Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Diabetes mellitus (DM) refers to a series of metabolic disorders, including elevated blood glucose level diseases due to insufficient insulin secretion or insulin resistance.

Objective

To investigate the effect and protective mechanism of muscle-derived stem cell exosomes (MDSC-Exo) on glucolipotoxicity-induced pancreatic β cell injury.

Methods

Primary rat muscle-derived stem cells (MDSCs) were isolated and cultured. After the completion of the third-generation culture for MDSCs, MDSC-Exo was isolated. Then, the morphology and diameter of exosomes were observed by means of electron microscopy and nanoparticle tracking analysis (NTA) instrument. The expression of exosome-related proteins CD63, TSG101 and Calnexin was detected by western blot. After stimulation of rat insulinoma cell line INS-1 with high glucose/palmitic acid (HG/PA) and/or MDSC-Exo, cell viability and apoptosis were measured through MTT and flow cytometry (FCT), respectively. Biochemical reagents were utilized for the examination of the levels of superoxide dismutase (SOD) and malondialdehyde (MDA); enzyme-linked immunosorbent assay (ELISA) for the levels of cellular insulin secretion, and the western blot for the expression level of LC3, p62, AKT, p-AKT, mTOR and p-mTOR.

Results

MDSC-Exo was successfully isolated and identified, and it was found that MDSC-Exo could reduce HG/PA-induced apoptosis as well as MDA levels in INS-1 cells. Also, MDSC-Exo could significantly increase cell viability, insulin secretion ability within 24 hours and SOD level. Besides, MDSC-Exo was able to significantly increase the LC3-II/I ratio, decrease the expression level of p62, and promote autophagy in the cells. Aside from what has been mentioned, MDSC-Exo showed a significant reduction effect on p-Akt and p-mTOR level as well as p-Akt/Akt and p-mTOR/mTOR ratios.

Conclusion

MDSC-Exo can alleviate oxidative stress and enhance autophagy by inhibiting Akt/mTOR signaling pathway activation. Then, the inhibition of apoptosis and the promotion of insulin secretion can be achieved to alleviate glucolipotoxicity-induced pancreatic β cell injury.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X288930240523045700
2024-06-03
2025-09-08
Loading full text...

Full text loading...

References

  1. NovikovaL. SmirnovaI.V. RawalS. DotsonA.L. BenedictS.H. Stehno-BittelL. Variations in rodent models of type 1 diabetes: Islet morphology.J. Diabetes Res.2013201311310.1155/2013/96583223762878
    [Google Scholar]
  2. ZimmetP. AlbertiK.G. MaglianoD.J. BennettP.H. Diabetes mellitus statistics on prevalence and mortality: Facts and fallacies.Nat. Rev. Endocrinol.2016121061662210.1038/nrendo.2016.10527388988
    [Google Scholar]
  3. EizirikD.L. PasqualiL. CnopM. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure.Nat. Rev. Endocrinol.202016734936210.1038/s41574‑020‑0355‑732398822
    [Google Scholar]
  4. PopaS.G. PopaA. MoţaM. Insulin initiation in type 2 diabetes – Why, when and how?Rom. J. Diabetes Nutr. Metab. Dis.2016231879410.1515/rjdnmd‑2016‑0011
    [Google Scholar]
  5. American Diabetes AssociationDiagnosis and classification of diabetes mellitus.Diabetes Care201437Suppl. 1S81S9010.2337/dc14‑S08124357215
    [Google Scholar]
  6. BuseJ.B. GargS.K. RosenstockJ. BaileyT.S. BanksP. BodeB.W. DanneT. KushnerJ.A. LaneW.S. LapuertaP. McGuireD.K. PetersA.L. ReedJ. SawhneyS. StrumphP. Sotagliflozin in combination with optimized insulin therapy in adults with type 1 diabetes: the north American inTandem1 study.Diabetes Care20184191970198010.2337/dc18‑034329937430
    [Google Scholar]
  7. MarascoM.R. LinnemannA.K. β-Cell autophagy in diabetes pathogenesis.Endocrinology201815952127214110.1210/en.2017‑0327329617763
    [Google Scholar]
  8. MazzaS. MaffucciT. Autophagy and pancreatic β-cells.Vitam. Horm.20149514516410.1016/B978‑0‑12‑800174‑5.00006‑524559917
    [Google Scholar]
  9. YoshiiS.R. MizushimaN. Monitoring and measuring autophagy.Int. J. Mol. Sci.2017189186510.3390/ijms1809186528846632
    [Google Scholar]
  10. ZangL. HaoH. LiuJ. LiY. HanW. MuY. Mesenchymal stem cell therapy in type 2 diabetes mellitus.Diabetol. Metab. Syndr.2017913610.1186/s13098‑017‑0233‑128515792
    [Google Scholar]
  11. LanK.C. WangC.C. YenY.P. YangR.S. LiuS.H. ChanD.C. Islet- like clusters derived from skeletal muscle-derived stem/progenitor cells for autologous transplantation to control type 1 diabetes in mice.Artif. Cells Nanomed. Biotechnol.201846Sup332833510.1080/21691401.2018.1492421
    [Google Scholar]
  12. LiJ. PincuY. MarjanovicM. BowerA.J. ChaneyE.J. JensenT. BoppartM.D. BoppartS.A. In vivo evaluation of adipose- and muscle-derived stem cells as a treatment for nonhealing diabetic wounds using multimodal microscopy.J. Biomed. Opt.201621808600610.1117/1.JBO.21.8.08600627533443
    [Google Scholar]
  13. KovaneczI. VernetD. MasouminiaM. GelfandR. LoniL. AboagyeJ. TsaoJ. RajferJ. Gonzalez-CadavidN.F. Implanted muscle-derived stem cells ameliorate erectile dysfunction in a rat model of type 2 diabetes, but their repair capacity is impaired by their prior exposure to the diabetic milieu.J. Sex. Med.201613578679710.1016/j.jsxm.2016.02.16827114192
    [Google Scholar]
  14. MitutsovaV. YeoW.W.Y. DavazeR. FranckhauserC. HaniE.H. AbdullahS. MollardP. SchaefferM. FernandezA. LambN.J.C. Adult muscle-derived stem cells engraft and differentiate into insulin-expressing cells in pancreatic islets of diabetic mice.Stem Cell Res. Ther.2017818610.1186/s13287‑017‑0539‑928420418
    [Google Scholar]
  15. PhinneyD.G. PittengerM.F. Concise review: MSC-derived exosomes for cell-free therapy.Stem Cells201735485185810.1002/stem.257528294454
    [Google Scholar]
  16. XiongJ. HuH. GuoR. WangH. JiangH. Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications.Front. Endocrinol. (Lausanne)20211264623310.3389/fendo.2021.64623333995278
    [Google Scholar]
  17. PanB.T. JohnstoneR.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor.Cell198333396797810.1016/0092‑8674(83)90040‑56307529
    [Google Scholar]
  18. ValadiH. EkströmK. BossiosA. SjöstrandM. LeeJ.J. LötvallJ.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.Nat. Cell Biol.20079665465910.1038/ncb159617486113
    [Google Scholar]
  19. ZhangY. ChoppM. LiuX.S. KatakowskiM. WangX. TianX. WuD. ZhangZ.G. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons.Mol. Neurobiol.20175442659267310.1007/s12035‑016‑9851‑026993303
    [Google Scholar]
  20. NewtonW.C. KimJ.W. LuoJ.Z.Q. LuoL. Stem cell-derived exosomes: A novel vector for tissue repair and diabetic therapy.J. Mol. Endocrinol.2017594R155R16510.1530/JME‑17‑008028835418
    [Google Scholar]
  21. ZengX. BianW. LiuZ. LiJ. RenS. ZhangJ. ZhangH. TegeleqiB. HeG. GuanM. GaoZ. HuangC. LiuJ. Muscle-derived stem cell exosomes with overexpressed miR-214 promote the regeneration and repair of rat sciatic nerve after crush injury to activate the JAK2/STAT3 pathway by targeting PTEN.Front. Mol. Neurosci.202316114632910.3389/fnmol.2023.114632937305554
    [Google Scholar]
  22. TanY.H. ZhongT. GuoZ.K. GanW.M. Isolation, culture and differentiation of muscle-drived stem cells.J. Xi’an Jiaotong Univ.2011326668671
    [Google Scholar]
  23. SooC.Y. SongY. ZhengY. CampbellE.C. RichesA.C. Gunn-MooreF. PowisS.J. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells.Immunology2012136219219710.1111/j.1365‑2567.2012.03569.x22348503
    [Google Scholar]
  24. GuayC. KruitJ.K. RomeS. MenoudV. MulderN.L. JurdzinskiA. MancarellaF. SebastianiG. DondaA. GonzalezB.J. JandusC. BouzakriK. PingetM. BoitardC. RomeroP. DottaF. RegazziR. Lymphocyte-derived exosomal microRNAs promote pancreatic β cell death and may contribute to type 1 diabetes development.Cell Metab.2019292348361.e610.1016/j.cmet.2018.09.01130318337
    [Google Scholar]
  25. OteroY.F. StaffordJ.M. McGuinnessO.P. Pathway-selective insulin resistance and metabolic disease: The importance of nutrient flux.J. Biol. Chem.201428930204622046910.1074/jbc.R114.57635524907277
    [Google Scholar]
  26. LiQ. JiaS. XuL. LiB. ChenN. Metformin-induced autophagy and irisin improves INS-1 cell function and survival in high-glucose environment via AMPK/SIRT1/PGC-1α signal pathway.Food Sci. Nutr.2019751695170310.1002/fsn3.100631139382
    [Google Scholar]
  27. SuJ. ZhouL. KongX. YangX. XiangX. ZhangY. LiX. SunL. Endoplasmic reticulum is at the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in the pathogenesis of diabetes mellitus.J. Diabetes Res.201320131610.1155/2013/19346123762873
    [Google Scholar]
  28. MaoR.R. XueY.M. ShaJ.P. LinZ. High glucose and palmitic acid induce mitochondrial uncoupling changes in islet INS-1 cells.J. South. Med. Univ.2009293562564
    [Google Scholar]
  29. RahmanM.J. RegnD. BashratyanR. DaiY.D. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice.Diabetes20146331008102010.2337/db13‑085924170696
    [Google Scholar]
  30. WenD. PengY. LiuD. WeizmannY. MahatoR.I. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation.J. Control. Release201623816617510.1016/j.jconrel.2016.07.04427475298
    [Google Scholar]
  31. NagaishiK. MizueY. ChikenjiT. OtaniM. NakanoM. KonariN. FujimiyaM. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes.Sci. Rep.2016613484210.1038/srep3484227721418
    [Google Scholar]
  32. SunY. ShiH. YinS. JiC. ZhangX. ZhangB. WuP. ShiY. MaoF. YanY. XuW. QianH. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction.ACS Nano20181287613762810.1021/acsnano.7b0764330052036
    [Google Scholar]
  33. ZhaoH. ShangQ. PanZ. BaiY. LiZ. ZhangH. ZhangQ. GuoC. ZhangL. WangQ. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing mM2 macrophages and beiging in white adipose tissue.Diabetes201867223524710.2337/db17‑035629133512
    [Google Scholar]
  34. Maya-MonteiroC. BozzaP. Leptin and mTOR: Partners in metabolism and inflammation.Cell Cycle20087121713171710.4161/cc.7.12.615718583936
    [Google Scholar]
  35. MitchellR. MellowsB. SheardJ. AntonioliM. KretzO. ChambersD. ZeunerM.T. TomkinsJ.E. DeneckeB. MusanteL. JochB. Debacq-ChainiauxF. HolthoferH. RayS. HuberT.B. DengjelJ. De CoppiP. WideraD. PatelK. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins.Stem Cell Res. Ther.201910111610.1186/s13287‑019‑1213‑130953537
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X288930240523045700
Loading
/content/journals/cscr/10.2174/011574888X288930240523045700
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test