Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Mesenchymal Stem Cells (MSCs) are multipotent stem cells that are obtained from various tissue sources such as bone marrow, adipose tissues, umbilical cords, dental pulps, and peripheral blood has high regenerative potential, migratory abilities, and immunosuppressive properties. These properties make them attractive candidates for tissue engineering, immunosuppressive therapies, and drug deliveries. MSCs, because of their high propensity to home in an injured tissue microenvironment, are exposed to various cytokines. These cytokines modulate the activity of MSCs to help in the regeneration of injured tissue. Interleukins are one such cytokine that is present in injured tissue microenvironment and plays significant roles in the activation, differentiation, proliferation, maturation, migration, and adhesion of not only immune cells but also MSCs. Interleukins, through both autocrine and paracrine signaling mechanisms, modulate the functioning of MSCs. This article reviews how interleukins influence MSCs by discussing their signaling pathways, their effect on differentiation and other biological effects. A comprehensive understanding of the influence of interleukins on MSCs may provide insights to manipulate improving the therapeutic potential of MSCs or reducing potential risks such as undesirable immune response and tumor formation.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X313750240524115446
2024-06-03
2025-11-04
Loading full text...

Full text loading...

References

  1. PittengerM.F. MackayA.M. BeckS.C. JaiswalR.K. DouglasR. MoscaJ.D. MoormanM.A. SimonettiD.W. CraigS. MarshakD.R. Multilineage potential of adult human mesenchymal stem cells.Science19992845411143143
    [Google Scholar]
  2. PittengerM.F. DischerD.E. PéaultB.M. PhinneyD.G. HareJ.M. CaplanA.I. Mesenchymal stem cell perspective: Cell biology to clinical progress.NPJ Regen. Med.2019412210.1038/s41536‑019‑0083‑631815001
    [Google Scholar]
  3. RidgeS.M. SullivanF.J. GlynnS.A. Mesenchymal stem cells: Key players in cancer progression.Mol. Cancer20171613110.1186/s12943‑017‑0597‑828148268
    [Google Scholar]
  4. LissoniP. MessinaG. PelizzoniF. RovelliF. BrivioF. MonzonA. CrivelliN. LissoniA. TassoniS. SassolaA. PensatoS. The fascination of cytokine immunological science.J Infectiol Epidemiol202031
    [Google Scholar]
  5. DochevaD. HaastersF. SchiekerM. Mesenchymal stem cells and their cell surface receptors.Curr. Rheumatol. Rev.20084315516010.2174/157339708785133479
    [Google Scholar]
  6. WehlingN. PalmerG.D. PilapilC. LiuF. WellsJ.W. MüllerP.E. EvansC.H. PorterR.M. Interleukin-1β and tumor necrosis factor α inhibit chondrogenesis by human mesenchymal stem cells through NF-κB–dependent pathways.Arthritis Rheumatism200960380181219248089
    [Google Scholar]
  7. YuH. LinL. ZhangZ. ZhangH. HuH. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study.Signal Transduct. Target. Ther.20205120910.1038/s41392‑020‑00312‑632296011
    [Google Scholar]
  8. JoosH. WildnerA. HogrefeC. ReichelH. BrennerR.E. Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage.Arthritis Res. Ther.2013155R11910.1186/ar429924034344
    [Google Scholar]
  9. GuoJ. ZhangH. XiaJ. HouJ. WangY. YangT. WangS. ZhangX. ChenX. WuX. Interleukin-1β induces intercellular adhesion molecule-1 expression, thus enhancing the adhesion between mesenchymal stem cells and endothelial progenitor cells via the p38 MAPK signaling pathway.Int. J. Mol. Med.20184141976198210.3892/ijmm.2018.342429393395
    [Google Scholar]
  10. WeberA. WasiliewP. KrachtM. Interleukin-1 (IL-1) pathway.Sci. Signal.20103105cm1cm120086235
    [Google Scholar]
  11. LiuW. SunY. HeY. ZhangH. ZhengY. YaoY. ZhangZ. IL-1β impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint.Int. J. Mol. Med.201739231732610.3892/ijmm.2016.283228000839
    [Google Scholar]
  12. LiuC. HwangS. Cytokine interactions in mesenchymal stem cells from cord blood.Cytokine200532627027910.1016/j.cyto.2005.11.00316377203
    [Google Scholar]
  13. YooM. ChoS. ShinS. KimJ.M. ParkH.G. ChoS. HwangY.K. ParkD.H. Therapeutic effect of IL1β priming tonsil derived-mesenchymal stem cells in osteoporosis.Tissue Eng. Regen. Med.202118585186210.1007/s13770‑021‑00350‑334115339
    [Google Scholar]
  14. LiaoW. SunJ. WangY. HeY. SuK. LuY. LiaoG. SunY. Histone deacetylase inhibitors attenuated interleukin-1β-induced chondrogenesis inhibition in synovium-derived mesenchymal stem cells of the temporomandibular joint.Bone Joint Res.2022111404810.1302/2046‑3758.111.BJR‑2021‑0059.R135084211
    [Google Scholar]
  15. WuH. YinZ. WangL. LiF. QiuY. Honokiol improved chondrogenesis and suppressed inflammation in human umbilical cord derived mesenchymal stem cells via blocking nuclear factor-κB pathway.BMC Cell Biol.20171812910.1186/s12860‑017‑0145‑928851291
    [Google Scholar]
  16. GaoB. GaoW. WuZ. ZhouT. QiuX. WangX. LianC. PengY. LiangA. QiuJ. ZhuY. XuC. LiY. SuP. HuangD. Melatonin rescued interleukin 1β-impaired chondrogenesis of human mesenchymal stem cells.Stem Cell Res. Ther.20189116210.1186/s13287‑018‑0892‑329898779
    [Google Scholar]
  17. TangG. AsouY. MatsumuraE. NakagawaY. MiyatakeK. KatagiriH. NakamuraT. KogaH. KomoriK. SekiyaI. EzuraY. TsujiK. Short cytoplasmic isoform of IL1R1/CD121a mediates IL1β induced proliferation of synovium-derived mesenchymal stem/stromal cells through ERK1/2 pathway.Heliyon202285e0947610.1016/j.heliyon.2022.e0947635647352
    [Google Scholar]
  18. Redondo-CastroE. CunninghamC. MillerJ. MartuscelliL. Aoulad-AliS. RothwellN.J. KieltyC.M. AllanS.M. PinteauxE. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro.Stem Cell Res. Ther.2017817910.1186/s13287‑017‑0531‑428412968
    [Google Scholar]
  19. BonebergE.M. HartungT. Molecular aspects of anti-inflammatory action of G-CSF.Inflamm. Res.200251311912810.1007/PL0000028312005202
    [Google Scholar]
  20. Redondo-CastroE. CunninghamC.J. MillerJ. BrownH. AllanS.M. PinteauxE. Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming.Stem Cell Res. Ther.2018911110.1186/s13287‑017‑0753‑529343288
    [Google Scholar]
  21. CunninghamC.J. WongR. BarringtonJ. TamburranoS. PinteauxE. AllanS.M. Systemic conditioned medium treatment from interleukin-1 primed mesenchymal stem cells promotes recovery after stroke.Stem Cell Res. Ther.20201113210.1186/s13287‑020‑1560‑y31964413
    [Google Scholar]
  22. DingJ. GhaliO. LencelP. BrouxO. ChauveauC. DevedjianJ.C. HardouinP. MagneD. TNF-α and IL-1β inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells.Life Sci.20098415-1649950410.1016/j.lfs.2009.01.01319302812
    [Google Scholar]
  23. SonomotoK. YamaokaK. OshitaK. FukuyoS. ZhangX. NakanoK. OkadaY. TanakaY. Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase–like orphan receptor 2 pathway.Arthritis Rheum.201264103355336310.1002/art.3455522674197
    [Google Scholar]
  24. LoebelC. CzekanskaE.M. StaudacherJ. SalzmannG. RichardsR.G. AliniM. StoddartM.J. The calcification potential of human MSCs can be enhanced by interleukin-1 β in osteogenic medium.J. Tissue Eng. Regen. Med.201711256457110.1002/term.195025185894
    [Google Scholar]
  25. WangH. NiZ. YangJ. LiM. LiuL. PanX. XuL. WangX. FangS. IL-1β promotes osteogenic differentiation of mouse bone marrow mesenchymal stem cells via the BMP/Smad pathway within a certain concentration range.Exp. Ther. Med.20202043001300810.3892/etm.2020.906532855666
    [Google Scholar]
  26. LaceyD.C. SimmonsP.J. GravesS.E. HamiltonJ.A. Proinflammatory cytokines inhibit osteogenic differentiation from stem cells: Implications for bone repair during inflammation.Osteoarthritis Cartilage200917673574210.1016/j.joca.2008.11.01119136283
    [Google Scholar]
  27. HuangR-L. YuanY. TuJ. ZouG-M. LiQ. Opposing TNF-α/IL-1β- and BMP-2-activated MAPK signaling pathways converge on Runx2 to regulate BMP-2-induced osteoblastic differentiation.Cell Death Dis.201454e1187e118710.1038/cddis.2014.10124743742
    [Google Scholar]
  28. EzuraY. LinX. HattaA. IzuY. NodaM. Interleukin-1β suppresses the transporter genes Ank and Ent1 expression in stromal progenitor cells retaining mineralization.Calcif. Tissue Int.201699219920810.1007/s00223‑016‑0139‑127086348
    [Google Scholar]
  29. HuangJ. ChenL. IL-1β inhibits osteogenesis of human bone marrow-derived mesenchymal stem cells by activating FoxD3/microRNA-496 to repress wnt signaling.Genesis2017557p.e23040
    [Google Scholar]
  30. MaoC. WangY. ZhangX. ZhengX. TangT. LuE. Double-edged-sword effect of IL-1β on the osteogenesis of periodontal ligament stem cells via crosstalk between the NF-κB, MAPK and BMP/Smad signaling pathways.Cell Death Dis.201677e2296e229610.1038/cddis.2016.20427415426
    [Google Scholar]
  31. ChangJ. LiuF. LeeM. WuB. TingK. ZaraJ.N. SooC. Al HezaimiK. ZouW. ChenX. MooneyD.J. WangC.Y. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation.Proc. Natl. Acad. Sci. USA2013110239469947410.1073/pnas.130053211023690607
    [Google Scholar]
  32. DayT.F. GuoX. Garrett-BealL. YangY. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis.Dev. Cell20058573975010.1016/j.devcel.2005.03.01615866164
    [Google Scholar]
  33. OkadaA. YamasakiS. KogaT. KawashiriS.Y. TamaiM. OriguchiT. NakamuraH. EguchiK. KawakamiA. Adipogenesis of the mesenchymal stromal cells and bone oedema in rheumatoid arthritis.Clin. Exp. Rheumatol.201230333233722325242
    [Google Scholar]
  34. MaH. LiY. SongL. LiuR. LiX. ShangQ. WangY. ShaoC. ShiY. Macrophages inhibit adipogenic differentiation of adipose tissue derived mesenchymal stem/stromal cells by producing pro-inflammatory cytokines.Cell Biosci.20201018810.1186/s13578‑020‑00450‑y32699606
    [Google Scholar]
  35. SunX. ZouT. ZuoC. ZhangM. ShiB. JiangZ. CuiH. LiaoX. LiX. TangY. LiuY. LiuX. IL-1α inhibits proliferation and adipogenic differentiation of human adipose-derived mesenchymal stem cells through NF-κB- and ERK1/2-mediated proinflammatory cytokines.Cell Biol. Int.201842779480310.1002/cbin.1093229288588
    [Google Scholar]
  36. SullivanC.B. PorterR.M. EvansC.H. RitterT. ShawG. BarryF. MurphyJ.M. TNFα and IL-1β influence the differentiation and migration of murine MSCs independently of the NF-κB pathway.Stem Cell Res. Ther.20145410410.1186/scrt49225107289
    [Google Scholar]
  37. CarreroR. CerradaI. LledóE. DopazoJ. García-GarcíaF. RubioM.P. TriguerosC. DorronsoroA. Ruiz-SauriA. MonteroJ.A. SepúlvedaP. IL1β induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-κB.Stem Cell Rev.20128390591610.1007/s12015‑012‑9364‑922467443
    [Google Scholar]
  38. LinC.Y. ZuC.H. YangC.C. TsaiP.J. ShyuJ.F. ChenC.P. WengZ.C. ChenT.H. WangH.S. IL-1β-induced mesenchymal stem cell migration involves MLCK activation via PKC signaling.Cell Transplant.201524102011202810.3727/096368914X68525825333338
    [Google Scholar]
  39. GuoY.C. ChiuY.H. ChenC.P. WangH.S. Interleukin-1β induces CXCR3-mediated chemotaxis to promote umbilical cord mesenchymal stem cell transendothelial migration.Stem Cell Res. Ther.20189128110.1186/s13287‑018‑1032‑929291747
    [Google Scholar]
  40. UciechowskiP. DempkeW.C.M. Interleukin-6: A masterplayer in the cytokine network.Oncology202098313113710.1159/00050509931958792
    [Google Scholar]
  41. WeiH. ShenG. DengX. LouD. SunB. WuH. LongL. DingT. ZhaoJ. The role of IL-6 in bone marrow (BM)-derived mesenchymal stem cells (MSCs) proliferation and chondrogenesis.Cell Tissue Bank.201314469970610.1007/s10561‑012‑9354‑923322270
    [Google Scholar]
  42. YangC. ChenY. LiF. YouM. ZhongL. LiW. ZhangB. ChenQ. The biological changes of umbilical cord mesenchymal stem cells in inflammatory environment induced by different cytokines.Mol. Cell. Biochem.20184461-217118410.1007/s11010‑018‑3284‑129356988
    [Google Scholar]
  43. PricolaK.L. KuhnN.Z. Haleem-SmithH. SongY. TuanR.S. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism.J. Cell. Biochem.2009108357758810.1002/jcb.2228919650110
    [Google Scholar]
  44. KondoM. YamaokaK. SakataK. SonomotoK. LinL. NakanoK. TanakaY. Contribution of the interleukin-6/STAT-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells.Arthritis Rheumatol.20156751250126010.1002/art.3903625604648
    [Google Scholar]
  45. PourgholaminejadA. AghdamiN. BaharvandH. MoazzeniS.M. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells.Cytokine201685516010.1016/j.cyto.2016.06.00327288632
    [Google Scholar]
  46. XieZ. TangS. YeG. WangP. LiJ. LiuW. LiM. WangS. WuX. CenS. ZhengG. MaM. WuY. ShenH. Interleukin-6/interleukin-6 receptor complex promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells.Stem Cell Res. Ther.2018911310.1186/s13287‑017‑0766‑029357923
    [Google Scholar]
  47. HuhJ.E. LeeS.Y. 2013. IL-6 is produced by adipose-derived stromal cells and promotes osteogenesis. Biochimica et Biophysica Acta (BBA)-.Molecular Cell Research18331226082616
    [Google Scholar]
  48. ZhouS. DaiQ. HuangX. JinA. YangY. GongX. XuH. GaoX. JiangL. STAT3 is critical for skeletal development and bone homeostasis by regulating osteogenesis.Nat. Commun.2021121689110.1038/s41467‑021‑27273‑w34824272
    [Google Scholar]
  49. FukuyoS. YamaokaK. SonomotoK. OshitaK. OkadaY. SaitoK. YoshidaY. KanazawaT. MinamiY. TanakaY. IL-6-accelerated calcification by induction of ROR2 in human adipose tissue-derived mesenchymal stem cells is STAT3 dependent.Rheumatology (Oxford)20145371282129010.1093/rheumatology/ket49624599911
    [Google Scholar]
  50. HouX. TianF. STAT3-mediated osteogenesis and osteoclastogenesis in osteoporosis.Cell Commun. Signal.202220111210.1186/s12964‑022‑00924‑135879773
    [Google Scholar]
  51. ItohS. UdagawaN. TakahashiN. YoshitakeF. NaritaH. EbisuS. IshiharaK. A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation.Bone200639350551210.1016/j.bone.2006.02.07416679075
    [Google Scholar]
  52. KnüpferH. PreissR. sIL-6R: More than an agonist?Immunol. Cell Biol.2008861879110.1038/sj.icb.710011317724457
    [Google Scholar]
  53. EricesA. CongetP. RojasC. MinguellJ.J. Gp130 activation by soluble interleukin-6 receptor/interleukin-6 enhances osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells.Exp. Cell Res.20022801243210.1006/excr.2002.562712372336
    [Google Scholar]
  54. CuiX. LiuJ. BaiL. TianJ. ZhuJ. Interleukin-6 induces malignant transformation of rat mesenchymal stem cells in association with enhanced signaling of signal transducer and activator of transcription 3.Cancer Sci.20141051647110.1111/cas.1231324168060
    [Google Scholar]
  55. RussoR.C. GarciaC.C. TeixeiraM.M. AmaralF.A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases.Expert Rev. Clin. Immunol.201410559361910.1586/1744666X.2014.89488624678812
    [Google Scholar]
  56. RingeJ. StrassburgS. NeumannK. EndresM. NotterM. BurmesterG.R. KapsC. SittingerM. Towards in situ tissue repair: Human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2.J. Cell. Biochem.2007101113514610.1002/jcb.2117217295203
    [Google Scholar]
  57. KimD.S. KimJ.H. Kwon LeeJ. ChoiS.J. KimJ.S. JeunS.S. OhW. YangY.S. ChangJ.W. Overexpression of CXC chemokine receptors is required for the superior glioma-tracking property of umbilical cord blood-derived mesenchymal stem cells.Stem Cells Dev.200918351152010.1089/scd.2008.005018624673
    [Google Scholar]
  58. LiD. WangG.Y. DongB.H. ZhangY.C. WangY.X. SunB.C. Biological characteristics of human placental mesenchymal stem cells and their proliferative response to various cytokines.Cells Tissues Organs2007186316917910.1159/00010567417630477
    [Google Scholar]
  59. WangL. LiY. ChenX. ChenJ. GautamS.C. XuY. ChoppM. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture.Hematology20027211311710.1080/1024533029002858812186702
    [Google Scholar]
  60. PicinichS.C. GlodJ.W. BanerjeeD. Protein kinase C zeta regulates interleukin-8-mediated stromal-derived factor-1 expression and migration of human mesenchymal stromal cells.Exp. Cell Res.2010316459360210.1016/j.yexcr.2009.11.01119944094
    [Google Scholar]
  61. ParkM.S. KimY.H. JungY. KimS.H. ParkJ.C. YoonD.S. KimS.H. LeeJ.W. In situ recruitment of human bone marrow-derived mesenchymal stem cells using chemokines for articular cartilage regeneration.Cell Transplant.20152461067108310.3727/096368914X68101824759682
    [Google Scholar]
  62. MaX. ChenJ. LiuJ. XuB. LiangX. YangX. FengY. LiangX. LiuJ. IL-8/CXCR2 mediates tropism of human bone marrow-derived mesenchymal stem cells toward CD133 + /CD44 + Colon cancer stem cells.J. Cell. Physiol.202123643114312810.1002/jcp.3008033078417
    [Google Scholar]
  63. WaughD.J.J. WilsonC. The interleukin-8 pathway in cancer.Clin. Cancer Res.200814216735674110.1158/1078‑0432.CCR‑07‑484318980965
    [Google Scholar]
  64. MatsushimaK. YangD. OppenheimJ.J. Interleukin-8: An evolving chemokine.Cytokine202215315582810.1016/j.cyto.2022.15582835247648
    [Google Scholar]
  65. Liang-kuanB. NanZ. ChengL. Fu-DingL. Tian-XinL. Xu-JunX. ChunJ. Jin-LiH. HaiH. Cai-XiaZ. WenD. Kidney cancer cells secrete IL-8 to activate Akt and promote migration of mesenchymal stem cells.Urol Oncol.201432560712
    [Google Scholar]
  66. HouY. RyuC.H. JunJ.A. KimS.M. JeongC.H. JeunS.S. IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor.Cell Biol. Int.20143891050105910.1002/cbin.1029424797366
    [Google Scholar]
  67. Bastidas-CoralA.P. BakkerA.D. Zandieh-DoulabiB. KleverlaanC.J. BravenboerN. ForouzanfarT. Klein-NulendJ. Cytokines TNF-α, IL-6, IL-17F, and IL-4 differentially affect osteogenic differentiation of human adipose stem cells.Stem Cells Int.201620161910.1155/2016/131825627667999
    [Google Scholar]
  68. LiJ.J. MaF.X. WangY.W. ChenF. LuS.H. ChiY. DuW.J. SongB.Q. HuL.D. ChenH. HanZ.C. Knockdown of IL-8 provoked premature senescence of placenta-derived mesenchymal stem cells.Stem Cells Dev.2017261291293110.1089/scd.2016.032428418782
    [Google Scholar]
  69. KawanoM. TanakaK. ItonagaI. IwasakiT. TsumuraH. Interaction between human osteosarcoma and mesenchymal stem cells via an interleukin-8 signaling loop in the tumor microenvironment.Cell Commun. Signal.20181611310.1186/s12964‑018‑0225‑229625612
    [Google Scholar]
  70. JeonB.J. YangY. Kyung ShimS. YangH.M. ChoD. Ik BangS. Thymosin beta-4 promotes mesenchymal stem cell proliferation via an interleukin-8-dependent mechanism.Exp. Cell Res.2013319172526253410.1016/j.yexcr.2013.04.01423712052
    [Google Scholar]
  71. YoonD.S. LeeK.M. KimS.H. KimS.H. JungY. KimS.H. ParkK.H. ChoiY. RyuH.A. ChoiW.J. LeeJ.W. Synergistic action of IL-8 and bone marrow concentrate on cartilage regeneration through upregulation of chondrogenic transcription factors.Tissue Eng. Part A2016223-436337410.1089/ten.tea.2015.042526871861
    [Google Scholar]
  72. ZhangY. JiangW. KongL. FuJ. ZhangQ. LiuH. PLGA@IL-8 nanoparticles-loaded acellular dermal matrix as a delivery system for exogenous MSCs in diabetic wound healing.Int. J. Biol. Macromol.202322468869810.1016/j.ijbiomac.2022.10.15736280170
    [Google Scholar]
  73. Barcellos-de-SouzaP. GoriV. BambiF. ChiarugiP. 2013. Tumor microenvironment: Bone marrow-mesenchymal stem cells as key players. Biochimica et Biophysica Acta (BBA)-.Rev. Cancer18362321335
    [Google Scholar]
  74. FousekK. HornL.A. PalenaC. Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression.Pharmacol. Ther.202121910769210.1016/j.pharmthera.2020.10769232980444
    [Google Scholar]
  75. HuangH. KimH.J. ChangE-J. LeeZ.H. HwangS.J. KimH-M. LeeY. KimH-H. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: Implications for bone remodeling.Cell Death Differ.200916101332134310.1038/cdd.2009.7419543237
    [Google Scholar]
  76. MoninL. GaffenS.L. Interleukin 17 family cytokines: Signaling mechanisms, biological activities, and therapeutic implications.Cold Spring Harb. Perspect. Biol.2018104a02852210.1101/cshperspect.a02852228620097
    [Google Scholar]
  77. BastidJ. DejouC. DocquierA. BonnefoyN. The emerging role of the IL-17B/IL-17RB pathway in cancer.Front. Immunol.20201171810.3389/fimmu.2020.0071832373132
    [Google Scholar]
  78. BieQ. ZhangB. SunC. JiX. BarnieP.A. QiC. PengJ. ZhangD. ZhengD. SuZ. WangS. XuH. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells.Oncotarget2017812189141892310.18632/oncotarget.1483528145881
    [Google Scholar]
  79. JaukovićA. KukoljT. TrivanovićD. Okić-ĐorđevićI. ObradovićH. MiletićM. PetrovićV. MojsilovićS. BugarskiD. Modulating stemness of mesenchymal stem cells from exfoliated deciduous and permanent teeth by IL-17 and bFGF.J. Cell. Physiol.2021236117322734110.1002/jcp.3039933934350
    [Google Scholar]
  80. MojsilovićS. JaukovićA. SantibañezJ.F. BugarskiD. Interleukin-17 and its implication in the regulation of differentiation and function of hematopoietic and mesenchymal stem cells.Mediators Inflamm.2015201511110.1155/2015/47045825999667
    [Google Scholar]
  81. NajarM. KrayemM. MerimiM. BurnyA. MeulemanN. BronD. RaicevicG. LagneauxL. Insights into inflammatory priming of mesenchymal stromal cells: Functional biological impacts.Inflamm. Res.201867646747710.1007/s00011‑018‑1131‑129362849
    [Google Scholar]
  82. NoronhaN.D.C. MizukamiA. Caliári-OliveiraC. CominalJ.G. RochaJ.L.M. CovasD.T. SwiechK. MalmegrimK.C. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies.Stem Cell Res. Ther.201910112130606242
    [Google Scholar]
  83. ChenH. LiS. XuW. HongY. DouR. ShenH. LiuX. WuT. HeJ.C. Interleukin-17A promotes the differentiation of bone marrow mesenchymal stem cells into neuronal cells.Tissue Cell20216910148210.1016/j.tice.2020.10148233418236
    [Google Scholar]
  84. KondoM. YamaokaK. SonomotoK. FukuyoS. OshitaK. OkadaY. TanakaY. IL-17 inhibits chondrogenic differentiation of human mesenchymal stem cells.PLoS One2013811e7946310.1371/journal.pone.007946324260226
    [Google Scholar]
  85. ShinJ.H. ShinD.W. NohM. Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes.Biochem. Pharmacol.200977121835184410.1016/j.bcp.2009.03.00819428338
    [Google Scholar]
  86. TsatsanisC. AndroulidakiA. VenihakiM. MargiorisA.N. Signalling networks regulating cyclooxygenase-2.Int. J. Biochem. Cell Biol.200638101654166110.1016/j.biocel.2006.03.02116713323
    [Google Scholar]
  87. FaourW.H. ManciniA. HeQ.W. Di BattistaJ.A. T-cell-derived interleukin-17 regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of the p38 mitogen-activated protein kinase cascade: Role of distal sequences in the 3′-untranslated region of COX-2 mRNA.J. Biol. Chem.200327829268972690710.1074/jbc.M21279020012746433
    [Google Scholar]
  88. NohM. Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells.Biochem. Pharmacol.201283566167010.1016/j.bcp.2011.12.01022197587
    [Google Scholar]
  89. ConsidineR.V. Regulation of leptin production.Rev. Endocr. Metab. Disord.20012435736310.1023/A:101189633115911725722
    [Google Scholar]
  90. McCormickS.M. HellerN.M. Commentary: IL-4 and IL-13 receptors and signaling.Cytokine2015751385010.1016/j.cyto.2015.05.02326187331
    [Google Scholar]
  91. ArchackaK. BemJ. BrzoskaE. CzerwinskaA.M. GrabowskaI. KasprzyckaP. HoinkisD. SiennickaK. PojdaZ. BernasP. BinkowskiR. JastrzebskaK. KupiecA. MaleszaM. MichalczewskaE. SoszynskaM. IlachK. StreminskaW. CiemerychM.A. Beneficial effect of IL-4 and SDF-1 on myogenic potential of mouse and human adipose tissue-derived stromal cells.Cells202096147910.3390/cells906147932560483
    [Google Scholar]
  92. SchulzeM. Belema-BedadaF. TechnauA. BraunT. Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4-mediated cell fusion.Genes Dev.200519151787179810.1101/gad.33930516077007
    [Google Scholar]
  93. ChenC. AkiyamaK. WangD. XuX. LiB. MoshaveriniaA. BrombacherF. SunL. ShiS. mTOR inhibition rescues osteopenia in mice with systemic sclerosis.J. Exp. Med.20152121739110.1084/jem.2014064325534817
    [Google Scholar]
  94. Lecka-CzernikB. MoermanE.J. GrantD.F. LehmannJ.M. ManolagasS.C. JilkaR.L. Divergent effects of selective peroxisome proliferator-activated receptor-γ 2 ligands on adipocyte versus osteoblast differentiation.Endocrinology200214362376238410.1210/endo.143.6.883412021203
    [Google Scholar]
  95. TakadaI. KouzmenkoA.P. KatoS. Wnt and PPARγ signaling in osteoblastogenesis and adipogenesis.Nat. Rev. Rheumatol.20095844244710.1038/nrrheum.2009.13719581903
    [Google Scholar]
  96. YuW. ChenZ. ZhangJ. ZhangL. KeH. HuangL. PengY. ZhangX. LiS. LahnB.T. XiangA.P. Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells.Mol. Cell. Biochem.20083101-2111810.1007/s11010‑007‑9661‑918060476
    [Google Scholar]
  97. KimJ.E. ChenJ. regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis.Diabetes200453112748275610.2337/diabetes.53.11.274815504954
    [Google Scholar]
  98. ZhangH.H. HuangJ. DüvelK. BobackB. WuS. SquillaceR.M. WuC.L. ManningB.D. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway.PLoS One200947e618910.1371/journal.pone.000618919593385
    [Google Scholar]
  99. Bastidas-CoralA.P. HogervorstJ.M.A. ForouzanfarT. KleverlaanC.J. KoolwijkP. Klein-NulendJ. BakkerA.D. IL-6 counteracts the inhibitory effect of IL-4 on osteogenic differentiation of human adipose stem cells.J. Cell. Physiol.201923411205202053210.1002/jcp.2865231016754
    [Google Scholar]
  100. EhrlichL.A. ChungH.Y. GhobrialI. ChoiS.J. MorandiF. CollaS. RizzoliV. RoodmanG.D. GiulianiN. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma.Blood200510641407141410.1182/blood‑2005‑03‑108015878977
    [Google Scholar]
  101. BlalockW.L. Weinstein-OppenheimerC. ChangF. HoyleP.E. WangX-Y. AlgateP.A. FranklinR.A. OberhausS.M. SteelmanL.S. McCubreyJ.A. Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: Possible sites for intervention with anti-neoplastic drugs.Leukemia19991381109116610.1038/sj.leu.240149310450743
    [Google Scholar]
  102. BarhanpurkarA.P. GuptaN. SrivastavaR.K. TomarG.B. NaikS.P. JoshiS.R. PoteS.T. MishraG.C. WaniM.R. IL-3 promotes osteoblast differentiation and bone formation in human mesenchymal stem cells.Biochem. Biophys. Res. Commun.2012418466967510.1016/j.bbrc.2012.01.07422293197
    [Google Scholar]
  103. Barhanpurkar-NaikA. MhaskeS.T. PoteS.T. SinghK. WaniM.R. Interleukin-3 enhances the migration of human mesenchymal stem cells by regulating expression of CXCR4.Stem Cell Res. Ther.20178116810.1186/s13287‑017‑0618‑y28705238
    [Google Scholar]
  104. SinghK. PiprodeV. MhaskeS.T. Barhanpurkar-NaikA. WaniM.R. IL-3 differentially regulates membrane and soluble RANKL in osteoblasts through metalloproteases and the JAK2/STAT5 pathway and improves the RANKL/OPG ratio in adult mice.J. Immunol.2018200259560610.4049/jimmunol.160152829203513
    [Google Scholar]
  105. ChenE. LiuG. ZhouX. ZhangW. WangC. HuD. XueD. PanZ. Concentration-dependent, dual roles of IL-10 in the osteogenesis of human BMSCs via P38/MAPK and NF-κB signaling pathways.FASEB J.20183294917492910.1096/fj.201701256RRR29630408
    [Google Scholar]
  106. YangW. ZhangS. OuT. JiangH. JiaD. QiZ. ZouY. QianJ. SunA. GeJ. Interleukin-11 regulates the fate of adipose-derived mesenchymal stem cells via STAT3 signalling pathways.Cell Prolif.2020535e1277110.1111/cpr.1277132270546
    [Google Scholar]
  107. GabrielyanA. QuadeM. GelinskyM. Rösen-WolffA. IL-11 and soluble VCAM-1 are important components of Hypoxia Conditioned Media and crucial for Mesenchymal Stromal Cells attraction.Stem Cell Res. (Amst.)20204510181410.1016/j.scr.2020.10181432334367
    [Google Scholar]
  108. TakeuchiY. WatanabeS. IshiiG. TakedaS. NakayamaK. FukumotoS. KanetaY. InoueD. MatsumotoT. HarigayaK. FujitaT. Interleukin-11 as a stimulatory factor for bone formation prevents bone loss with advancing age in mice.J. Biol. Chem.200227750490114901810.1074/jbc.M20780420012384500
    [Google Scholar]
  109. LeonE.R. IwasakiK. KomakiM. KojimaT. IshikawaI. Osteogenic effect of interleukin-11 and synergism with ascorbic acid in human periodontal ligament cells.J. Periodontal Res.200742652753510.1111/j.1600‑0765.2007.00977.x17956465
    [Google Scholar]
  110. LiaoY. FuZ. HuangY. WuS. WangZ. YeS. ZengW. ZengG. LiD. YangY. PeiK. YangJ. HuZ. LiangX. HuJ. LiuM. JinJ. CaiC. Interleukin-18-primed human umbilical cord-mesenchymal stem cells achieve superior therapeutic efficacy for severe viral pneumonia via enhancing T-cell immunosuppression.Cell Death Dis.20231416610.1038/s41419‑023‑05597‑336707501
    [Google Scholar]
  111. MengB. WuD. ChengY. HuangP. LiuY. GanL. LiuC. CaoY. Interleukin-20 differentially regulates bone mesenchymal stem cell activities in RANKL-induced osteoclastogenesis through the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT signalling pathways.Scand. J. Immunol.2020915e1287410.1111/sji.1287432090353
    [Google Scholar]
  112. El-ZayadiA.A. JonesE.A. ChurchmanS.M. BaboolalT.G. CuthbertR.J. El-JawhariJ.J. BadawyA.M. AlaseA.A. El-SherbinyY.M. McGonagleD. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: A novel cytokine that could contribute to new bone formation in spondyloarthropathies.Rheumatology (Oxford)201756348849327940584
    [Google Scholar]
  113. XuJ. FuL. BaiJ. ZhongH. KuangZ. ZhouC. HuB. NiL. YingL. ChenE. ZhangW. WuJ. XueD. LiW. PanZ. Low-dose IL-34 has no effect on osteoclastogenesis but promotes osteogenesis of hBMSCs partly via activation of the PI3K/AKT and ERK signaling pathways.Stem Cell Res. Ther.202112126810.1186/s13287‑021‑02263‑333947456
    [Google Scholar]
  114. YeC. ZhangW. HangK. ChenM. HouW. ChenJ. ChenX. ChenE. TangL. LuJ. DingQ. JiangG. HongB. HeR. Extracellular IL-37 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the PI3K/AKT signaling pathway.Cell Death Dis.2019101075310.1038/s41419‑019‑1904‑731582734
    [Google Scholar]
  115. SaeediP. HalabianR. Imani FooladiA.A. A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies.Stem Cell Investig.201963410.21037/sci.2019.08.1131620481
    [Google Scholar]
  116. MaksimovaN.V. MichenkoA.V. KrasilnikovaO.A. KlabukovI.D. GadaevI.Y. KrasheninnikovM.E. BelkovP.A. LyundupA.V. Mesenchymal stromal cell therapy alone does not lead to complete restoration of skin parameters in diabetic foot patients within a 3-year follow-up period.Bioimpacts2022121515535087716
    [Google Scholar]
  117. RajaJ.M. MaturanaM.A. KayaliS. KhouzamA. EfeovbokhanN. Diabetic foot ulcer: A comprehensive review of pathophysiology and management modalities.World J. Clin. Cases20231181684169310.12998/wjcc.v11.i8.168436970004
    [Google Scholar]
  118. BaranovskiiD.S. KlabukovI.D. ArguchinskayaN.V. YakimovaA.O. KiselA.A. YatsenkoE.M. IvanovS.A. ShegayP.V. KaprinA.D. Adverse events, side effects and complications in mesenchymal stromal cell-based therapies.Stem Cell Investig.20229710.21037/sci‑2022‑02536393919
    [Google Scholar]
  119. WangL. WangL. CongX. LiuG. ZhouJ. BaiB. LiY. BaiW. LiM. JiH. ZhuD. WuM. LiuY. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: Safety and efficacy.Stem Cells Dev.201322243192320210.1089/scd.2013.002323941289
    [Google Scholar]
  120. RaJ.C. KangS.K. ShinI.S. ParkH.G. JooS.A. KimJ.G. KangB.C. LeeY.S. NakamaK. PiaoM. SohlB. KurtzA. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells.J. Transl. Med.20119118110.1186/1479‑5876‑9‑18122017805
    [Google Scholar]
  121. Álvaro-GraciaJ.M. JoverJ.A. García-VicuñaR. CarreñoL. AlonsoA. MarsalS. BlancoF. Martínez-TaboadaV.M. TaylorP. Martín-MartínC. DelaRosaO. TagarroI. Díaz-GonzálezF. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): Results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial.Ann. Rheum. Dis.201776119620210.1136/annrheumdis‑2015‑20891827269294
    [Google Scholar]
  122. ShadmanfarS. LabibzadehN. EmadedinM. JaroughiN. AzimianV. MardpourS. KakroodiF.A. BoluriehT. HosseiniS.E. ChehraziM. NiknejadiM. BaharvandH. GharibdoostF. AghdamiN. Intra-articular knee implantation of autologous bone marrow–derived mesenchymal stromal cells in rheumatoid arthritis patients with knee involvement: Results of a randomized, triple-blind, placebo-controlled phase 1/2 clinical trial.Cytotherapy201820449950610.1016/j.jcyt.2017.12.00929428486
    [Google Scholar]
  123. HanX. YangQ. LinL. XuC. ZhengC. ChenX. HanY. LiM. CaoW. CaoK. ChenQ. XuG. ZhangY. ZhangJ. SchneiderR.J. QianY. WangY. BrewerG. ShiY. Interleukin-17 enhances immunosuppression by mesenchymal stem cells.Cell Death Differ.201421111758176810.1038/cdd.2014.8525034782
    [Google Scholar]
  124. SivanathanK.N. Rojas-CanalesD.M. HopeC.M. KrishnanR. CarrollR.P. GronthosS. GreyS.T. CoatesP.T. Interleukin-17A-induced human mesenchymal stem cells are superior modulators of immunological function.Stem Cells20153392850286310.1002/stem.207526037953
    [Google Scholar]
  125. NieH. AnF. MeiJ. YangC. ZhanQ. ZhangQ. IL-1β pretreatment improves the efficacy of mesenchymal stem cells on acute liver failure by enhancing CXCR4 expression.Stem Cells Int.2020202011110.1155/2020/149831532724311
    [Google Scholar]
  126. RamírezJ. CañeteJ.D. Anakinra for the treatment of rheumatoid arthritis: A safety evaluation.Expert Opin. Drug Saf.201817772773210.1080/14740338.2018.148681929883212
    [Google Scholar]
  127. ȚiburcăL. BembeaM. ZahaD.C. JurcaA.D. VesaC.M. RațiuI.A. JurcaC.M. The treatment with interleukin 17 inhibitors and immune-mediated inflammatory diseases.Curr. Issues Mol. Biol.20224451851186610.3390/cimb4405012735678656
    [Google Scholar]
  128. ChoyE.H. De BenedettiF. TakeuchiT. HashizumeM. JohnM.R. KishimotoT. Translating IL-6 biology into effective treatments.Nat. Rev. Rheumatol.202016633534510.1038/s41584‑020‑0419‑z32327746
    [Google Scholar]
  129. ClinicaltTrials.govIL-11 in women with von willebrand disease and refractory menorrhagia.2018Available From: https://classic.clinicaltrials.gov/ct2/show/results/NCT00524342?term=IL-11%2C+interleukin-11&rslt=With&draw=2&rank=3
  130. ClinicaltTrials.govInterleukin 11, thrombocytopenia, imatinib in Chronic Myelogenous Leukemia (CML) patients.2012Available From: https://classic.clinicaltrials.gov/ct2/show/results/NCT00493181?term=IL-11%2C+interleukin-11&rslt=With&draw=2&rank=2
  131. ClinicaltTrials.govInterferon alfa and interleukin-6 in treating patients with recurrent multiple myeloma.2018Available From: https://classic.clinicaltrials.gov/ct2/show/results/NCT00470093?term=interleukin-6+AND+IL-6&recrs=h&draw=2&rank=1
  132. LeonardJ.P. ShermanM.L. FisherG.L. BuchananL.J. LarsenG. AtkinsM.B. SosmanJ.A. DutcherJ.P. VogelzangN.J. RyanJ.L. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-γ production.Blood1997907254125489326219
    [Google Scholar]
  133. CohenJ. IL-12 deaths: Explanation and a puzzle.Science1995270523890890810.1126/science.270.5238.908.a7481785
    [Google Scholar]
  134. RyffJ.C. PestkaS. Interferons and Interleukins. Pharmaceutical Biotechnology3rd edBoca Raton, FloridaCRC Press201322
    [Google Scholar]
  135. NambaH. KawajiH. YamasakiT. Use of genetically engineered stem cells for glioma therapy.Oncol. Lett.201611191510.3892/ol.2015.386026870161
    [Google Scholar]
  136. ManningE. PhamS. LiS. Vazquez-PadronR.I. MathewJ. RuizP. SalgarS.K. Interleukin-10 delivery via mesenchymal stem cells: A novel gene therapy approach to prevent lung ischemia-reperfusion injury.Hum. Gene Ther.201021671372710.1089/hum.2009.14720102275
    [Google Scholar]
  137. ŠvajgerU. KamenšekU. Interleukins and interferons in mesenchymal stromal stem cell-based gene therapy of cancer.Cytokine Growth Factor Rev.2024S1359-6101(24)00021-210.1016/j.cytogfr.2024.03.00238508954
    [Google Scholar]
  138. OttolenghiA. BolelP. SarkarR. GreenshpanY. IraqiM. GhoshS. BhattacharyaB. TaylorZ.V. KunduK. RadinskyO. GazitR. StepenskyD. ApteR.N. VoronovE. PorgadorA. Life-extended glycosylated IL-2 promotes Treg induction and suppression of autoimmunity.Sci. Rep.2021111767610.1038/s41598‑021‑87102‑433828163
    [Google Scholar]
  139. YangJ.C. TopalianS.L. SchwartzentruberD.J. ParkinsonD.R. MarincolaF.M. WeberJ.S. SeippC.A. WhiteD.E. RosenbergS.A. The use of polyethylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma.Cancer199576468769410.1002/1097‑0142(19950815)76:4<687::AID‑CNCR2820760424>3.0.CO;2‑M8625167
    [Google Scholar]
  140. WangY. GaoT. WangB. Application of mesenchymal stem cells for anti-senescence and clinical challenges.Stem Cell Res. Ther.202314126010.1186/s13287‑023‑03497‑z37726805
    [Google Scholar]
  141. TurinettoV. VitaleE. GiachinoC. Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy.Int. J. Mol. Sci.2016177116410.3390/ijms1707116427447618
    [Google Scholar]
  142. Al-AzabM. SafiM. IdiiatullinaE. Al-ShaebiF. ZakyM.Y. Aging of mesenchymal stem cell: Machinery, markers, and strategies of fighting.Cell. Mol. Biol. Lett.20222716910.1186/s11658‑022‑00366‑035986247
    [Google Scholar]
  143. LiuY. ChenQ. Senescent Mesenchymal Stem cells: Disease mechanism and treatment strategy.Curr. Mol. Biol. Rep.20206417318210.1007/s40610‑020‑00141‑033816065
    [Google Scholar]
  144. RodierF. CampisiJ. Four faces of cellular senescence.J. Cell Biol.2011192454755610.1083/jcb.20100909421321098
    [Google Scholar]
  145. LiY. WuQ. WangY. LiL. BuH. BaoJ. Senescence of mesenchymal stem cells (Review).Int. J. Mol. Med.201739477578210.3892/ijmm.2017.291228290609
    [Google Scholar]
  146. WatanabeS. KawamotoS. OhtaniN. HaraE. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases.Cancer Sci.2017108456356910.1111/cas.1318428165648
    [Google Scholar]
  147. KrasilnikovaO.A. BaranovskiiD.S. YakimovaA.O. ArguchinskayaN. KiselA. SosinD. SulinaY. IvanovS.A. ShegayP.V. KaprinA.D. KlabukovI.D. Intraoperative creation of tissue-engineered grafts with minimally manipulated cells: New concept of bone tissue engineering in situ.Bioengineering (Basel)202291170410.3390/bioengineering911070436421105
    [Google Scholar]
  148. GharibiB. FarzadiS. GhumanM. HughesF.J. Inhibition of Akt/mTOR attenuates age-related changes in mesenchymal stem cells.Stem Cells20143282256226610.1002/stem.170924659476
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X313750240524115446
Loading
/content/journals/cscr/10.2174/011574888X313750240524115446
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test