assay.

Results

Our findings demonstrate that KGN treatment significantly increased markers of chondrogenesis, SOX9 and COL2 following 3-10 days of treatment in human CPCs. KGN treatment also resulted in a significant dose-dependent increase in GAG production in CPCs. The same efficacy was not observed in human BM-MSCs; however, KGN significantly reduced mRNA expression of cell hypertrophy markers, COL10 and MMP-13, in BM-MSCs. Parallel to these mRNA expression results, KGN led to a significant decrease in protein levels of MMP-13 both at 0-5 days and 5-10 days following KGN treatment.

Conclusion

In conclusion, this study demonstrates that KGN can boost the chondrogenicity of CPCs and inhibit hypertrophic terminal differentiation of BM-MSCs.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X314971240511151616
2024-05-21
2025-11-06
Loading full text...

Full text loading...

References

  1. RoughleyP.J. LeeE.R. Cartilage proteoglycans: structure and potential functions.Microsc. Res. Tech.199428538539710.1002/jemt.10702805057919526
    [Google Scholar]
  2. RoughleyP.J. The structure and function of cartilage proteoglycans.Eur. Cell. Mater.2006129210110.22203/eCM.v012a1117136680
    [Google Scholar]
  3. Sophia FoxA.J. BediA. RodeoS.A. The basic science of articular cartilage: structure, composition, and function.Sports Health20091646146810.1177/194173810935043823015907
    [Google Scholar]
  4. MahmoudifarN. DoranP.M. Chondrogenesis and cartilage tissue engineering: The longer road to technology development.Trends Biotechnol.201230316617610.1016/j.tibtech.2011.09.00222071143
    [Google Scholar]
  5. ShigleyC. TrivediJ. MeghaniO. OwensB.D. JayasuriyaC.T. Suppressing chondrocyte hypertrophy to build better cartilage.Bioengineering202310674110.3390/bioengineering1006074137370672
    [Google Scholar]
  6. YangG. ZhuL. HouN. LanY. WuX.M. ZhouB. TengY. YangX. Osteogenic fate of hypertrophic chondrocytes.Cell Res.201424101266126910.1038/cr.2014.11125145361
    [Google Scholar]
  7. ChenN. WuR.W.H. LamY. ChanW.C.W. ChanD. Hypertrophic chondrocytes at the junction of musculoskeletal structures.Bone Rep.20231910169810.1016/j.bonr.2023.10169837485234
    [Google Scholar]
  8. McCarthyH.E. BaraJ.J. BrakspearK. SinghraoS.K. ArcherC.W. The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse.Vet. J.2012192334535110.1016/j.tvjl.2011.08.03621968294
    [Google Scholar]
  9. JayasuriyaC.T. ChenQ. Potential benefits and limitations of utilizing chondroprogenitors in cell-based cartilage therapy.Connect. Tissue Res.201556426527110.3109/03008207.2015.104054726075411
    [Google Scholar]
  10. JayasuriyaC.T. Twomey-KozakJ. NewberryJ. DesaiS. FeltmanP. FrancoJ.R. LiN. TerekR. EhrlichM.G. OwensB.D. Human cartilage-derived progenitors resist terminal differentiation and require CXCR4 activation to successfully bridge meniscus tissue tears.Stem Cells201937110211410.1002/stem.292330358021
    [Google Scholar]
  11. DesaiS. DoonerM. NewberryJ. Twomey-KozakJ. MolinoJ. TrivediJ. PatelJ.M. OwensB.D. JayasuriyaC.T. Stable human cartilage progenitor cell line stimulates healing of meniscal tears and attenuates post-traumatic osteoarthritis.Front. Bioeng. Biotechnol.20221097023510.3389/fbioe.2022.970235
    [Google Scholar]
  12. Twomey-KozakJ. DesaiS. LiuW. LiN.Y. LemmeN. ChenQ. OwensB.D. JayasuriyaC.T. Distal-less homeobox 5 is a therapeutic target for attenuating hypertrophy and apoptosis of mesenchymal progenitor cells.Int. J. Mol. Sci.20202114482310.3390/ijms2114482332650430
    [Google Scholar]
  13. VinodE. KachrooU. RebekahG. YadavB.K. RamasamyB. Characterization of human articular chondrocytes and chondroprogenitors derived from non-diseased and osteoarthritic knee joints to assess superiority for cell-based therapy.Acta Histochem.2020122615158810.1016/j.acthis.2020.15158832778244
    [Google Scholar]
  14. WilliamsR. KhanI.M. RichardsonK. NelsonL. McCarthyH.E. AnalbelsiT. SinghraoS.K. DowthwaiteG.P. JonesR.E. BairdD.M. LewisH. RobertsS. ShawH.M. DudhiaJ. FaircloughJ. BriggsT. ArcherC.W. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage.PLoS One2010510e1324610.1371/journal.pone.001324620976230
    [Google Scholar]
  15. WangJ. ZhouJ. ZhangN. ZhangX. LiQ. A heterocyclic molecule kartogenin induces collagen synthesis of human dermal fibroblasts by activating the smad4/smad5 pathway.Biochem. Biophys. Res. Commun.2014450156857410.1016/j.bbrc.2014.06.01624928394
    [Google Scholar]
  16. ChenP. LiaoX. Kartogenin delivery systems for biomedical therapeutics and regenerative medicine.Drug Deliv.2023301225451910.1080/10717544.2023.225451937665332
    [Google Scholar]
  17. JohnsonK. ZhuS. TremblayM.S. PayetteJ.N. WangJ. BouchezL.C. MeeusenS. AlthageA. ChoC.Y. WuX. SchultzP.G. A stem cell-based approach to cartilage repair.Science2012336608271772110.1126/science.121515722491093
    [Google Scholar]
  18. LiuF. XuH. HuangH. A novel kartogenin-platelet-rich plasma gel enhances chondrogenesis of bone marrow mesenchymal stem cells in vitro and promotes wounded meniscus healing in vivo.Stem Cell Res. Ther.201910120110.1186/s13287‑019‑1314‑x31287023
    [Google Scholar]
  19. ZhouQ. ZhangJ.H. YuanS. ShaoJ.H. CaiZ.Y. ChenS. CaoJ. WuH.S. QianQ.R. A new insight of kartogenin induced the mesenchymal stem cells (MSCs) selectively differentiate into chondrocytes by activating the bone morphogenetic protein 7 (BMP-7)/Smad5 pathway.Med. Sci. Monit.2019254960496710.12659/MSM.91669631271564
    [Google Scholar]
  20. MusicE. KleinT.J. LottW.B. DoranM.R. Transforming growth factor-beta stimulates human bone marrow-derived mesenchymal stem/stromal cell chondrogenesis more so than kartogenin.Sci. Rep.2020101834010.1038/s41598‑020‑65283‑832433527
    [Google Scholar]
  21. LittleC.B. BaraiA. BurkhardtD. SmithS.M. FosangA.J. WerbZ. ShahM. ThompsonE.W. Matrix metalloproteinase 13–deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development.Arthritis Rheum.200960123723373310.1002/art.2500219950295
    [Google Scholar]
  22. XieL. TintaniF. WangX. LiF. ZhenG. QiuT. WanM. CraneJ. ChenQ. CaoX. Systemic neutralization of TGF-β attenuates osteoarthritis.Ann. N. Y. Acad. Sci.201613761536410.1111/nyas.1300026837060
    [Google Scholar]
  23. de KroonL.M.G. van den AkkerG.G.H. BrachvogelB. NarcisiR. BelluoccioD. JennerF. BatemanJ.F. LittleC.B. BramaP.A.J. Blaney DavidsonE.N. van der KraanP.M. van OschG.J.V.M. Identification of TGFβ-related genes regulated in murine osteoarthritis and chondrocyte hypertrophy by comparison of multiple microarray datasets.Bone2018116677710.1016/j.bone.2018.07.00830010080
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X314971240511151616
Loading
/content/journals/cscr/10.2174/011574888X314971240511151616
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cartilage progenitor; chondrogenesis; hypertrophy; Kartogenin; meniscus; stromal cell
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test