Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Mesenchymal stromal cells (MSCs) and Dexamethasone (Dex) are both effective methods to treat inflammatory diseases. However, the interaction between inflammatory factors, Dex, and MSCs in repair is not fully understood. The purpose of this study is to clarify the effects and mechanisms of glucocorticoids on the tissue repair characteristics of MSCs in an inflammatory environment.

Methods

This is an experimental study. Human adipose-derived mesenchymal stromal cells (hASCs) were cultured, and Long non-coding RNA (lncRNA) differentiation antagonizing non-protein coding RNA (DANCR) expression was detected after treatment with Dex and inflammation factors. Additionally, DANCR was knockdown or overexpressed before Dex or tumor necrosis factor-alpha (TNF-α) treatments, respectively. hASC proliferation, cell cycle, and migration ability were analyzed to evaluate the effects of DANCR in hASCs treated with Dex or TNF-α. Nuclear factor-kB (NF-κB) pathway inhibitors were used to clarify the signal pathway that DANCR involved. All data are presented as the mean ± standard deviation. The two-tailed Student's t-test or one-way analysis of variance (ANOVA) was used to determine the statistical differences between groups.

Results

Dex decreased the proliferation and migration of hASCs and upregulated DANCR expression in a dosage-dependent relationship. The knockdown of DANCR reversed Dex's repression of hASC proliferation. Moreover, DANCR was decreased by inflammatory cytokines, and overexpressing DANCR alleviated the promotion effects of TNF-α on hASC proliferation and migration. Furthermore, mechanistic investigation validated that DANCR was involved in the NF-κB signaling pathway.

Conclusion

We identified a lncRNA, DANCR, that was involved in Dex and inflammation-affected hASC proliferation and migration. Dex reduced the proliferation and migration of hASCs through DANCR while exerting its anti-inflammatory effects. Thus, it is suggested to avoid the simultaneous application of hASCs and steroids in clinical practice. These results enrich our understanding of the versatile function of lncRNAs in the crosstalk of inflammation conditions and MSCs.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X290779240521130244
2024-06-03
2025-09-06
Loading full text...

Full text loading...

References

  1. GalipeauJ. SensébéL. Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities.Cell Stem Cell201822682483310.1016/j.stem.2018.05.00429859173
    [Google Scholar]
  2. WeiP. BaoR. Intra-Articular mesenchymal stem cell injection for knee osteoarthritis: Mechanisms and clinical evidence.Int. J. Mol. Sci.20222415910.3390/ijms2401005936613502
    [Google Scholar]
  3. KadriN. AmuS. IacobaeusE. BobergE. Le BlancK. Current perspectives on mesenchymal stromal cell therapy for graft versus host disease.Cell. Mol. Immunol.202320661362510.1038/s41423‑023‑01022‑z37165014
    [Google Scholar]
  4. WangY. HuangB. JinT. OcanseyD.K.W. JiangJ. MaoF. Intestinal fibrosis in inflammatory bowel disease and the prospects of mesenchymal stem cell therapy.Front. Immunol.20221383500510.3389/fimmu.2022.83500535370998
    [Google Scholar]
  5. HoangD.M. PhamP.T. BachT.Q. NgoA.T.L. NguyenQ.T. PhanT.T.K. NguyenG.H. LeP.T.T. HoangV.T. ForsythN.R. HekeM. NguyenL.T. Stem cell-based therapy for human diseases.Signal Transduct. Target. Ther.20227127210.1038/s41392‑022‑01134‑435933430
    [Google Scholar]
  6. JayaramP. IkpeamaU. RothenbergJ.B. MalangaG.A. Bone marrow–derived and adipose‐derived mesenchymal stem cell therapy in primary knee osteoarthritis: A narrative review.PM R201911217719110.1016/j.pmrj.2018.06.01930010050
    [Google Scholar]
  7. GimbleJ.M. KatzA.J. BunnellB.A. Adipose-derived stem cells for regenerative medicine.Circ. Res.200710091249126010.1161/01.RES.0000265074.83288.0917495232
    [Google Scholar]
  8. BaerP.C. GeigerH. Adipose-derived mesenchymal stromal/stem cells: Tissue localization, characterization, and heterogeneity.Stem Cells Int.2012201211110.1155/2012/81269322577397
    [Google Scholar]
  9. WangH. PangB. LiY. ZhuD. PangT. LiuY. Dexamethasone has variable effects on mesenchymal stromal cells.Cytotherapy201214442343010.3109/14653249.2011.65273522364108
    [Google Scholar]
  10. XiaoY. PeperzakV. van RijnL. BorstJ. de BruijnJ.D. Dexamethasone treatment during the expansion phase maintains stemness of bone marrow mesenchymal stem cells.J. Tissue Eng. Regen. Med.20104537438610.1002/term.25020058244
    [Google Scholar]
  11. GhosalS. DasS. ChakrabartiJ. Long noncoding RNAs: New players in the molecular mechanism for maintenance and differentiation of pluripotent stem cells.Stem Cells Dev.201322162240225310.1089/scd.2013.001423528033
    [Google Scholar]
  12. NamJ.W. ChoiS.W. YouB.H. Incredible RNA: Dual functions of coding and noncoding.Mol. Cells201639536737410.14348/molcells.2016.003927137091
    [Google Scholar]
  13. HuS. ShanG. LncRNAs in stem cells.Stem Cells Int.201620161810.1155/2016/268192526880946
    [Google Scholar]
  14. RapicavoliN.A. QuK. ZhangJ. MikhailM. LabergeR.M. ChangH.Y. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics.eLife20132e0076210.7554/eLife.0076223898399
    [Google Scholar]
  15. CarpenterS. AielloD. AtianandM.K. RicciE.P. GandhiP. HallL.L. ByronM. MonksB. Henry-BezyM. LawrenceJ.B. O’NeillL.A.J. MooreM.J. CaffreyD.R. FitzgeraldK.A. A long noncoding RNA mediates both activation and repression of immune response genes.Science2013341614778979210.1126/science.124092523907535
    [Google Scholar]
  16. KretzM. WebsterD.E. FlockhartR.J. LeeC.S. ZehnderA. Lopez-PajaresV. QuK. ZhengG.X.Y. ChowJ. KimG.E. RinnJ.L. ChangH.Y. SiprashviliZ. KhavariP.A. Suppression of progenitor differentiation requires the long noncoding RNA ANCR.Genes Dev.201226433834310.1101/gad.182121.11122302877
    [Google Scholar]
  17. JiaQ. ChenX. JiangW. WangW. GuoB. NiL. The regulatory effects of long noncoding RNA- ANCR on dental tissue-derived stem cells.Stem Cells Int.2016201611210.1155/2016/314680527648074
    [Google Scholar]
  18. LiJ. YangY. FanJ. XuH. FanL. LiH. ZhaoR.C. Long noncoding RNA ANCR inhibits the differentiation of mesenchymal stem cells toward definitive endoderm by facilitating the association of PTBP1 with ID2.Cell Death Dis.201910749210.1038/s41419‑019‑1738‑331235689
    [Google Scholar]
  19. LiuM. LeiH. DongP. FuX. YangZ. YangY. MaJ. LiuX. CaoY. XiaoR. Adipose-derived mesenchymal stem cells from the elderly exhibit decreased migration and differentiation abilities with senescent properties.Cell Transplant.20172691505151910.1177/096368971772122129113467
    [Google Scholar]
  20. MoS. WuZ-Q. LiH-M. XuF-T. XuY-L. RongY-X. HuangD-L. LaiZ-H. LiuX-H. YangL-H. Rg1 promotes the proliferation and adipogenic differentiation of human adipose-derived stem cells via FXR1/Lnc-GAS5-AS1 pathway.Curr. Stem Cell Res. Ther.202217881582410.2174/1574888X1666621112912141434844547
    [Google Scholar]
  21. ChoiE.W. LeeH.W. ShinI.S. ParkJ.H. YunT.W. YounH.Y. KimS.J. Comparative efficacies of long-term serial transplantation of syngeneic, allogeneic, xenogeneic, or CTLA4Ig-overproducing xenogeneic adipose tissue-derived mesenchymal stem cells on murine systemic lupus erythematosus.Cell Transplant.20162561193120610.3727/096368915X68944226377835
    [Google Scholar]
  22. SuY. LiuY. MaC. GuanC. MaX. MengS. Mesenchymal stem cell-originated exosomal lncRNA HAND2-AS1 impairs rheumatoid arthritis fibroblast-like synoviocyte activation through miR-143-3p/TNFAIP3/NF-κB pathway.J. Orthop. Surg. Res.202116111610.1186/s13018‑021‑02248‑133549125
    [Google Scholar]
  23. LiZ. KongL. LiuC. XuH.G. Human bone marrow mesenchymal stem cell-derived exosomes attenuate IL-1β-induced annulus fibrosus cell damage.Am. J. Med. Sci.2020360669370010.1016/j.amjms.2020.07.02532771218
    [Google Scholar]
  24. MaT. LuanS. TaoR. LuD. GuoL. LiuJ. ShuJ. ZhouX. HanY. JiaY. LiG. ZhangH. HanW. HanY. LiH. Targeted migration of human adipose-derived stem cells to secondary lymphoid organs enhances their immunomodulatory effect and prolongs the survival of allografted vascularized composites.Stem Cells201937121581159410.1002/stem.307831414513
    [Google Scholar]
  25. KrugerM.J. ConradieM.M. ConradieM. van de VyverM. ADSC- conditioned media elicit an ex vivo anti-inflammatory macrophage response.J. Mol. Endocrinol.201861417318410.1530/JME‑18‑007830038054
    [Google Scholar]
  26. Lopez-SantallaM. Mancheño-CorvoP. MentaR. Lopez-BelmonteJ. DelaRosaO. BuerenJ.A. DalemansW. LombardoE. GarinM.I. Human adipose-derived mesenchymal stem cells modulate experimental autoimmune arthritis by modifying early adaptive T cell responses.Stem Cells201533123493350310.1002/stem.211326205964
    [Google Scholar]
  27. MadamsettyV.S. MohammadinejadR. UzielieneI. NabaviN. DehshahriA. García-CouceJ. TavakolS. MoghassemiS. DadashzadehA. MakvandiP. PardakhtyA. Aghaei AfsharA. SeyfoddinA. Dexamethasone: Insights into pharmacological aspects, therapeutic mechanisms, and delivery systems.ACS Biomater. Sci. Eng.2022851763179010.1021/acsbiomaterials.2c0002635439408
    [Google Scholar]
  28. JanakiramanK. KrishnaswamiV. RajendranV. NatesanS. KandasamyR. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights.Mater. Today Commun.20181720021310.1016/j.mtcomm.2018.09.01132289062
    [Google Scholar]
  29. LeeN.K. MyeongS.H. HwangJ.W. SaJ.K. SonH.J. KimH.J. JangH. ChangJ.W. NaD.L. Combination of dexamethasone and tofacitinib reduces xenogeneic MSC-induced immune responses in a mouse model of alzheimer’s disease.Biomedicines2022108188210.3390/biomedicines1008188236009433
    [Google Scholar]
  30. DerafshE. EbrahimzadehF. KahriziM. KayediM. ShojaeiN. RahimiS. AlesaeidiS. GhafouriK. The therapeutic effects of mesenchymal stem cell (MSCs) exosomes in covid-19 disease; Focusing on dexamethasone therapy.Pathol. Res. Pract.202325115481510.1016/j.prp.2023.15481537797382
    [Google Scholar]
  31. JiaQ. JiangW. NiL. Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells.Arch. Oral Biol.201560223424110.1016/j.archoralbio.2014.10.00725463901
    [Google Scholar]
  32. ZhangJ. TaoZ. WangY. Long non-coding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway.Int. J. Mol. Med.201841121321929115577
    [Google Scholar]
  33. HaoY. ZhaoH. JinX. HeP. ZhangJ. DongQ. ShiW. ZhaoM. Long non-coding RNA DANCR promotes nasopharyngeal carcinoma cell proliferation and migration.Mol. Med. Rep.20191942883288910.3892/mmr.2019.990630720067
    [Google Scholar]
  34. FengL. LinT. CheH. WangX. Long noncoding RNA DANCR knockdown inhibits proliferation, migration and invasion of glioma by regulating miR-135a-5p/BMI1.Cancer Cell Int.20202015310.1186/s12935‑020‑1123‑432099526
    [Google Scholar]
  35. ZhangL. SunX. ChenS. YangC. ShiB. ZhouL. ZhaoJ. Long noncoding RNA DANCR regulates miR-1305 -Smad 4 axis to promote chondrogenic differentiation of human synovium-derived mesenchymal stem cells.Biosci. Rep.2017374BSR2017034710.1042/BSR2017034728674107
    [Google Scholar]
  36. FangP. ZhangL.X. HuY. ZhangL. ZhouL.W. Long non-coding RNA DANCR induces chondrogenesis by regulating the miR-1275/MMP-13 axis in synovial fluid-derived mesenchymal stem cells.Eur. Rev. Med. Pharmacol. Sci.20192323104591046931841200
    [Google Scholar]
  37. GuoL. GuJ. HouS. LiuD. ZhouM. HuaT. ZhangJ. GeZ. XuJ. Long non-coding RNA DANCR promotes the progression of non-small-cell lung cancer by inhibiting p21 expression.OncoTargets Ther.20181213514610.2147/OTT.S18660730613152
    [Google Scholar]
  38. ChenX. GanY. LiW. SuJ. ZhangY. HuangY. RobertsA.I. HanY. LiJ. WangY. ShiY. The interaction between mesenchymal stem cells and steroids during inflammation.Cell Death Dis.201451e100910.1038/cddis.2013.53724457953
    [Google Scholar]
  39. SmolenJ.S. Insights into the treatment of rheumatoid arthritis: A paradigm in medicine.J. Autoimmun.202011010242510.1016/j.jaut.2020.10242532143989
    [Google Scholar]
  40. ErlandssonA. LinC.H.A. YuF. MorsheadC.M. Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury.Exp. Neurol.20112301485710.1016/j.expneurol.2010.05.01820685361
    [Google Scholar]
  41. TotzkeJ. GurbaniD. RaphemotR. HughesP.F. BodoorK. CarlsonD.A. LoiselleD.R. BeraA.K. EibschutzL.S. PerkinsM.M. EubanksA.L. CampbellP.L. FoxD.A. WestoverK.D. HaysteadT.A.J. DerbyshireE.R. Takinib, a selective TAK1 inhibitor, broadens the therapeutic efficacy of TNF-α inhibition for cancer and autoimmune disease.Cell Chem. Biol.201724810291039.e710.1016/j.chembiol.2017.07.01128820959
    [Google Scholar]
  42. EasleyJ.T. MaruyamaC.L.M. WangC.S. BakerO.J. AT-RvD1 combined with DEX is highly effective in treating TNF- α -mediated disruption of the salivary gland epithelium.Physiol. Rep.2016419e1299010.14814/phy2.1299027694530
    [Google Scholar]
  43. YangY. HuR. ZhengJ. WangQ. XuS. ZhouZ. ZhangD. ShenW. Glucocorticoid nanoformulations relieve chronic pelvic pain syndrome and may alleviate depression in mice.J. Nanobiotechnology202321119810.1186/s12951‑023‑01893‑437340409
    [Google Scholar]
  44. WideraD. MikenbergI. ElversM. KaltschmidtC. KaltschmidtB. Tumor necrosis factor α triggers proliferation of adult neural stem cells via IKK/NF-κB signaling.BMC Neurosci.2006716410.1186/1471‑2202‑7‑6416987412
    [Google Scholar]
  45. WangX. FuS. WangY. YuP. HuJ. GuW. XuX.M. LuP. Interleukin-1β mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway.Mol. Cell. Neurosci.200736334335410.1016/j.mcn.2007.07.00517822921
    [Google Scholar]
  46. HaoranS. ZhishanJ. YanM. RuilinM. JianjianC. ZejunY. JianwenZ. HuiG. YinZ. Hypoxic preconditioning enhances cellular viability and migratory ability: Role of DANCR/miR-656-3p/HIF-1α axis in placental mesenchymal stem cells.Stem Cells202341987789110.1093/stmcls/sxad04837317862
    [Google Scholar]
  47. WuX. WangZ. WangJ. TianX. CaoG. GuY. ShaoF. YanT. Exosomes secreted by mesenchymal stem cells induce immune tolerance to mouse kidney transplantation via transporting LncRNA DANCR.Inflammation202245146047510.1007/s10753‑021‑01561‑534596768
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X290779240521130244
Loading
/content/journals/cscr/10.2174/011574888X290779240521130244
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): DANCR; dexamethasone; hASC; long non-coding RNA; migration; proliferation; TNF-α
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test